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Abstract. The great advances of learning-based approaches in image
processing and computer vision are largely based on deeply nested
networks that compose linear transfer functions with suitable non-
linearities. Interestingly, the most frequently used non-linearities in imag-
ing applications (variants of the rectified linear unit) are uncommon in
low dimensional approximation problems. In this paper we propose a
novel non-linear transfer function, called lifting, which is motivated from
a related technique in convex optimization. A lifting layer increases the
dimensionality of the input, naturally yields a linear spline when com-
bined with a fully connected layer, and therefore closes the gap between
low and high dimensional approximation problems. Moreover, applying
the lifting operation to the loss layer of the network allows us to han-
dle non-convex and flat (zero-gradient) cost functions. We analyze the
proposed lifting theoretically, exemplify interesting properties in syn-
thetic experiments and demonstrate its effectiveness in deep learning
approaches to image classification and denoising.

Keywords: Machine learning · Deep learning · Interpolation
Approximation theory · Convex relaxation · Lifting

1 Introduction

Deep Learning has seen a tremendous success within the last 10 years improving
the state-of-the-art in almost all computer vision and image processing tasks sig-
nificantly. While one of the main explanations for this success is the replacement
of handcrafted methods and features with data-driven approaches, the architec-
tures of successful networks remain handcrafted and difficult to interpret.

The use of some common building blocks, such as convolutions, in imaging
tasks is intuitive as they establish translational invariance. The composition of
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Fig. 1. The proposed lifting identifies predefined labels ti ∈ R with the unit vectors ei in
R

L, L ≥ 2. As illustrated in (a), a number x that is represented as a convex combination
of ti and ti+1 has a natural representation in a higher dimensional lifted space, see (3).
When a lifting layer is combined with a fully connected layer it corresponds to a linear
spline, and when both the input as well as the desired output are lifted it allows
non-convex cost functions to be represented as a convex minimization problem (b).
Finally, as illustrated in (c), coordinate-wise lifting yields an interesting representation
of images, which allows textures of different intensities to be filtered differently.

linear transfer functions with non-linearities is a natural way to achieve a simple
but expressive representation, but the choice of non-linearity is less intuitive:
Starting from biologically motivated step functions or their smooth approxima-
tions by sigmoids, researchers have turned to rectified linear units (ReLUs),

σ(x) = max(x, 0) (1)

to avoid the optimization-based problem of a vanishing gradient. The derivative
of a ReLU is σ′(x) = 1 for all x > 0. Nonetheless, the derivative remains zero
for x < 0, which does not seem to make it a natural choice for an activation
function, and often leads to “dead” ReLUs. This problem has been partially
addressed with ReLU variants, such as leaky ReLUs [1], parameterized ReLUs
[2], or maxout units [3]. These remain amongst the most popular choice of non-
linearities as they allow for fast network training in practice.

In this paper we propose a novel type of non-linear layer, which we call
lifting layer �. In contrast to ReLUs (1), it does not discard large parts of the
input data, but rather lifts it to different channels that allow the input x to be
processed independently on different intervals. As we discuss in more detail in
Sect. 3.4, the simplest form of the proposed lifting non-linearity is the mapping

σ(x) =
(

max(x, 0)
min(x, 0)

)
, (2)

which essentially consists of two complementary ReLUs and therefore neither
discards half of the incoming inputs nor has intervals of zero gradients.
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More generally, the proposed non-linearity depends on labels t1 < . . . < tL ∈
R (typically linearly spaced) and is defined as a function � : [t1, tL] → R

L that
maps a scalar input x ∈ R to a vector �(x) ∈ R

L via

�(x) =
(
0, . . . , 0,

tl+1 − x

tl+1 − tl︸ ︷︷ ︸
l-th coordinate

,
x − tl

tl+1 − tl
, 0, . . . , 0

)T

for x ∈ [tl, tl+1]. (3)

The motivation of the proposed lifting non-linearity is illustrated in Fig. 1.
In particular, we highlight the following contributions:

1. The concept of representing a low dimensional variable in a higher dimen-
sional space is a well-known optimization technique called functional lifting,
see [4]. Non-convex problems are reformulated as the minimization of a con-
vex energy in the higher dimensional ’lifted’ space. While the introduction
of lifting layers does not directly correspond to the optimization technique,
some of the advantageous properties carry over as we detail in Sect. 3.

2. ReLUs are commonly used in deep learning for imaging applications, however
their low dimensional relatives of interpolation or regression problems are
typically tackled differently, e.g. by fitting (piecewise) polynomials. We show
that a lifting layer followed by a fully connected layer yields a linear spline,
which closes the gap between low and high dimensional interpolation
problems. In particular, the aforementioned architecture can approximate
any continuous function f : R → R to arbitrary precision and can still be
trained by solving a convex optimization problem whenever the loss
function is convex, a favorable property that is, for example, not shared even
by the simplest ReLU-based architecture.

3. By additionally lifting the desired output of the network, one can represent
non-convex cost functions in a convex fashion. Besides handling the
non-convexity, such an approach allows for the minimization of cost functions
with large areas of zero gradients such as truncated linear costs.

4. We demonstrate that the proposed lifting improves the test accuracy in
comparison to similar ReLU-based architectures in several experi-
ments on image classification and produces state-of-the-art image denoising
results, making it an attractive universal tool in the design of neural networks.

2 Related Work

Lifting in Convex Optimization. One motivation for the proposed non-linearity
comes from a technique called functional lifting which allows particular types
of non-convex optimization problems to be reformulated as convex problems
in a higher dimensional space, see [4] for details. The recent advances in func-
tional lifting [5] have shown that (3) is a particularly well-suited discretization
of the continuous model from [4]. Although, the techniques differ significantly,
we hope for the general idea of an easier optimization in higher dimensions to
carry over. Indeed, for simple instances of neural network architecture, we prove
several favorable properties for our lifting layer that are related to properties of
functional lifting. Details are provided in Sects. 3 and 4.
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Non-linearities in Neural Networks. While many non-linear transfer functions
have been studied in the literature (see [6, Sect. 6.3] for an overview), the ReLU
in (1) remains the most popular choice. Unfortunately, it has the drawback that
its gradient is zero for all x < 0, thus preventing gradient based optimization
techniques to advance if the activation is zero (dead ReLU problem). Several
variants of the ReLU avoid this problem by either utilizing smoother activations
such as softplus [7] or exponential linear units [8], or by considering

σ(x;α) = max(x, 0) + α min(x, 0), (4)

e.g. the absolute value rectification α = −1 [9], leaky ReLUs with a small α > 0
[1], randomized leaky ReLUs with randomly choosen α [10], parametric ReLUs
in which α is a learnable parameter [2]. Self-normalizing neural networks [11]
use scaled exponential LUs (SELUs) which have further normalizing properties
and therefore replace the use of batch normalization techniques [12]. While the
activation (4) seems closely related to the simplest case (2) of our lifting, the
latter allows to process max(x, 0) and min(x, 0) separately, avoiding the problem
of predefining α in (4) and leading to more freedom in the resulting function.

Another related non-linear transfer function are maxout units [3], which (in
the 1-D case we are currently considering) are defined as

σ(x) = max
j

(θjx + bj). (5)

They can represent any piecewise linear convex function. However, as we show in
Proposition 1, a combination of the proposed lifting layer with a fully connected
layer drops the restriction to convex activation functions, and allows us to learn
any piecewise linear function.

Universal Approximation Theorem. As an extension of the universal approxi-
mation theorem in [13], it has been shown in [14] that the set of feedforward
networks with one hidden layer, i.e., all functions N of the form

N (x) =
N∑

j=1

θ1j σ(〈θ2j , x〉 + bj) (6)

for some integer N , and weights θ1j ∈ R, θ2j ∈ R
n, bj ∈ R are dense in the

set of continuous functions f : [0, 1]n → R if and only if σ is not a polynomial.
While this result demonstrates the expressive power of all common activation
functions, the approximation of some given function f with a network N of the
form (6) requires optimization for the parameters θ1 and (θ2, b) which inevitably
leads to a non-convex problem. We prove the same expressive power of a lifting
based architecture (see Corollary 1), while, remarkably, our corresponding learn-
ing problem is a convex optimization problem. Moreover, beyond the qualitative
density result for (6), we may quantify the approximation quality depending on
a simple measure for the “complexity” of the continuous function to be approx-
imated (see Corollary 1 and the supplementary material).
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3 Lifting Layers

In this section, we introduce the proposed lifting layers (Sect. 3.1) and study
their favorable properties in a simple 1-D setting (Sect. 3.2). The restriction to
1-D functions is mainly for illustrative purposes and simplicity. All results can be
transferred to higher dimensions via a vector valued lifting (Sect. 3.3). The anal-
ysis provided in this section does not directly apply to deep networks, however it
provides an intuition for this setting. Section 3.4 discusses some practical aspects
and reveals a connection to ReLUs. All proofs are provided in the supplementary
material.

3.1 Definition

The following definition formalizes the lifting layer from the introduction.

Definition 1 (Lifting). We define the lifting of a variable x ∈ [t, t], t, t ∈ R,
with respect to the Euclidean basis E :=

{
e1, . . . , eL

}
of RL and a knot sequence

t = t1 < t2 < . . . < tL = t, for some L ∈ N, as a mapping � : [t, t] → R
L given

by
�(x) = (1 − λl(x))el + λl(x)el+1 with l such that x ∈ [tl, tl+1] , (7)

where λl(x) := x−tl

tl+1−tl
∈ R. The (left-)inverse mapping �† : RL → R of �, which

satisfies �†(�(x)) = x, is defined by

�†(z) =
L∑

l=1

zlt
l . (8)

Note that while liftings could be defined with respect to an arbitrary basis
E of R

L (with a slight modification of the inverse mapping), we decided to
limit ourselves to the Euclidean basis for the sake of simplicity. Furthermore,
we limit ourselves to inputs x that lie in the predefined interval [t, t]. Although,
the idea extends to the entire real line by linear extrapolation, i.e., by allowing
λ1(x) > 1, λ2(x) < 0, respectively, λL(x) > 1, λL−1(x) < 0, it requires more
technical details. For the sake of a clean presentation, we omit these details.

3.2 Analysis in 1D

Although, here we are concerned with 1-D functions, these properties and exam-
ples provide some intuition for the implementation of the lifting layer into a deep
architecture. Moreover, analogue results can be stated for the lifting of higher
dimensional spaces.

Proposition 1 (Prediction of a Linear Spline). The composition of a fully
connected layer z �→ 〈θ, z〉 with θ ∈ R

L, and a lifting layer, i.e.,

Nθ(x) := 〈θ, �(x)〉 , (9)

yields a linear spline (continuous piecewise linear function). Conversely, any
linear spline can be expressed in the form of (9).
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Although the architecture in (9) does not fall into the class of functions cov-
ered by the universal approximation theorem, well-known results of linear spline
interpolation still guarantee the same results.

Corollary 1 (Prediction of Continuous Functions). Any continuous func-
tion f : [t, t] → R can be represented arbitrarily accurate with a network archi-
tecture Nθ(x) := 〈θ, �(x)〉 for sufficiently large L, and θ ∈ R

L.

Furthermore, as linear splines can of course fit any (spatially distinct) data points
exactly, our simple network architecture has the same property for a particular
choice of labels ti. On the other hand, this result suggests that using a small
number of labels acts as regularization of the type of linear interpolation.

Corollary 2 (Overfitting). Let (xi, yi) be training data, i = 1, . . . , N with
xi �= xj for i �= j. If L = N and ti = xi, there exists θ such that
Nθ(x) := 〈θ, �(x)〉 is exact at all data points x = xi, i.e. Nθ(xi) = yi for all
i = 1, . . . , N .

Note that Proposition 1 highlights two crucial differences of the proposed non-
linearity to the maxout function in (5): (i) maxout functions can only represent
convex piecewise linear functions, while liftings can represent arbitrary piecewise
linear functions; (ii) The maxout function is non-linear w.r.t. its parameters
(θj , bj), while the simple architecture in (9) (with lifting) is linear w.r.t. its
parameters (θ, b). The advantage of a lifting layer compared to a ReLU, which is
less expressive and also non-linear w.r.t. its parameters, is even more significant.

Remarkably, the optimal approximation of a continuous function by a linear
spline (for any choice of ti), yields a convex minimization problem.

Proposition 2 (Convexity of a simple Regression Problem). Let train-
ing data (xi, yi) ∈ [t, t] × R, i = 1, . . . , N , be given. Then, the solution of the
problem

min
θ

N∑
i=1

L(〈θ, �(xi)〉 ; yi) (10)

yields the best linear spline fit of the training data with respect to the loss function
L. In particular, if L is convex, then (10) is a convex optimization problem.

As the following example shows, this is not true for ReLUs and maxout functions.

Example 1. The convex loss L(z; 1) = (z−1)2 composed with a ReLU applied to
a linear transfer function, i.e., θ �→ max(θxi, 0) with θ ∈ R, leads to a non-convex
objective function, e.g. for xi = 1, θ �→ (max(θ, 0) − 1)2 is non-convex.

Therefore, in the light of Proposition 2, the proposed lifting closes the gap
between low dimensional approximation and regression problems (where linear
splines are extremely common), and high dimensional approximation/learning
problems, where ReLUs have been used instead of linear spline type of functions.
In this one-dimensional setting, the proposed approach in fact represents a kernel
method with a particular feature map � from (1) that gives rise to linear splines.
It is interesting to see that approximations by linear splines recently arose as an
optimal architecture choice for second-order total variation minimization in [15].
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3.3 Vector-Valued Lifting Layers

A vector-valued construction of the lifting similar to [16] allows us to natu-
rally extend all our previous results for functions f : [t, t] → R to functions
f : Ω ⊂ R

d → R. Definition 1 is generalized to d dimensions by triangulating
the compact domain Ω, and identifying each vertex of the resulting mesh with
a unit vector in a space R

N , where N is the total number of vertices. The lifted
vector contains the barycentric coordinates of a point x ∈ R

d with respect its
surrounding vertices. The resulting lifting remains a continuous piecewise linear
function when combined with a fully connected layer (cf. Proposition 1), and
yields a convex problem when looking for the best piecewise linear fit on a given
triangular mesh (cf. Proposition 2).

Unfortunately, discretizing a domain Ω ⊂ R
d with L labels per dimension

leads to N = Ld vertices, which makes a vector-valued lifting prohibitively
expensive for large d. Therefore, in high dimensional applications, we turn to
narrower and deeper network architectures, in which the scalar-valued lifting
is applied to each component separately. The latter sacrifices the convexity of
the overall problem for the sake of a high expressiveness with comparably few
parameters. Intuitively, the increasing expressiveness is explained by an expo-
nentially growing number of kinks for the composition of layers that represent
linear splines. A similar reasoning can be found in [17].

3.4 Scaled Lifting

We are free to scale the lifted representation defined in (7), when the inversion
formula in (8) compensates for this scaling. For practical purposes, we found
it to be advantageous to also introduce a scaled lifting by replacing (7) in
Definition 1 by

�s(x) = (1 − λl(x))tlel + λl(x)tl+1el+1 with l such that x ∈ [tl, tl+1] , (11)

where λl(x) := x−tl

tl+1−tl
∈ R. The inversion formula reduces to the sum over all

components of the vector in this case. We believe that such a scaled lifting is
often advantageous: (i) The magnitude/meaning of the components of the lifted
vector is preserved and does not have to be learned; (ii) For an uneven number of
equally distributed labels in [−t, t], one of the labels tl will be zero, which allows
us to omit it and represent a scaled lifting into R

L with L − 1 many entries. For
L = 3 for example, we find that t1 = −t, t2 = 0, and t3 = t such that

�s(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
1−x + t

0 + t

)
(−t)e1 = xe1 if x ≤ 0,

x − 0
t − 0

t e3 = xe3 if x > 0.

(12)

As the second component remains zero, we can introduce an equivalent more
memory efficient variant of the scaled lifting which we already stated in (2).
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4 Lifting the Output

So far, we considered liftings as a non-linear layer in a neural network. How-
ever, motivated by lifting-based optimization techniques, which seek a tight con-
vex approximation to problems involving non-convex loss functions, this section
presents a convexification of non-convex loss functions by lifting in the context
of neural networks. This goal is achieved by approximating the loss by a lin-
ear spline and predicting the output of the network in a lifted representation.
The advantages of this approach are demonstrated at the end of this section in
Example 2 for a robust regression problem with a vast number of outliers.

Consider a loss function Ly : R → R defined for a given output y (the total
loss for samples (xi, yi), i = 1, . . . , N , may be given by

∑N
i=1 Lyi

(xi)). We achieve
the tight convex approximation by a lifting function �y : [ty, ty] → R

Ly for the
range of the loss function im(Ly) ⊂ R with respect to the standard basis Ey =
{e1y, . . . , e

Ly
y } and a knots ty = t1y < . . . < t

Ly
y < ty following Definition 1.

The goal of the convex approximation is to predict the lifted representation
of the loss, i.e. a vector z ∈ R

Ly . However, in order to assign the correct loss
to the lifted variable, it needs to lie in im(�y). In this case, the following lemma
proves a one-to-one representation of the loss between [ty, ty] and im(�y).

Lemma 1 (Characterization of the range of �). The range of the lifting
� : [t, t] → R

L is given by

im(�) =
{
z ∈ [0, 1]L : ∃!l : zl + zl+1 = 1 and ∀k �∈ {l, l + 1} : zk = 0

}
(13)

and the mapping � is a bijection between [t, t] and im(�) with inverse �†.

Since the range of �y is not convex, we relax it to a convex set, actually to the
smallest convex set that contains im(�y), the convex hull of im(�y).

Lemma 2 (Convex Hull of the range of �). The convex hull conv(im(�))
of im(�) is the unit simplex in R

L.

Putting the results together, using Proposition 1, we obtain a tight convex
approximation of the (possibly non-convex) loss Ly(x) by 〈ly, z〉 with z ∈ im(�y),
for some ly ∈ R

Ly . Instead of evaluating the network Nθ(x) by Ly(Nθ(x)), we
consider a network Ñθ(x) that predicts a point in conv(im(�y)) ⊂ R

Ly and eval-
uate the loss 〈ly, Ñθ(x)〉. As it is hard to incorporate range-constraints into the
network’s prediction, we compose the network with a lifting layer �x, i.e. we con-
sider 〈ly, θ̃�x(Ñθ(x))〉 with θ̃ ∈ R

Ly×Lx , for which simpler constraints may be
derived. The following proposition states the convexity of the relaxed problem.

Proposition 3 (Convex Approximation of a simple non-convex regres-
sion problem). Let (xi, yi) ∈ [t, t]×[ty, ty] be training data, i = 1, . . . , N . More-
over, let �y be a lifting of the common image [ty, ty] of the loss Lyi

, i = 1, . . . , N ,
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Fig. 2. Visualization of Example 2 for a regression problem with 40% outliers. Our
lifting of a (non-convex) truncated linear loss to a convex optimization problem robustly
fits the function nearly optimally (see (c)), whereas the most robust convex formulation
(without lifting) is severely perturbed by the outliers (see (d)). Trying to optimize the
non-convex cost function directly yields different results based on the initialization of
the weights and is prone to getting stuck in suboptimal local minima, see (e)–(h).

and �x is the lifting of [t, t]. Let lyi
∈ R

Ly be such that ty �→ 〈lyi
, �y(ty)〉 is a

piecewise linear spline approximation of ty �→ Lyi
(ty), for ty ∈ [ty, ty]. Then

min
θ

N∑
i=1

〈lyi
, θ�x(xi)〉 s.t. θp,q ≥ 0,

Ly∑
p=1

θp,q = 1,

{
∀p = 1, . . . , Ly ,

∀q = 1, . . . , Lx .
(14)

is a convex approximation of the (non-convex) loss function, and the constraints
guarantee that θ�x(xi) ∈ conv(im(�y)).

The objective in (14) is linear (w.r.t. θ) and can be written as

N∑
i=1

〈lyi
, θ�x(xi)〉 =

N∑
i=1

Ly∑
p=1

Lx∑
q=1

θp,q�x(xi)q(lyi
)p =:

Ly∑
p=1

Lx∑
q=1

cp,qθp,q (15)

where c :=
∑N

i=1 lyi
�x(xi)�.

Moreover, the closed-form solution of (14) is given for all q = 1, . . . , Lx by
θp,q = 1, if the index p minimizes cp,q, and θp,q = 0 otherwise.

Example 2 (Robust fitting). For illustrative purposes of the advantages of this
section, we consider a regression problem with 40% outliers as visualized in
Fig. 2(c) and (d). Statistics motivates us to use a robust non-convex loss function.
Our lifting allows us to use a robust (non-convex) truncated linear loss in a
convex optimization problem (Proposition 3), which can easily ignore the outliers
and achieve a nearly optimal fit (see Fig. 2(c)), whereas the most robust convex
loss (without lifting), the �1-loss, yields a solution that is severely perturbed by
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the outliers (see Fig. 2(d)). The cost matrix c from (15) that represents the non-
convex loss (of this example) is shown in Fig. 2(a) and the computed optimal θ
is visualized in Fig. 2(b). For comparison purposes we also show the results of a
direct (gradient descent + momentum) optimization of the truncated linear costs
with four different initial weights chosen from a zero mean Gaussian distribution.
As we can see the results greatly differ for different initializations and always
got stuck in suboptimal local minima.

5 Numerical Experiments

In this section we provide synthetic numerical experiments to illustrate the
behavior of lifting layers on simple examples, before moving to real-world imag-
ing applications. We implemented lifting layers in MATLAB as well as in
PyTorch with https://github.com/michimoeller/liftingLayers containing all code
for reproducing the experiments in this paper. A description of the presented
network architectures is provided in the supplementary material.

5.1 Synthetic Examples

The following results were obtained using a stochastic gradient descent (SGD)
algorithm with a momentum of 0.9, using minibatches of size 128, and a learning
rate of 0.1. Furthermore, we use weight decay with a parameter of 10−4. A
squared �2-loss (without lifting the output) was used.

1-D Fitting. To illustrate our results of Proposition 2, we first consider the
example of fitting values yi = sin(xi) from input data xi sampled uniformly
in [0, 2π]. We compare the lifting-based architecture Nθ(x) = 〈θ, �9(x)〉 (Lift-
Net) including an unscaled lifting �9 to R

9 with the standard design architecture
fc1(σ(fc9(x))) (Std-Net), where σ(x) = max(x, 0) applies coordinate-wise and
fcn denotes a fully connected layer with n output neurons. Figure 3 shows the
resulting functions after 25, 75, 200, and 2000 epochs of training.

2-D Fitting. While the above results were expected based on the favorable
theoretical properties, we now consider a more difficult test case of fitting

f(x1, x2) = cos(x2 sin(x1)) (16)

on [0, 2π]2. Note that although a 2-D input still allows for a vector-valued lifting,
our goal is to illustrate that even a coordinate-wise lifting has favorable proper-
ties (beyond being able to approximate any separable function with a single layer
which is a simple extension of Corollary 1). Hence, we compare two networks

fLift-Net(x1, x2) = fc1(σ(fc20([�20(x1), �20(x2)]))), (Lift-Net)
fStd-Net(x1, x2) = fc1(σ(fc20(fc40([x1, x2])))), (Std-Net)

where the notation [u, v] in the above formula denotes the concatenation of the
two vectors u and v, and the subscript of the lifting � denotes the dimension L we

https://github.com/michimoeller/liftingLayers
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Fig. 3. Illustrating the results of approximating a sine function on [0, 2π] with 50
training examples after different number of epochs. While the proposed architecture
with lifting yields a convex problem for which SGD converges quickly (upper row),
the standard architecture based on ReLUs yields a non-convex problem which leads to
slower convergence and a suboptimal local minimum after 4000 epochs (lower row).

lift to. The corresponding training problems are non-convex. As we see in Fig. 4
the general behavior is similar to the 1-D case: Increasing the dimensionality via
lifting the input data yields faster convergence and a more precise approximation
than increasing the dimensionality with a parameterized filtering. For the sake
of completeness, we have included a vector valued lifting with an illustration of
the underlying 2-D triangulation in the bottom row of Fig. 4.

5.2 Image Classification

As a real-world imaging example we consider the problem of image classification.
To illustrate the behavior of our lifting layer, we use the “Deep MNIST for expert
model” (ME-model) by TensorFlow1 as a simple convolutional neural network
(CNN) architecture which applies a standard ReLU activation. To improve its
accuracy, we use an additional batch-normalization (BN) layer and denote the
corresponding model by ME-model+BN.

Our corresponding lifting model (Proposed) is created by replacing all ReLUs
with a scaled lifting layer (as introduced in Sect. 3.4) with L = 3. In order to
allow for a meaningful combination with the max pooling layers, we scaled with
the absolute value |ti| of the labels. We found the comparably small lifting of
L = 3 to yield the best results, and provided a more detailed study for varying
L in the supplementary material. Since our model has almost twice as many
free parameters as the two ME models, we include a forth model Large ME-
model+BN larger than our lifting model with twice as many convolution filters
and fully-connected neurons.

Figure 5 shows the results each of these models obtains on the CIFAR-10 and
CIFAR-100 image classification problems. As we can see, the favorable behav-
ior of the synthetic experiments carried over to the exemplary architectures in
1 https://www.tensorflow.org/tutorials/layers.

https://www.tensorflow.org/tutorials/layers
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Fig. 4. Illustrating the results of approximating the function in (16) with the standard
network in (Std-Net) (middle row) and the architecture in (Lift-Net) based on lifting
the input data (upper row). The red markers illustrate the training data, the surface
represents the overall network function, and the RMSE measures its difference to the
true underlying function (16), which is shown in the bottom row on the left. Similar to
the results of Fig. 3, our lifting based architecture converges more quickly and yields a
better approximation of the true underlying function (lower left) after 2000 epochs. The
middle and right approximations in the bottom row illustrate a vector valued lifting
(see Sect. 3.3) into 42 (middle) and 112 (right) dimensions. The latter can be trained
by solving a linear system. We illustrate the triangular mesh used for the lifting below
the graph of the function to illustrate that the approximation is indeed piecewise linear
(as stated in Proposition 1).

image classification: Our proposed lifting architecture has the smallest test error
and loss in both experiments. Both common strategies, i.e. including batch nor-
malization and increasing the size of the model, improved the results, but both
ReLU-based architectures remain inferior to the lifting-based architecture.

5.3 Maxout Activation Units

To also compare the proposed lifting activation layer with the maxout activation,
we conduct a simple MNIST image classification experiment with a fully con-
nected one-hidden-layer architecture, applying either a ReLU, maxout or lifting
as activations. For the maxout layer we apply a feature reduction by a factor of
2 which has the capabilities of representing a regular ReLU and a lifting layer
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Fig. 5. Comparing different approaches for image classification on CIFAR-10 and
CIFAR-100. The proposed architecture with lifting layers shows a superior performance
in comparison to its ReLU-based relatives in both cases.
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Fig. 6. MNIST image classification comparison of our lifting activation with the stan-
dard ReLU and its maxout generalization. The ReLU, maxout and lifting architectures
(79510, 79010 and 76485 trainable parameters) achieved a best test error of 3.07%,
2.91% and 2.61%, respectively. The proposed approach behaves favorably in terms of
the test loss from epoch 50 on, leading to a lower overall test error after 100 epochs.

as in (2). Due to the nature of the different activations - maxout applies a max
pooling and lifting increases the number of input neurons in the subsequent
layer - we adjusted the number of neurons in the hidden layer to make for an
approximately equal and fair amount of trainable parameters.

The results in Fig. 6 are achieved after optimizing a cross-entropy loss for
100 training epochs by applying SGD with learning rate 0.01. Particularly, each
architecture was trained with the identical experimental setup. While both the
maxout and our lifting activation yield a similar convergence behavior better
than the standard ReLU, our proposed method exceeds in terms of the final
lowest test error.

5.4 Image Denoising

To also illustrate the effectiveness of lifting layers for networks mapping images
to images, we consider the problem of Gaussian image denoising. We designed
the Lift-46 architecture with 16 blocks each of which consists of 46 convolution
filters of size 3 × 3, batch normalization, and a lifting layer with L = 3 follow-
ing the same experimental reasoning for deep architectures as in Sect. 5.2. As
illustrated in Fig. 7(a), a final convolutional layer outputs an image we train to
approximate the residual, i.e., noise-only, image. Due to its state-of-the-art per-
formance in image denoising we adopted the same training pipeline as for the
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Fig. 7. To demonstrate the robustness of our lifting activation, we illustrate the val-
idation PSNR for denoising Gaussian noise with σ = 25 for two different training
schemes. In (a) both networks plateau - after a learning rate decay at 30 epochs - to
the same final PSNR value. However, without this specifically tailored training scheme
our method generally shows a favorable and more stable behavior, as seen in (b).

Table 1. Average PSNRs in [dB] for the BSD68 dataset for different standard devi-
ations σ of the Gaussian noise on all of which our lifting layer based architecture is
among the leading methods. Please note that (most likely due to variations in the
random seeds) our reproduced DnCNN-S results are different - in the second decimal
place - from the results reported in [18].

Reconstruction PSNR in [dB]

σ Noisy BM3D [19] WNNM [20] EPLL [21] MLP [22] CSF [23] TNRD [24] DnCNN-S [18] Our

15 24.80 31.07 31.37 31.21 - 31.24 31.42 31.72 31.72

25 20.48 28.57 28.83 28.68 28.96 28.74 28.92 29.21 29.21

50 14.91 25.62 25.87 25.67 26.03 - 25.97 26.21 26.23

DnCNN-S architecture from [18] which resembles our Lift-46 network but imple-
ments a regular ReLU and 64 convolution filters. The two architectures contain
an approximately equal amount of trainable parameters.

Table 1 compares our architecture with a variety of denoising methods most
notably the DnCNN-S [18] and shows that we produce state-of-the-art perfor-
mance for removing Gaussian noise of different standard deviations σ. In addi-
tion, the development of the test PSNR in Fig. 7(b) suggests a more stable and
favorable behavior of our method compared to DnCNN-S.

6 Conclusions

We introduced lifting layers as a favorable alternative to ReLU-type activa-
tion functions in machine learning. Opposed to the classical ReLU, liftings have
nonzero derivative almost everywhere, and can represent any continuous piece-
wise linear function. We demonstrated several advantageous properties of lifting,
for example, we can handle non-convex and partly flat loss functions. Our numer-
ical experiments in image classification and reconstruction showed that lifting
layers are an attractive building block in various neural network architectures,
and we improved the performance of corresponding ReLU-based architectures.
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