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Abstract. Image-to-image translation aims to learn the mapping
between two visual domains. There are two main challenges for many
applications: (1) the lack of aligned training pairs and (2) multiple pos-
sible outputs from a single input image. In this work, we present an
approach based on disentangled representation for producing diverse out-
puts without paired training images. To achieve diversity, we propose to
embed images onto two spaces: a domain-invariant content space captur-
ing shared information across domains and a domain-specific attribute
space. Using the disentangled features as inputs greatly reduces mode col-
lapse. To handle unpaired training data, we introduce a novel cross-cycle
consistency loss. Qualitative results show that our model can generate
diverse and realistic images on a wide range of tasks. We validate the
effectiveness of our approach through extensive evaluation.

1 Introduction

Image-to-Image (I2I) translation aims to learn the mapping between differ-
ent visual domains. Many vision and graphics problems can be formulated
as I2I translation problems, such as colorization [21,43] (grayscale → color),
super-resolution [20,23,24] (low-resolution → high-resolution), and photoreal-
istic image synthesis [6,39] (label → image). Furthermore, I2I translation has
recently shown promising results in facilitating domain adaptation [3,15,30,33].

Learning the mapping between two visual domains is challenging for two
main reasons. First, aligned training image pairs are either difficult to collect
(e.g., day scene ↔ night scene) or do not exist (e.g., artwork ↔ real photo).
Second, many such mappings are inherently multimodal — a single input may
correspond to multiple possible outputs. To handle multimodal translation, one
possible approach is to inject a random noise vector to the generator for modeling
the data distribution in the target domain. However, mode collapse may still
occur easily since the generator often ignores the additional noise vectors.

H.-Y. Lee and H.-Y. Tseng—Equal contribution.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11205, pp. 36–52, 2018.
https://doi.org/10.1007/978-3-030-01246-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01246-5_3&domain=pdf


Diverse Image-to-Image Translation via Disentangled Representations 37

Photo → van Gogh

Winter → summer

Photograph → portrait

Content Attribute Generated

Fig. 1. Unpaired diverse image-to-image translation. (Left) Our model performs
diverse translation between two collections of images without aligned training pairs.
(Right) Example-guided translation.

Fig. 2. Comparisons of unsupervised I2I translation methods. Denote x and
y as images in domain X and Y: (a) CycleGAN [45] and DiscoGAN [18] map x and
y onto separated latent spaces. (b) UNIT [25] assumes x and y can be mapped onto a
shared latent space. (c) Our approach disentangles the latent spaces of x and y into a
shared content space C and an attribute space A of each domain.

Several recent efforts have been made to address these issues. Pix2pix [17]
applies conditional generative adversarial network to I2I translation problems.
Nevertheless, the training process requires paired data. A number of recent
work [9,25,35,41,45] relaxes the dependency on paired training data for learning
I2I translation. These methods, however, produce a single output conditioned on
the given input image. As shown in [17,46], simply incorporating noise vectors
as additional inputs to the generator does not lead the increased variations of
the generated outputs due to the mode collapsing issue. The generators in these
methods are inclined to overlook the added noise vectors. Very recently, Bicy-
cleGAN [46] tackles the problem of generating diverse outputs in I2I problems
by encouraging the one-to-one relationship between the output and the latent
vector. Nevertheless, the training process of BicycleGAN requires paired images.
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Table 1. Feature-by-feature comparison of image-to-image translation net-
works. Our model achieves multimodal translation without using aligned training
image pairs.

Method Pix2Pix [17] CycleGAN [45] UNIT [25] BicycleGAN [46] Ours

Unpaired - ✓ ✓ - ✓

Multimodal - - - ✓ ✓

In this paper, we propose a disentangled representation framework for learn-
ing to generate diverse outputs with unpaired training data. Specifically, we
propose to embed images onto two spaces: (1) a domain-invariant content space
and (2) a domain-specific attribute space as shown in Fig. 2. Our generator learns
to perform I2I translation conditioned on content features and a latent attribute
vector. The domain-specific attribute space aims to model the variations within
a domain given the same content, while the domain-invariant content space cap-
tures information across domains. We achieve this representation disentangle-
ment by applying a content adversarial loss to encourage the content features
not to carry domain-specific cues, and a latent regression loss to encourage the
invertible mapping between the latent attribute vectors and the corresponding
outputs. To handle unpaired datasets, we propose a cross-cycle consistency loss
using the disentangled representations. Given a pair of unaligned images, we first
perform a cross-domain mapping to obtain intermediate results by swapping the
attribute vectors from both images. We can then reconstruct the original input
image pair by applying the cross-domain mapping one more time and use the
proposed cross-cycle consistency loss to enforce the consistency between the orig-
inal and the reconstructed images. At test time, we can use either (1) randomly
sampled vectors from the attribute space to generate diverse outputs or (2) the
transferred attribute vectors extracted from existing images for example-guided
translation. Figure 1 shows examples of the two testing modes.

We evaluate the proposed model through extensive qualitative and quantita-
tive evaluation. In a wide variety of I2I tasks, we show diverse translation results
with randomly sampled attribute vectors and example-guided translation with
transferred attribute vectors from existing images. We evaluate the realism of our
results with a user study and the diversity using perceptual distance metrics [44].
Furthermore, we demonstrate the potential application of unsupervised domain
adaptation. On the tasks of adapting domains from MNIST [22] to MNIST-
M [12] and Synthetic Cropped LineMod to Cropped LineMod [14,40], we show
competitive performance against state-of-the-art domain adaptation methods.

We make the following contributions:
(1) We introduce a disentangled representation framework for image-to-image

translation. We apply a content discriminator to facilitate the factorization of
domain-invariant content space and domain-specific attribute space, and a cross-
cycle consistency loss that allows us to train the model with unpaired data.
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(2) Extensive qualitative and quantitative experiments show that our model
compares favorably against existing I2I models. Images generated by our model
are both diverse and realistic.

(3) We demonstrate the application of our model on unsupervised domain
adaptation. We achieve competitive results on both the MNIST-M and the
Cropped LineMod datasets.

Our code, data and more results are available at https://github.com/
HsinYingLee/DRIT/.

2 Related Work

Generative Adversarial Networks. Recent years have witnessed rapid
progress on generative adversarial networks (GANs) [2,13,31] for image gen-
eration. The core idea of GANs lies in the adversarial loss that enforces the
distribution of generated images to match that of the target domain. The gen-
erators in GANs can map from noise vectors to realistic images. Several recent
efforts explore conditional GAN in various contexts including conditioned on
text [32], low-resolution images [23], video frames [38], and image [17]. Our work
focuses on using GAN conditioned on an input image. In contrast to several exist-
ing conditional GAN frameworks that require paired training data, our model
produces diverse outputs without paired data. This suggests that our method
has wider applicability to problems where paired training datasets are scarce or
not available.

Image-to-Image Translation. I2I translation aims to learn the mapping from
a source image domain to a target image domain. Pix2pix [17] applies a condi-
tional GAN to model the mapping function. Although high-quality results have
been shown, the model training requires paired training data. To train with
unpaired data, CycleGAN [45], DiscoGAN [18], and UNIT [25] leverage cycle
consistency to regularize the training. However, these methods perform genera-
tion conditioned solely on an input image and thus produce one single output.
Simply injecting a noise vector to a generator is usually not an effective solu-
tion to achieve multimodal generation due to the lack of regularization between
the noise vectors and the target domain. On the other hand, BicycleGAN [46]
enforces the bijection mapping between the latent and target space to tackle the
mode collapse problem. Nevertheless, the method is only applicable to problems
with paired training data. Table 1 shows a feature-by-feature comparison among
various I2I models. Unlike existing work, our method enables I2I translation
with diverse outputs in the absence of paired training data.

Very recently, several concurrent works [1,5,16,27] (all independently devel-
oped) also adopt a disentangled representation similar to our work for learning
diverse I2I translation from unpaired training data. We encourage the readers
to review these works for a complete picture.

https://github.com/HsinYingLee/DRIT/
https://github.com/HsinYingLee/DRIT/
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Fig. 3. Method overview. (a) With the proposed content adversarial loss Lcontent
adv

(Sect. 3.1) and the cross-cycle consistency loss Lcc
1 (Sect. 3.2), we are able to learn the

multimodal mapping between the domain X and Y with unpaired data. Thanks to the
proposed disentangled representation, we can generate output images conditioned on
either (b) random attributes or (c) a given attribute at test time.

Disentangled Representations. The task of learning disentangled represen-
tation aims at modeling the factors of data variations. Previous work makes
use of labeled data to factorize representations into class-related and class-
independent components [8,19,28,29]. Recently, the unsupervised setting has
been explored [7,10]. InfoGAN [7] achieves disentanglement by maximizing the
mutual information between latent variables and data variation. Similar to
DrNet [10] that separates time-independent and time-varying components with
an adversarial loss, we apply a content adversarial loss to disentangle an image
into domain-invariant and domain-specific representations to facilitate learning
diverse cross-domain mappings.

Domain Adaptation. Domain adaptation techniques focus on addressing the
domain-shift problem between a source and a target domain. Domain Adver-
sarial Neural Network (DANN) [11,12] and its variants [4,36,37] tackle domain
adaptation through learning domain-invariant features. Sun et al. [34] aims to
map features in the source domain to those in the target domain. I2I translation
has been recently applied to produce simulated images in the target domain
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by translating images from the source domain [11,15]. Different from the afore-
mentioned I2I based domain adaptation algorithms, our method does not utilize
source domain annotations for I2I translation.

3 Disentangled Representation for I2I Translation

Our goal is to learn a multimodal mapping between two visual domains
X ⊂ R

H×W×3 and Y ⊂ R
H×W×3 without paired training data. As illus-

trated in Fig. 3, our framework consists of content encoders {Ec
X , Ec

Y}, attribute
encoders {Ea

X , Ea
Y}, generators {GX , GY}, and domain discriminators {DX ,DY}

for both domains, and a content discriminators Dc
adv. Take domain X as an

example, the content encoder Ec
X maps images onto a shared, domain-invariant

content space (Ec
X : X → C) and the attribute encoder Ea

X maps images onto a
domain-specific attribute space (Ea

X : X → AX ). The generator GX generates
images conditioned on both content and attribute vectors (GX : {C,AX } → X ).
The discriminator DX aims to discriminate between real images and translated
images in the domain X . Content discriminator Dc is trained to distinguish the
extracted content representations between two domains. To enable multimodal
generation at test time, we regularize the attribute vectors so that they can be
drawn from a prior Gaussian distribution N(0, 1).

In this section, we first discuss the strategies used to disentangle the content
and attribute representations in Sect. 3.1 and then introduce the proposed cross-
cycle consistency loss that enables the training on unpaired data in Sect. 3.2.
Finally, we detail the loss functions in Sect. 3.3.

3.1 Disentangle Content and Attribute Representations

Our approach embeds input images onto a shared content space C, and domain-
specific attribute spaces, AX and AY . Intuitively, the content encoders should
encode the common information that is shared between domains onto C, while
the attribute encoders should map the remaining domain-specific information
onto AX and AY .

{zcx, zax} = {Ec
X (x), Ea

X (x)} zcx ∈ C, zax ∈ AX
{zcy, z

a
y} = {Ec

Y(y), Ea
Y(y)} zcy ∈ C, zay ∈ AY

(1)

To achieve representation disentanglement, we apply two strategies: weight-
sharing and a content discriminator. First, similar to [25], based on the assump-
tion that two domains share a common latent space, we share the weight between
the last layer of Ec

X and Ec
Y and the first layer of GX and GY . Through weight

sharing, we force the content representation to be mapped onto the same space.
However, sharing the same high-level mapping functions cannot guarantee the
same content representations encode the same information for both domains.
Therefore, we propose a content discriminator Dc which aims to distinguish the
domain membership of the encoded content features zcx and zcy. On the other
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hand, content encoders learn to produce encoded content representations whose
domain membership cannot be distinguished by the content discriminator Dc.
We express this content adversarial loss as:

Lcontent
adv (Ec

X , Ec
Y ,Dc) = Ex[

1
2

log Dc(Ec
X (x)) +

1
2

log (1 − Dc(Ec
X (x)))]

+ Ey[
1
2

log Dc(Ec
Y(y)) +

1
2

log (1 − Dc(Ec
Y(y)))]

(2)

3.2 Cross-Cycle Consistency Loss

With the disentangled representation where the content space is shared among
domains and the attribute space encodes intra-domain variations, we can per-
form I2I translation by combining a content representation from an arbitrary
image and an attribute representation from an image of the target domain. We
leverage this property and propose a cross-cycle consistency. In contrast to cycle
consistency constraint in [45] (i.e., X → Y → X ) which assumes one-to-one map-
ping between the two domains, the proposed cross-cycle constraint exploit the
disentangled content and attribute representations for cyclic reconstruction.

Our cross-cycle constraint consists of two stages of I2I translation.

Forward Translation. Given a non-corresponding pair of images x and y, we
encode them into {zcx, zax} and {zcy, z

a
y}. We then perform the first translation by

swapping the attribute representation (i.e., zax and zay ) to generate {u, v}, where
u ∈ X , v ∈ Y.

u = GX (zcy, z
a
x) v = GY(zcx, z

a
y ) (3)

Backward Translation. After encoding u and v into {zcu, zau} and {zcv, z
a
v}, we

perform the second translation by once again swapping the attribute represen-
tation (i.e., zau and zav ).

x̂ = GX (zcv, z
a
u) ŷ = GY(zcu, zav ) (4)

Here, after two I2I translation stages, the translation should reconstruct the
original images x and y (as illustrated in Fig. 3). To enforce this constraint, we
formulate the cross-cycle consistency loss as:

Lcc
1 (GX , GY , Ec

X , Ec
Y , Ea

X , Ea
Y) = Ex,y[‖GX (Ec

Y(v), Ea
X (u)) − x‖1

+‖GY(Ec
X (u), Ea

Y(v)) − y‖1],
(5)

where u = GX (Ec
Y(y)), Ea

X (x)) and v = GY(Ec
X (x)), Ea

Y(y)).
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Fig. 4. Loss functions. In addition to the cross-cycle reconstruction loss Lcc
1 and the

content adversarial loss Lcontent
adv described in Fig. 3, we apply several additional loss

functions in our training process. The self-reconstruction loss Lrecon
1 facilitates training

with self-reconstruction; the KL loss LKL aims to align the attribute representation with
a prior Gaussian distribution; the adversarial loss Ldomain

adv encourages G to generate
realistic images in each domain; and the latent regression loss Llatent

1 enforces the
reconstruction on the latent attribute vector. More details can be found in Sect. 3.3.

3.3 Other Loss Functions

Other than the proposed content adversarial loss and cross-cycle consistency
loss, we also use several other loss functions to facilitate network training. We
illustrate these additional losses in Fig. 4. Starting from the top-right, in the
counter-clockwise order:

Domain Adversarial Loss. We impose adversarial loss Ldomain
adv where DX and

DY attempt to discriminate between real images and generated images in each
domain, while GX and GY attempt to generate realistic images.

Self-Reconstruction Loss. In addition to the cross-cycle reconstruction, we
apply a self-reconstruction loss Lrec

1 to facilitate the training. With encoded
content/attribute features {zcx, zax} and {zcy, z

a
y}, the decoders GX and GY should

decode them back to original input x and y. That is, x̂ = GX (Ec
X (x), Ea

X (x))
and ŷ = GY(Ec

Y(y), Ea
Y(y)).

KL Loss. In order to perform stochastic sampling at test time, we encour-
age the attribute representation to be as close to a prior Gaussian distribu-
tion. We thus apply the loss LKL = E[DKL((za)‖N(0, 1))], where DKL(p‖q) =
− ∫

p(z) log p(z)
q(z)dz.

Latent Regression Loss. To encourage invertible mapping between the image
and the latent space, we apply a latent regression loss Llatent

1 similar to [46].
We draw a latent vector z from the prior Gaussian distribution as the attribute
representation and attempt to reconstruct it with ẑ = Ea

X (GX (Ec
X (x), z)) and

ẑ = Ea
Y(GY(Ec

Y(y), z)).
The full objective function of our network is:

min
G,Ec,Ea

max
D,Dc

λcontent
adv Lc

adv + λcc
1 Lcc

1 + λdomain
adv Ldomain

adv + λrecon
1 Lrecon

1

+λlatent
1 Llatent

1 + λKLLKL

(6)

where the hyper-parameters λs control the importance of each term.
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4 Experimental Results

Datasets. We evaluate our model on several datasets include Yosemite [45]
(summer and winter scenes), artworks [45] (Monet and van Gogh), edge-to-
shoes [42] and photo-to-portrait cropped from subsets of the WikiArt dataset1

and the CelebA dataset [26]. We also perform domain adaptation on the classifi-
cation task with MNIST [22] to MNIST-M [12], and on the classification and pose
estimation tasks with Synthetic Cropped LineMod to Cropped LineMod [14,40].

Compared Methods. We perform the evaluation on the following algorithms:

– DRIT: We refer to our proposed model, Disentangled Representation for
Image-to-Image Translation, as DRIT.

– DRIT w/o Dc: Our proposed model without the content discriminator.
– CycleGAN [45], UNIT [25], BicycleGAN [46]
– Cycle/Bicycle: As there is no previous work addressing the problem of mul-

timodal generation from unpaired training data, we construct a baseline using

segamidetareneGtupnI

Fig. 5. Sample results. We show example results produced by our model. The left
column shows the input images in the source domain. The other five columns show
the output images generated by sampling random vectors in the attribute space. The
mappings from top to bottom are: Monet → photo, van Gogh → Monet, winter →
summer, and photograph → portrait.

1 https://www.wikiart.org/.

https://www.wikiart.org/
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a combination of CylceGAN and BicycleGAN. Here, we first train CycleGAN
on unpaired data to generate corresponding images as pseudo image pairs.
We then use this pseudo paired data to train BicycleGAN.

4.1 Qualitative Evaluation

Diversity. We first demonstrate the diversity of the generated images on several
different tasks in Fig. 5. In Fig. 6, we compare the proposed model with other
methods. Both our model without Dc and Cycle/Bicycle can generate diverse
results. However, the results contain clearly visible artifacts. Without the content
discriminator, our model fails to capture domain-related details (e.g., the color
of tree and sky). Therefore, the variations take place in global color difference.
Cycle/Bicycle is trained on pseudo paired data generated by CycleGAN. The
quality of the pseudo paired data is not uniformly ideal. As a result, the generated
images are of ill-quality.

To have a better understanding of the learned domain-specific attribute
space, we perform linear interpolation between two given attributes and generate
the corresponding images as shown in Fig. 7. The interpolation results verify the

Fig. 6. Diversity comparison. On the winter → summer translation task, our model
produces more diverse and realistic samples over baselines.

Fig. 7. Linear interpolation between attribute vectors. Translation results with
linear-interpolated attribute vectors between attributes (highlighted in red). (Color
figure online)
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Content Attribute Output

(a) Inter-domain attribute transfer

Content Attribute Output

(b) Intra-domain attribute transfer

Fig. 8. Attribute transfer. At test time, in addition to random sampling from the
attribute space, we can also perform translation with the query images with the desired
attributes. Since the content space is shared across the two domains, we not only can
achieve (a) inter-domain, but also (b) intra-domain attribute transfer. Note that we do
not explicitly involve intra-domain attribute transfer during training.

continuity in the attribute space and show that our model can generalize in the
distribution, rather than memorize trivial visual information.

Attribute Transfer. We demonstrate the results of the attribute transfer in
Fig. 8. Thanks to the representation disentanglement of content and attribute,
we are able to perform attribute transfer from images of desired attributes,
as illustrated in Fig. 3(c). Moreover, since the content space is shared between
two domains, we can generate images conditioned on content features encoded
from either domain. Thus our model can achieve not only inter-domain but also
intra-domain attribute transfer. Note that intra-domain attribute transfer is not
explicitly involved in the training process.

4.2 Quantitative Evaluation

Realism vs. Diversity. Here we have the quantitative evaluation on the realism
and diversity of the generated images. We conduct the experiment using winter
→ summer translation with the Yosemite dataset. For realism, we conduct a
user study using pairwise comparison. Given a pair of images sampled from
real images and translated images generated from various methods, users need
to answer the question “Which image is more realistic?” For diversity, similar
to [46], we use the LPIPS metric [44] to measure the similarity among images. We
compute the distance between 1000 pairs of randomly sampled images translated
from 100 real images.



Diverse Image-to-Image Translation via Disentangled Representations 47

Fig. 9. Realism preference results. We conduct a user study to ask subjects to select
results that are more realistic through pairwise comparisons. The number indicates
the percentage of preference on that comparison pair. We use the winter → summer
translation on the Yosemite dataset for this experiment.

Table 2. Diversity. We use the
LPIPS metric [44] to measure the
diversity of generated images on
the Yosemite dataset.

Method Diversity

Real images .448 ± .012

DRIT .424 ± .010

DRIT w/o Dc .410 ± .016

UNIT [25] .406 ± .022

CycleGAN [45] .413 ± .008

Cycle/Bicycle .399 ± .009

Table 3. Reconstruct error. We
use the edge-to-shoes dataset to mea-
sure the quality of our attribute encod-
ing. The reconstruction error is ‖y −
GY(Ec

X (x), Ea
Y(y))‖1. *BicycleGAN uses

paired data for training.

Method Reconstruct error

BicycleGAN [46]* 0.0945

DRIT 0.1347

DRIT, w/o Dc 0.2076

Figure 9 and Table 2 show the results of realism and diversity, respectively.
UNIT obtains low realism score, suggesting that their assumption might not be
generally applicable. CycleGAN achieves the highest scores in realism, yet the
diversity is limited. The diversity and the visual quality of Cycle/Bicycle are
constrained by the data CycleGAN can generate. Our results also demonstrate
the need for the content discriminator.

Reconstruction Ability. In addition to diversity evaluation, we conduct an
experiment on the edge-to-shoes dataset to measure the quality of the disentan-
gled encoding. Our model was trained using unpaired data. At test time, given a
paired data {x, y}, we can evaluate the quality of content-attribute disentangle-
ment by measuring the reconstruction errors of y with ŷ = GY(Ec

X (x), Ea
Y(y)).

We compare our model with BicycleGAN, which requires paired data dur-
ing training. Table 3 shows our model performs comparably with BicycleGAN
despite training without paired data. Moreover, the result suggests that the
content discriminator contributes greatly to the quality of disentangled repre-
sentation.
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MNIST MNIST-M
(Source) (Target)

(a) Examples from MNIST/MNIST-M

Synthetic Real
(Source) (Target)

(b) Examples from Cropped Linemod

Source Generated

(c) MNIST → MNIST-M

Source Generated

(d) Synthetic → Real Cropped LineMod

Fig. 10. Domain adaptation experiments. We conduct the experiment on (a)
MNIST to MNIST-M, and (b) Synthetic to Realistic Cropped LineMod. (c) (d) Our
method can generate diverse images that benefit the domain adaptation.

4.3 Domain Adaptation

We demonstrate that the proposed image-to-image translation scheme can ben-
efit unsupervised domain adaptation. Following PixelDA [3], we conduct exper-
iments on the classification and pose estimation tasks using MNIST [22] to
MNIST-M [12], and Synthetic Cropped LineMod to Cropped LineMod [14,40].
Several example images in these datasets are shown in Fig. 10(a) and (b). To
evaluate our method, we first translate the labeled source images to the target
domain. We then treat the generated labeled images as training data and train
the classifiers of each task in the target domain. For a fair comparison, we use
the classifiers with the same architecture as PixelDA. We compare the proposed
method with CycleGAN, which generates the most realistic images in the target
domain according to our previous experiment, and three state-of-the-art domain
adaptation algorithms: PixelDA, DANN [12] and DSN [4].

We present the quantitative comparisons in Table 4 and visual results from
our method in Fig. 10(c) and (d). Since our model can generate diverse output,
we generate one time, three times, and five times (denoted as ×1,×3,×5) of tar-
get images using the same amount of source images. Our results validate that the
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Table 4. Domain adaptation results. We report the classification accuracy and
the pose estimation error on MNIST to MNIST-M and Synthetic Cropped LineMod
to Cropped LineMod. The entries “Source-only” and “Target-only” represent that the
training uses either image only from the source and target domain. Numbers in paren-
thesis are reported by PixelDA, which are slightly different from what we obtain.

proposed method can simulate diverse images in the target domain and improve
the performance in target tasks. While our method does not outperform Pix-
elDA, we note that unlike PixelDA, we do not leverage label information during
training. Compared to CycleGAN, our method performs favorably even with the
same amount of generated images (i.e., ×1). We observe that CycleGAN suffers
from the mode collapse problem and generates images with similar appearances,
which degrade the performance of the adapted classifiers.

5 Conclusions

In this paper, we present a novel disentangled representation framework for
diverse image-to-image translation with unpaired data. We propose to disentan-
gle the latent space to a content space that encodes common information between
domains, and a domain-specific attribute space that can model the diverse vari-
ations given the same content. We apply a content discriminator to facilitate
the representation disentanglement. We propose a cross-cycle consistency loss
for cyclic reconstruction to train in the absence of paired data. Qualitative and
quantitative results show that the proposed model produces realistic and diverse
images. We also apply the proposed method to domain adaptation and achieve
competitive performance compared to the state-of-the-art methods.

Acknowledgements. This work is supported in part by the NSF CAREER Grant
#1149783, the NSF Grant #1755785, and gifts from Verisk, Adobe and Nvidia.
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