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Abstract. Blind image deblurring is a challenging problem due to its
ill-posed nature, of which the success is closely related to a proper image
prior. Although a large number of sparsity-based priors, such as the
sparse gradient prior, have been successfully applied for blind image
deblurring, they inherently suffer from several drawbacks, limiting their
applications. Existing sparsity-based priors are usually rooted in mod-
eling the response of images to some specific filters (e.g., image gradi-
ents), which are insufficient to capture the complicated image structures.
Moreover, the traditional sparse priors or regularizations model the fil-
ter response (e.g., image gradients) independently and thus fail to depict
the long-range correlation among them. To address the above issues,
we present a novel image prior for image deblurring based on a Super-
Gaussian field model with adaptive structures. Instead of modeling the
response of the fixed short-term filters, the proposed Super-Gaussian
fields capture the complicated structures in natural images by integrat-
ing potentials on all cliques (e.g., centring at each pixel) into a joint
probabilistic distribution. Considering that the fixed filters in different
scales are impractical for the coarse-to-fine framework of image deblur-
ring, we define each potential function as a super-Gaussian distribution.
Through this definition, the partition function, the curse for traditional
MRFs, can be theoretically ignored, and all model parameters of the pro-
posed Super-Gaussian fields can be data-adaptively learned and inferred
from the blurred observation with a variational framework. Extensive
experiments on both blind deblurring and non-blind deblurring demon-
strate the effectiveness of the proposed method.

1 Introduction

Image deblurring involves the estimation of a sharp image when given a blurred
observation. Generally, this problem can be formalized as follows:

y = k ⊗ x + n, (1)
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where the blurred image y is generated by convolving the latent image x with
a blur kernel k, ⊗ denotes the convolution operator, and n denotes the noise
corruption. When the kernel k is unknown, the problem is termed blind image
deblurring (BID), and conversely, the non-blind image deblurring (NBID). It
has been shown that both of these two problems are highly ill-posed. Thus, to
obtain meaningful solutions, appropriate priors on latent image x is necessary.

Fig. 1. Deblurring results (and PSNR values) of a challenging example from [1]. From
left to right: Blurred image (22.386), Cho and Lee [2] (22.611), Xu and Jia [3] (22.782),
Pan et al. [4] (26.259), Ours (27.5427).

It has been found that the statistics of image response to specific filters can
well depict the underlying structures as priors. One of the most representa-
tive examples is the sparse character in natural gradient domain, which conveys
the response of an image to some basic filters, e.g., [−1, 1], and represents the
locally spatial coherence of natural images. Inspired by this, extensive prevail-
ing methods [5–13] have developed various sparse priors or regularizations to
emphasize the sparsity on the latent images in gradient domain for deblurring.
A brief review will be introduced in Sect. 2. Although these methods have made
such remarkable progress, their performance still need to be improved to satisfy
the requirement of real applications, especially when handling some challenging
cases. This is caused by two aspects of inherent limitations in these prior mod-
els. (1) Image gradient only records the response of the image to several basic
filters, which are insufficient to capture structures more complicated than local
coherence. In general, those complicated structures often benefit recovering more
details in the deblurred results. (2) Most of existing sparse priors (e.g., Laplace
prior) or regularizations (e.g., �p norm, 0 ≤ p ≤ 1) model the gradient on each
pixel independently, and thus fails to depict the long-range correlation among
pixels, such as non-local similarity or even more complex correlation. Failure to
consider such kind of correlation often results in some unnatural artifacts in the
deblurred results, as shown in Fig. 1.

To simultaneously address these two problems, we propose to establish an
appropriate image prior with the high order Markov random fields (MRFs)
model. This is motivated by the two advantages of MRFs. First, MRFs can
learn an ensemble of filters to determine the statistic distribution of images,
which is sufficient to capture the complicated image structures. Second, MRFs
integrates the potential defined on each clique (i.e., centering at each pixel) into a
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probabilistic joint distribution, which is able to capture the long-range correla-
tion among pixels potentially.

However, traditional MRFs models (e.g., Fields of experts (FoE) [14]) cannot
be directly embedded into the commonly used BID framework which estimates
the blur kernel in a coarse-to-fine scheme. Due to the intractable partition func-
tion, those models often learn parameters from an external image database,
which results in the response of the latent image to those learned filters dis-
tributing differently across various scales and thus failing to be well depicted by
the same MRFs model. For example, the learned filters lead to a heavy-tailed
sparse distribution on the fine-scale while a Gaussian distribution on the coarse
scale. That is one of the inherent reasons for why MRFs model is rarely employed
for BID.

To overcome this difficulty, we propose a novel MRFs based image prior,
termed super-Gaussian fields (SGF), where each potential is defined as a super-
Gaussian distribution. By doing this, the partition function, the curse for tra-
ditional MRFs, can be theoretically ignored during parameter learning. With
this advantage, the proposed MRF model can be seamlessly integrated into the
coarse-to-fine framework, and all model parameters, as well as the latent image,
can be data-adaptively learned and inferred from the blurred observation with a
variational framework. Compared with prevailing deblurring methods on exten-
sive experiments, the proposed method shows obvious superiority under both
BID and NBID settings.

2 Related Work

2.1 Blind Image Deblurring

Due to the pioneering work of Fergus et al. [5] that imposes sparsity on image in
the gradient spaces, sparse priors have attracted attention [5–13]. For example, a
mixture of Gaussian models is early used to chase the sparsity due to its excellent
approximate capability [5,6]. A total variation model is employed since it can
encourage gradient sparsity [7,8]. A student-t prior is utilized to impose the
sparsity [9]. A super-Gaussian model is introduced to represent a general sparse
prior [10]. Those priors are limited by the fact that they are related to the l1-
norm. To relax the limitation, many the lp-norm (where p < 1) based priors are
introduced to impose sparsity on image [11–13]. For example, Krishnan et al. [11]
propose a normalized sparsity prior (l1/l2). Xu et al. [12] propose a new sparse l0
approximation. Ge et al. [13] introduce a spike-and-slab prior that corresponds
to the l0-norm. However, all those priors are limited by the fact that they assume
the coefficients in the gradient spaces are mutually independent.

Besides the above mentioned sparse priors, a family of blind deblurring
approaches explicitly exploits the structure of edges to estimate the blur ker-
nel [2,3,15–19]. Joshi et al. [16] and Cho et al. [15] rely on restoring edges from
the blurry image. However, they fail to estimate the blur kernel with large size.
To remedy it, Cho and Lee [2] alternately recover sharp edges and the blur kernel
in a coarse-to-fine fashion. Xu and Jia [3] further develop this work. However,
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these approaches heavily rely on empirical image filters. To avoid it, Sun et al.
[17] explore the edges of natural images using learned patch prior. Lai et al. [18]
predict the edges by learned prior. Zhou and Komodakis [19] detect edges using
a high-level scene-specific prior. All those priors only explore the local patch in
the latent image but neglect the global characters.

Rather than exploiting edges, there are many other priors. Komodakis and
Paragios [20] explore the quantized version of the sharp image by a discrete
MRF prior. Their MRF prior is different with the proposed SG-FoE prior that
is a continuous MRF prior. Michaeli and Irani [21] seek sharp image by the
recurrence of small image patches. Gong et al. [22,23] hire a subset of the image
gradients for kernel estimation. Pan et al. [4] and Yan et al. [24] explore dark
and bright pixels for BID, respectively. Besides, deep learning based methods
have been adopted recently [25,26].

2.2 High-Order MRFs for Image Modeling

Since gradient filters only model the statistics of first derivatives in the image
structure, high-order MRF generalizes traditional based-gradient pairwise MRF
models, e.g., cluster sparsity field [27], by defining linear filters on large maximal
cliques. Based on the Hammersley-Clifford theorem [28], high-order MRF can
give the general form to model image as follows:

p(x;Θ) =
1

Z(Θ)

∏

c∈C

J∏

j=1

φ(Jjxc), (2)

where C are the maximal cliques, xc are the pixels of clique c, Jj are the linear
filters and j = 1, ..., J , Z(Θ) is the partition function with parameters Θ that
depend on φ and Jj , φ are the potentials. In contrast to previous high-order MRF
in which the model parameters are hand-defined, FoE [14], a class of high-order
MRF, can learn the model parameters from an external database, and hence has
attracted high attention in image denoising [29,30], NBID [31] and image super
resolution [32].

3 Image Modeling with Super-Gaussian Fields

In this section, we first figure out the reason why traditional high-order MRFs
models cannot be directly embedded into the coarse-to-fine deblurring frame-
work. To this end, we comprehensively investigate a typical high-order MRF
model, Gaussian scale mixture-FoE model (GSM-FoE) [29], and finally find out
its inherent limitation. Then, we propose a super-Gaussian Fields based image
prior model and analyze its properties.
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3.1 Blind Image Deblurring with GSM-FoE

According to [29], GSM-FoE follows the general MRFs form in (2) and defines
each potential with GSM as follows:

φ(Jjxc;αj,k) =
∑K

k=1
αj,kN (Jjxc; 0, ηj/sk), (3)

where N (Jjxc; 0, ηj/sk) denotes the Gaussian probability density function with
zero mean and variance ηj/sk. sk and αj,k denote the scale and weight param-
eters, respectively. It has been shown that GSM-FoE can well depict the sparse
and wide heavy-tailed distributions [29]. Similar as most previous MRFs mod-
els, the partition function Z(Θ) for GSM-FoE is generally intractable since it
requires integrating over all possible images. However, evaluating Z(Θ) is neces-
sitated to learn all the model parameters, e.g., {Jj} and {αj,k} (ηj and sk are
generally constant). To sidestep this difficulty, most MRFs models including
GSM-FoE turn to learn model parameters by maximizing the likelihood in (2)
on an external image database [14,29,30], and then apply the learned model in
the following applications, e.g., image denoising, super-resolution etc.

Fig. 2. (a) The 8 distributions with different colors of outputs by applying the 8 learned
filters from [29] to the sharp image (the bottom right in (a)) at different scales. The
0.7171, 0.5, 0.3536 and 0.25 denote different downsampling rates. (b)–(d) The top:
Blurred images with different kernel size (Successively, 13 × 13, 19× 19, 27× 27). The
bottom: Corresponding deblurred images using GSM-FoE.

However, the pre-learned GSM-FoE cannot be directly employed to BID.
This is because of that BID commonly adopts a coarse-to-fine framework, while
the responses of the latent image to these learned filters in the pre-learned GSM-
FoE often express different distributions across various scales and thus fails to be
well fitted by the same GSM-FoE prior. To illustrate this point clearly, we apply
the learned filters in GSM-FoE to an example image and show the responses of
an image across various scales in Fig. 2a. We can find that the response obtained
in the fine scale (e.g., the original scale) exhibits obvious sparsity as well as
heavy tails, while the response obtained in more coarse scales (e.g., 0.3536 and
0.25, the down-sampling rates) exhibits a Gaussian-like distribution. Thus, the
Gaussian-like response in coarse scale cannot be well fitted by the GSM-FoE
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which prefers to fitting sparse and heavy-tailed distribution. A similar observa-
tion is also reported in [29]. To further demonstrate the negative effect of such
kind of distribution mismatch on BID, we embed the pre-learned GSM-FoE prior
into the Bayesian MMSE framework introduced in the following Sect. 4.1 to deal
with an example image blurred with different kernel sizes. The deblurred results
are shown in Fig. 2b–d. Generally, a blurred image with larger kernel size requires
deblurring at the coarser scale. For example, deblurring image with 13 × 13 ker-
nel requires deblurring at 0.5 scale and obtains a good result, since the filter
response exhibits sparsity and heavy tails at 0.5 scale shown as in Fig. 2a. How-
ever, deblurring image with 19×19 kernel obtains an unsatisfactory result, since
it requires deblurring at 0.3536 scale where the filter response mismatches the
sparse and heavy-tailed distribution depicted by GSM-FoE shown as Fig. 2a. In
addition, more artifacts are generated in the deblurred results when the kernel
size is 27 × 27, since it requires deblurring at 0.25 scale which produces more
serious distribution mismatch.

3.2 Super-Gaussian Fields

To overcome the distribution mismatch problem of pre-learned MRFs model and
embed it into the coarse-to-fine deblurring framework, we propose a novel MRFs
prior model, termed super-Gaussian fields (SGF), which defines each potential
in (2) as a super-Gaussian distribution [10,33] as follows:

φ(Jjxc) = max
γj,c≥0

N (Jjxc; 0, γj,c), (4)

where γj,c denotes the variance. Similar to GSM, SG also can depict sparse
and heavy-tailed distributions [33]. Different from GSM-FoE and most MRFs
models, the partition function in super-Gaussian fields can be ignored during
parameter learning. More importantly, with such an advantage, it is possible to
learn its model parameters directly from the blurred observation in each scale,
and thus the proposed super-Gaussian fields can be seamlessly embedded into
the coarse-to-fine deblurring framework. In the following, we give the theoretical
results to ignore the partition function in details.

Property 1. The potential φ of SGF is related to Jj and xc, but not γj,c. Hence,
the partition function Z(Θ) of SGF just depends on the linear filters Jj .

Proof. As shown in (4), γj,c can be determined by Jj and xc. Hence,
the potential φ in (4) is related to only Jj and xc. Furthermore, because
Z(Θ) =

∫ ∏
c∈C

∏J
j=1 φ(Jjxc)dx, the partition function Z(Θ) just depends on

the linear filters Jj once the integral is done. Namely, Θ = {Jj |j = 1, ..., J}.

Property 2. Given any set of J orthonormal vectors {VJj
}, {VJ

′
j
}, VJj

denote
the vectored version of the linear filters Jj (VJj

is the vector formed through the
concatenation of vectors of Jj), for the partition function of SGF: Z({VJj

}) =
Z({VJ

′
j
}).
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To proof Property 2, we first introduce the following theory,

Theorem 1 ([30]). Let E(VT
Jj
Tx) be an arbitrary function of VT

Jj
Tx and

define Z(V) =
∫

e
− ∑

j E(VT
Jj

Tx)dx, where Tx denotes the Toeplitz (convolu-
tion) matrix (e.g., Jj ⊗ x = VT

Jj
Tx.) with x. Then Z(V) = Z(V′) for any set

of J orthonormal vectors {VJj
}, {V′

Jj
}.

Proof (to Property 2). Since the partition function Z(Θ) of SGF just depends
on the linear filters {JJj

} as mentioned in Property 1 and the potential φ in
(4) also perfectly meets the form of E(VT

Jj
Tx) in Theorem 1, it is easy to proof

Property 2.

Based on Property 1, we do not need to evaluate the partition function Z(Θ)
of SGF to straightforward update γj,c, since Z(Θ) do not depend on γj,c. Further,
based on Property 2, we can also do not need evaluate Z(Θ) of SGF to update
Jj , if we limit updating Jj in the orthonormal space.

4 Image Deblurring with the Proposed SGF

In this section, we first propose a iterative method with SGF to handle BID in
an coarse-to-fine scheme. We then show how to extend the proposed to non-blind
image deblurring and non-uniform blind image deblurring.

4.1 Blind Image Deblurring with SGF

Based on the proposed SGF, namely (2) and (4), we propose a novel approach
for BID in this section. In contrast to some existing methods which can only
estimate the blur kernel, our approach can simultaneously recover latent image
and the blur kernel. We will further discuss it in Sect. 4.2.

Recovering Latent Image. Given the blur kernel, a conventional approach to
recover latent image is Maximum a Posteriori (MAP) estimation. However, MAP
favors the no-blur solution due to the influence of image size [34]. To overcome
it, we introduce Bayesian MMSE to recover latent image. MMSE can eliminate
the influence by integration on image as follows [35]:

x̂ = arg min
x̃

∫
‖x̃ − x‖2p(x|y,k,Jj , γj,c)dx = E(x|y,k,Jj , γj,c), (5)

which is equal to the mean of the posterior distribution p(x|y,k,Jj , γj,c). Com-
puting the posterior distribution is general intractable. Conventional approaches
that resort to sum-product belief propagation or sampling algorithms often face
with high computational cost. To reduce the computational burden, we use a
variational posterior distribution q(x) to approximate the true posterior distribu-
tion p(x|y,k,Jj , γj,c). The variational posterior q(x) can be found by minimizing
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the Kullback-Leibler divergence KL(q(x)|p(x|y,k,Jj , γj,c)). This optimization
is equivalent to the maximization of the lower bound of the free energy:

max
q(x),k,Jj ,γj,c

F = max
q(x),k,Jj ,γj,c

∫
q(x) log p(x,y|k,Jj , γj,c)dx−

∫
q(x) log q(x)dx. (6)

Normally, p(x,y|k,Jj , γj,c) in (6) should be equivalent to p(y|x,k,Jj , γj,c)p(x).
We empirically introduce a weight parameter λ to regularize the influences
of prior and likelihood similar to [14,29]. In this case, p(x,y|k,Jj , γj,c) =
p(y|x,k,Jj , γj,c)p(x)λ. Without loss of generality, we assume that the noise in
(1) obeys i.i.d. Gaussian distribution with zero mean and δ2 variance.

Inferring q(x): Setting the partial differential of (6) with respect to q(x) to
zero and omitting the details of derivation, we obtain:

− log q(x) =
1
2
xTAx − bTx, (7)

with A = δ−2TT
kTk +

∑
j λTT

Jj
WjTJj

, b = δ−2TT
ky, where the image x is

vectored here, Wj denote the diagonal matrices with Wj(i, i) = γ−1
j,c where i is

the index over image pixels and corresponds to the center of clique c, Tk and TJj

denote the Toeplitz (convolution) matrix with the filter k and Jj , respectively.
Similar to [6,10], to reduce computational burden, the mean 〈x〉 of q(x) can be
found by the linear system A〈x〉 = b, where 〈∗〉 refers to the expectation of
∗, and the covariance A−1 of q(x) that will be used in (9) is approximated by
inverting only the diagonals of A.

Learning Jj: Although Jj is related to the intractable partition function Z(Θ),
based on Property 2, we can limit learning Jj in the orthonormal space where
Z({Jj}) is constant. For that, we can easily define a set {Bj} and then consider
all possible rotations of a single basis set of filters Bj . That is, if we use B to
denote a matrix whose j-th column is Bj and R to denote any orthogonal matrix,
then Z(B) = Z(RB). Consequently, we can give the solution of updating Jj by
maximizing (6) under the condition that R is any orthogonal matrix as follows:

Rj = eig min(BT 〈TxWjTT
x 〉B), VJj

= BRj , (8)

where eig min(∗) denotes the eigenvector of ∗ with minimal eigenvalue, Tx

denotes the Toeplitz (convolution) matrix with x. We require that Rj be orthog-
onal to the previous columns R1,R2, ...,Rj−1.

Learning γj,c: By contrast to updating Jj , updating γj,c is more straightforward
because Z(Θ) is not related to γj,c as mentioned in Property 1. We can easy give
the solution of updating γj,c by setting the partial differential of (6) with respect
to γj,c to zero, as follows:

γj,c = 〈(Jjxc)2〉. (9)

Learning δ2: Learning δ2 is easy performed by setting the partial differential of
(6) with respect to δ2 to zero. However, this way is problematic because BID is
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a underdetermined problem where the size of the sharp image x is larger than
that of the blurred image y. We introduce the hyper-parameter d to remedy it
similar to [36] as follows:

δ2 =
〈(y − k ⊗ x)2〉

n
+ d, (10)

where n is the size of image.

Recovering the Blur Kernel. Similar to existing approaches [6,12,17], given
〈x〉, we obtain the blur kernel estimation by solving

min
k

‖∇x ⊗ k − ∇y‖22 + β‖k‖22, (11)

where ∇x and ∇y denote the latent image 〈x〉 and the blurred image y in the
gradient spaces, respectively. To speed up computation, FFT is used as derived
in [2]. After obtaining k, we set the negative elements of k to 0, and normalize
k. The proposed approach is implemented in a coarse-to-fine manner similar
to state-of-the-art methods. Algorithm 1 shows the pseudo-code of the propose
approach.

Algorithm 1. Pseudo-code of the propose approach
Input: Blurred image y
Output: The blur kernel k
1: Initialize: k,x,Jj ,B, δ2, γj,c, λ, β and d
2: while stopping criterion is not satisfied do
3: Inferring latent image x, learning filters Jj and variances γj,c by (7)–(9)
4: Update for blur kernel k by (11)
5: Learning for noise δ2 by (10)
6: end while

4.2 Extension to Other Deblurring Problems

In this section, we extent the above method to handle the other two deblur-
ring problems, namely the non-uniform Blind deblurring and the non-blind
deblurring.

Non-uniform Blind Deblurring. The proposed approach can be extended
to handle the non-uniform blind deblurring where the blur kernel varies across
spatial domain [37,38]. Generally, the non-uniform blind deblurring problem can
be formulated as [37]:

Vy = DVx + Vn, or Vy = EVk + Vn, (12)
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where Vy, Vx and Vn denote the vectored forms of y, x and n in (1). D is a large
sparse matrix, where each row contains a local blur filter acting on Vx to generate
a blurry pixel and each column of E contains a projectively transformed copy
of the sharp image when Vx is known. Vk is the weight vector which satisfies
Vkt ≥ 0 and

∑
t Vkt = 1. Based on (12), the proposed approach can handle

the non-uniform blind deblurring problem by alternatively solving the following
problems:

max
q(Vx),D,Jj ,γj,c

∫
q(Vx) log q(Vx)dVx −

∫
q(Vx) log p(Vx,Vy|D,Jj , γj,c)dVx,

(13)
min
Vk

‖∇EVk − V∇y‖22 + β‖Vk‖1. (14)

Here, (14) employs l1-norm to encourage a sparse kernel as [37]. The optimal
q(Vx) in (13) can be computed by using formulas similar to (7)–(9) in which k
is replaced by D. In addition, the efficient filter flow [39] is adopted to accelerate
the implementation of the proposed approach.

Non-blind Image Deblurring. Similar as most of previous non-blind image
deblurring, the proposed approach can handle non-blind image deblurring by
(7)–(9) with the kernel k given beforehand.

5 Analysis

In this part, we demonstrate two properties of the proposed SGF in image deblur-
ring. (1) The learned filters in SGF are sparse-promoting. As mentioned in (8),

Fig. 3. Comparison of the outputs in the gradient spaces and our adaptive filter spaces
at different scales. (a) The distributions of the filter outputs of sharp image (The top
right in (b)) in gradient spaces and our adaptive spaces (by using filters corresponding
to the bottom right in (a)) at different scales. From top to bottom and from left to
right: the original, 0.7171 (sampling rate), 0.5, 0.3536, 0.25 scales. The bottom right is
our final obtained filters corresponding to the different scales. (b) From top to bottom,
from left to right: blurred image, sharp image, estimated latent images with basic filters
and our adaptive filters.



Deblurring Natural Image Using Super-Gaussian Fields 477

the filters in SGF are estimated as the eigenvector of 〈TxWjTT
x 〉 with minimal

eigenvalue, viz., the filters are the singular vector 〈Tx(Wj)
1
2 〉 with minimal sin-

gular value. This implies that the proposed method seeks filters Jj which lead
to VT

Jj
Tx(Wj)

1
2 being sparse as possible. VJj

denotes the vectorized Jj . Since

(Wj)
1
2 is a diagonal matrix which only scales each column of Tx, the sparsity

of VT
Jj
Tx(Wj)

1
2 is mainly determined by VT

Jj
Tx. Consequently, the proposed

approach seeks filters Jj which lead to the corresponding response VJj
Tx of

the latent image being as sparse as possible. This can be further illustrated by
the visual results in Fig. 3(a) where the distribution of image response to these
learned filters are plotted. (2) These filters Jjs learned in each scales are more
powerful than the basic filters for image gradient which are extensively adopted in
previous methods. To illustrate this point, we compare the response of the latent
image to these learned filters with image gradient in Fig. 3(a). It can be seen
that those learned filters lead to more sparse response than that on gradients.
With these two group of filters, we recover the latent image with the proposed
approach. The corresponding deblurred results are shown in Fig. 3(b). We can
find that these learned filters lead to more clear and sharp results. These results
demonstrate that those learned filters are more powerful than the basic filters
for image gradient.

6 Experiments

In this section, we illustrate the capabilities of the proposed method for blind,
non-blind and non-uniform image deblurring. We first evaluate its performance
for blind image deblurring on three datasets and some real images. Then, we eval-
uate its performance for non-blind image deblurring. Finally, we report results
on blurred images undergoing non-uniform blur kernel.

Experimental Setting: In all experiments unless especially mentioned, we set
δ2 = 0.002, β = 20, γj,c = 1e−3 and d = 1e−4. To initialize the filters Jj , we first
downsample all images (grayscale) from the dataset [40] to reduce noise, then
train 8 3 × 3 filters Jj on the downsampling images using the method proposed
in [29] as the initialization. λ is set as 1/8. To initialize basis set B, we use
the shifted versions of the whitening filter whose power spectrum equals the
mean power spectrum of Jj as suggested in [30]. We use the proposed non-blind
approach in Sect. 4.2 to give the final sharp image unless otherwise mentioned.
We implement the proposed method in Matlab and evaluate the performance on
an Intel Core i7 CPU with 8 GB of RAM. Our implementation processes images
of 255 × 255 pixels in about 27 s.

6.1 Experiments on Blind Image Deblurring

Dataset from Levin et al. [41]: The proposed method is first applied to a
widely used dataset [41], which consists of 32 blurred images, corresponding to
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Fig. 4. Quantitative evaluations on dataset [41] (a) and dataset [17] (b).

4 ground truth images and 8 motion blur kernels. We compare it with state-
of-the-art approaches [2–7,11,12,17,21,24]. To further verify the performance
of GSM-FoE, we implement GSM-FoE for BID by integrating the pre-learned
GSM-FoE prior into the Bayesian MMSE framework introduced in the follow-
ing Sect. 4.1. We also verify the performance of the proposed method without
updating filters to illustrate the necessity to update filters. For the fair com-
parison, after estimating blur kernels using different approaches, we use the
nonblind deconvolution algorithm [42] with the same parameters in [6] to recon-
struct the final latent image. The deconvolution error ratio, which measures the
ratio between the Sum of Squared Distance (SSD) deconvolution error with the
estimated and correct kernels, is used to evaluate the performance of different
methods above. Figure 4a shows the cumulative curve of error ratio. The results
shows that the proposed method obtains the best performance in terms of suc-
cess percent 100% under error ratio 2. More detailed results can be found in
supplementary material.

Dataset from Sun et al. [17]: In a second set of experiments we use dataset
from [17], which contains 640 images synthesized by blurring 80 natural images
with 8 motion blur kernels borrowed from [41]. For fair comparison, we use the
non-blind deconvolution algorithm of Zoran and Weiss [43] to obtain the final
latent image as suggested in [17]. We compare the proposed approach with [2,
3,6,11,17,21]. Figure 4b shows the cumulative curves of error ratio. Our results
are visually competitive with others.

Dataset from Köhler et al. [1]: We further implement the proposed method
on dataset, which is blurred by space-varying blur, borrowed from [1]. Although
real images often exhibit spatially varying blur kernel, many approaches that
assume shift-invariant blur kernel can perform well. We compare the proposed
approach with [2–5,11,38,44,45]. The peak-signal-to-noise ratio (PSNR) is used
to evaluate their performance. Figure 5 shows the PSNRs of different approaches
above. We can see that our results are superior to the state-of-the-art approaches.

Comparison of the Proposed Approach, Pan et al. [4] and Yan et al.
[24]: Recently, the method in [4] based on dark channel prior shows state-of-the-
art results. As shown in Figs. 4a and 5, the proposed method performs on par
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Fig. 5. Quantitative evaluations on Dataset [1]. Our results are competitive.

with the method in [4] on datasets Levin et al. [41] and Köhler et al. [1]. On the
other hand, the method in [4] fails to handle blurred images which do not satisfy
the condition of the dark channel prior, e.g., images with sky patches [46]. To a
certain extent, Yan et al. [24] alleviate the limitation of the dark channel prior
with bright pixels. However, the methods in Yan et al. [24] is still affected by
complex brightness, as shown in Fig. 6.

Fig. 6. A challenging example with sky patches.

Real Images: We further test the proposed method using two real natural
images. In Fig. 7 we show two comparisons on real photos with unknown camera
shakes. For blurred image (a), Xu et al. [12] and the proposed method produce
high-quality images. Further, for the blurred image (e), the proposed method
produces sharper edges around the texts than Xu and Jia [3] and Sun et al. [17].

6.2 Experiments on Non-blind Image Deblurring

We also use the dataset from [41] to verify the performance of the proposed app-
roach on non-blind image deblurring where the blur kernel is given by reference
to [41]. Here, we set δ2 = 1e−4 and the remaining parameters are initialized as
mentioned above. We compare the proposed method against Levin et al. [42]
with the same parameters in [6], Krishnan and Fergus [47], Zoran and Weiss
[43] and Schmidt et al. [31]. Schmidt et al. [31] and the proposed method are
based on high-order MRFs. The difference is that Schmidt et al. [31] use GSM-
FoE model but we use the proposed SGF. The SSD is also used to evaluate the
performance of different methods.
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Fig. 7. Two example images with unknown camera shake from [3,5].

Fig. 8. Quantitative and qualitative evaluation on dataset [41]. (a) Cumulative his-
tograms of SSD. (b)–(h) show a challenging example. From left to right: Blurred
SSD:574.38, Levin et al. [42] SSD:73.51, Krishnan and Fergus [47] SSD:182.41, Zoran
and Weiss [43] SSD:64.03, Schmidt et al. [31] SSD:64.35, Ours SSD:44.61.

Figure 8 shows the cumulative curve of SSD and deblurred results by different
approaches on a challenging example. We can see that Zoran and Weiss [43] and
the proposed produce competitive results. Additionally, as shown in Table 1,
compared with Zoran and Weiss [43], the proposed method obtains lower the
average SSD and less run time. Further, compared with GSM-FoE based Schmidt
et al. [31], our SG-FoE acquires better results and requires more less run time.

6.3 Experiments on Non-uniform Image Deblurring

In the last experiment, we evaluate the performance of the proposed approach
on blurred images with non-uniform blur kernel. β in (14) is set as 0.01 for non-
uniform deblurring. Again, initializing γj,c = 1e−3, Jj , λ and B are the same
as blind deblurring. We compare the proposed method with Whyte et al. [37]
and Xu et al. [12]. Figure 9 shows two real natural images with non-uniform blur
kernel and deblurred results. The proposed method generates images with fewer
artifacts and more details.
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Table 1. Average SSD and run time on dataset [41].

Levin et al. [42] Zoran and Weiss [43] Schmidt et al. [31] Krishnan and

Fergus [47]

Ours

Average SSD 30.20 24.60 25.43 82.35 21.77

Time (s) 109 3093 >10000 6 485

Fig. 9. Non-uniform blind deblurring results.

7 Conclusions

To capture the complicated image structures for image deblurring, we analyze the
reason why traditional high-order MRFs model fails to handle BID in a coarse-to-
fine scheme. To overcome this problem, we propose a novel supper-Gaussian fields
model. This model contains two exciting properties, Property 1 and Property 2
introduced in Sect. 3.1, so that the partition function can be theoretically ignored
during parameter learning. With this advantage, the proposed MRF model has
been integrated into blind, non-blind and non-uniform blind image deblurring
framework. Extensive experiments demonstrate the effectiveness of the proposed
method. In contrast to previous fixed gradient based approaches, the proposed
method explores sparsity in adaptive sparse-promoting filter spaces so that it
dramatically performs well. It is interesting to exploit adaptive sparse-promoting
filter spaces by other methods for BID in the future.
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