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Abstract. We introduce and tackle the problem of zero-shot object
detection (ZSD), which aims to detect object classes which are not
observed during training. We work with a challenging set of object
classes, not restricting ourselves to similar and/or fine-grained categories
as in prior works on zero-shot classification. We present a principled app-
roach by first adapting visual-semantic embeddings for ZSD. We then
discuss the problems associated with selecting a background class and
motivate two background-aware approaches for learning robust detec-
tors. One of these models uses a fixed background class and the other
is based on iterative latent assignments. We also outline the challenge
associated with using a limited number of training classes and propose
a solution based on dense sampling of the semantic label space using
auxiliary data with a large number of categories. We propose novel splits
of two standard detection datasets – MSCOCO and VisualGenome, and
present extensive empirical results in both the traditional and generalized
zero-shot settings to highlight the benefits of the proposed methods. We
provide useful insights into the algorithm and conclude by posing some
open questions to encourage further research.

1 Introduction

Humans can effortlessly make a mental model of an object using only textual
description, while machine recognition systems, until not very long ago, needed
to be shown visual examples of every category of interest. Recently, some work
has been done on zero-shot classification using textual descriptions [53], leverag-
ing progress made on both visual representations [51] and semantic text embed-
dings [21,34,39]. In zero-shot classification, at training time visual examples are
provided for some visual classes but during testing the model is expected to
recognize instances of classes which were not seen, with the constraint that the
new classes are semantically related to the training classes.
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This problem is solved within the framework of transfer learning [13,40],
where visual models for seen classes are transferred to the unknown classes by
exploiting semantic relationships between the two. For example, as shown in
Fig. 1, the semantic similarities between classes “hand” and “arm” are used to
detect an instance of a related (unseen) class “shoulder”. While such a setting has
been used for object classification, object detection has remained mostly in the
fully supervised setting as it is much more challenging. In comparison to object
classification, which aims to predict the class label of an object in an image,
object detection aims at predicting bounding box locations for multiple objects
in an image. While classification can rely heavily on contextual cues, e.g. airplane
co-occurring with clouds, detection needs to exactly localize the object of interest
and can potentially be degraded by contextual correlations [56]. Furthermore,
object detection requires learning additional invariance to appearance, occlusion,
viewpoint, aspect ratio etc. in order to precisely delineate a bounding box [19].

In the past few years, several CNN-based object detection methods have
been proposed. Early methods [16,17] started with an object proposal gener-
ation step and classified each object proposal as belonging to a class from a
fixed set of categories. More recent methods either generate proposals inside a
CNN [46], or have implicit regions directly in the image or feature maps [32,44].
These methods achieved significant performance improvements on small datasets
which contain tens to a few hundreds of object categories [8,30]. However, the
problem of detecting a large number of classes of objects has not received suf-
ficient attention. This is mainly due to the lack of available annotated data
as getting bounding box annotations for thousands of categories of objects is
an expensive process. Scaling supervised detection to the level of classification
(tens to hundreds of thousands of classes) is infeasible due to prohibitively large
annotations costs. Recent works have tried to avoid such annotations, e.g. [45]
proposed an object detection method that can detect several thousand object
classes by using available (image-level) class annotations as weak supervision
for object detection. Zero-shot learning has been shown to be effective in situ-
ations where there is a lack of annotated data [12,14,31,38,53,54,59,60]. Most
prior works on zero-shot learning have addressed the classification problem
[5–7,11,20,23,26,27,37,41,43,50,52], using semantic word-embeddings [11,23]
or attributes [12,27,28,59] as a bridge between seen and unseen classes.

In the present work, we introduce and study the challenging problem of zero-
shot detection for diverse and general object categories. This problem is difficult
owing to the multiple challenges involved with detection, as well as those with
operating in a zero-shot setting. Compared to fully supervised object detection,
zero-shot detection has many differences, notably the following. While in the
fully supervised case a background class is added to better discriminate between
objects (e.g. car, person) and background (e.g. sky, wall, road), the meaning of
“background” is not clear for zero-shot detection, as it could involve both back-
ground“stuff” as well as objects from unannotated/unseen classes. This leads to
non-trivial practical problems for zero-shot detection. We propose two ways to
address this problem: one using a fixed background class and the other using a
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Fig. 1. We highlight the task of zero-shot object detection where objects “arm”,
“hand”, and “shirt” are observed (seen) during training, but “skirt”, and “shoulder”
are not. These unseen classes are localized by our approach that leverages semantic
relationships between seen and unseen classes along with the proposed zero-shot detec-
tion framework. The example has been generated by our model.

large open vocabulary for differentiating different background regions. We start
with a standard zero-shot classification architecture [13] and adapt it for zero-
shot object detection. This architecture is based on embedding both images and
class labels into a common vector space. In order to include information from
background regions, following supervised object detection, we first try to asso-
ciate the background image regions into a single background class embedding.
However, this method can be improved by using a latent assignment based alter-
nating algorithm which associates the background boxes to potentially different
classes belonging to a large open vocabulary. Since most object detection bench-
mark datasets usually have a few hundred classes, the label space can be sparsely
populated. We show that dense sampling of the class label space by using addi-
tional data improves zero-shot detection. Along with these two enhancements,
we provide qualitative and quantitative results to provide insights into the suc-
cess as well as failure cases of the zero-shot detection algorithms, that point us
to novel directions towards solving this challenging problem.

To summarize, the main contributions of this paper are: (i) we introduce the
problem of zero-shot object detection (ZSD) in real world settings and present a
baseline method for ZSD that follows existing work on zero-shot image classifi-
cation using multimodal semantic embeddings and fully supervised object detec-
tion; (ii) we discuss some challenges associated with incorporating information
from background regions and propose two methods for training background-
aware detectors; (iii) we examine the problem with sparse sampling of classes
during training and propose a solution which densely samples training classes
using additional data; and (iv) we provide extensive experimental and ablation
studies in traditional and generalized zero-shot settings to highlight the benefits
and shortcomings of the proposed methods and provide useful insights which
point to future research directions.
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2 Related Work

Word Embeddings. Word embeddings map words to a continuous vector rep-
resentation by encoding semantic similarity between words. Such representa-
tions are trained by exploiting co-occurrences in words in large text corpuses
[21,34,35,39]. These word vectors perform well on tasks such as measuring
semantic and syntactic similarities between words. In this work we use the word
embeddings as the common vector space for both images and class labels and
thus enable detection of objects from unseen categories.

Zero-Shot Image Classification. Previous methods for tackling zero-shot
classification used attributes, like shape, color, pose or geographical informa-
tion as additional sources of information [10,26,27]. More recent approaches have
used multimodal embeddings to learn a compatibility function between an image
vector and class label embeddings [1,2]. In [52], the authors augment the bilin-
ear compatibility model by adding latent variables. The deep visual-semantic
embedding model [11] used labeled image data and semantic information from
unannotated text data to classify previously unseen image categories. We fol-
low a similar methodology of using labeled object bounding boxes and semantic
information in the form of unsupervised word embeddings to detect novel object
categories. For a more compehensive overview of zero-shot classification, we refer
the reader to the detailed survey by Fu et al. [13].

Object Detection. Early object detection approaches involved getting object
proposals for each image and classifying those object proposals using an image
classification CNN [16,17,46,55]. More recent approaches use a single pass
through a deep convolution network without the need for object region pro-
posals [32,44]. Recently, Redmon et al. [45] introduced an object detector which
can scale upto 9000 object categories using both bounding box and image-level
annotations. Unlike this setting, we work in a more challenging setting and do
not observe any labels for the test object classes during training. We build our
detection framework on an approach similar to the proposal-based approaches
mentioned above.

Multi-modal Learning. Using multiple modalities as additional sources of
information has been shown to improve performance on several computer vision
and machine learning tasks. These methods can be used for cross-modal retrieval
tasks [9], or for transferring classifiers between modalities. Recently, [4] used
images, text, and sound for generating deep discriminative representations which
are shared across the three modalities. Similarly, [58] used images and text
descriptions for better natural language based visual entity localization. In [18],
the authors used a shared vision and language representation space to obtain
image-region and word descriptors that can be shared across multiple vision and
language domains. Our work also uses multi-modal learning for building a robust
object detector for unseen classes. Another related work is by Li et al. [28], which
learns object-specific attributes to classify, segment, and predict novel objects.
The problem proposed here differs considerably from this in detecting a large
set of objects in unconstrained settings and does not rely on using attributes.
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Comparison with Recent Works on ZSD. After completion of this work,
we found two parallel works by Zhu et al. [61] and Rahman et al. [42] that
target a similar problem. Zhu et al. focus on a different problem of generating
object proposals for unseen objects. Rahman et al. [42] propose a loss formulation
that combines max-margin learning and a semantic clustering loss. Their aim
is to separate individual classes and reduce the noise in semantic vectors. A
key difference between our work and Rahman et al. is the choice of evaluation
datasets. Rahman et al. use the ILSVRC-2017 detection dataset [47] for training
and evaluation. This dataset is more constrained in comparison to the ones
used in our work (MSCOCO and VisualGenome) because it contains only about
one object per image on an average. We would also like to note that due to a
relatively simpler test setting, Rahman et al. does not consider the corrruption
of the background class by unseen classes as done in this work and by Zhu et al.

3 Approach

We first outline our baseline zero-shot detection framework that adapts prior
work on zero-shot learning for the current task. Since this approach does not con-
sider the diversity of the background objects during training, we then present an
approach for training a background-aware detector with a fixed background class.
We highlight some possible limitations of this approach and propose a latent
assignment based background-aware model. Finally, we describe our method for
densely sampling labels using additional data, which improves generalization.

3.1 Baseline Zero-Shot Detection (ZSD)

We denote the set of all classes as C = S ∪ U ∪ O, where S denotes the set of
seen (train) classes, U the set of unseen (test) classes, and O the set of classes
that are neither part of seen or unseen classes. Note that our methods do not
require a pre-defined test set. We fix the unseen classes here just for quantitative
evaluation. We work in a zero-shot setting for object detection where, during
training we are provided with labeled bounding boxes that belong to the seen
classes only, while during testing we detect objects from unseen classes. We
denote an image as I ∈ R

M×N×3, provided bounding boxes as bi ∈ N
4, and

their associated labels as yi ∈ S. We extract deep features from a given bounding
box obtained from an arbitrary region proposal method. We denote extracted
deep features for each box bi as φ(bi) ∈ R

D1 . We use semantic embeddings to
capture the relationships between seen and unseen classes and thus transfer a
model trained on the seen classes to the unseen classes as described later. We
denote the semantic embeddings for different class labels as wj ∈ R

D2 , which
can be obtained from pre-trained word embedding models such as Glove [39]
or fastText [21]. Our approach is based on visual-semantic embeddings where
both image and text features are embedded in the same metric space [11,50].
We project features from the bounding box to the semantic embedding space
itself via a linear projection,
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ψi = Wpφ(bi) (1)

where, Wp ∈ R
D2×D1 is a projection matrix and ψi is the projected feature. We

use the common embedding space to compute a similarity measure between a
projected bounding box feature ψi and a class embedding wj for class label yj
as the cosine similarity Sij between the two vectors. We train the projection by
using a max-margin loss which enforces the constraint that the matching score of
a bounding box with its true class should be higher than that with other classes.
We define loss for a training sample bi with class label yi as,

L(bi, yi, θ) =
∑

j∈S,j �=i

max(0,m − Sii + Sij) (2)

where θ refers to the parameters of the deep CNN and the projection matrix, and
m is the margin. We also add an additional reconstruction loss to L, as suggested
by Kodirov et al. [23], to regularize the semantic embeddings. In particular, we
use the projected box features to reconstruct the original deep features and
calculate the reconstruction loss as the squared L2-distance between the recon-
structed feature and the original deep feature. During test we predict the label
(ŷi) for a bounding box (bi) by finding its nearest class based on the similarity
scores with different class embeddings, i.e.

ŷi = arg max
j∈U

Sij (3)

It is common for object detection approaches to include a background class
to learn a robust detector that can effectively discriminate between foreground
objects and background objects. This helps in eliminating bounding box propos-
als which clearly do not contain any object of interest. We refer to these models
as background-aware detectors. However, selecting a background for zero-shot
detection is a non-trivial problem as we do not know if a given background box
includes background “stuff” in the classical sense e.g. sky, ground etc. or an
instance of an unseen object class. We thus train our first (baseline) model only
on bounding boxes that contain seen classes.

3.2 Background-Aware Zero-Shot Detection

While background boxes usually lead to improvements in detection performance
for current object detection methods, for ZSD to decide which background
bounding boxes to use is not straight-forward. We outline two approaches for
extending the baseline ZSD model by incorporating information from back-
ground boxes during training.

Statically Assigned Background (SB) Based Zero-Shot Detection. Our
first background-aware model follows as a natural extension of using a fixed
background class in standard object detectors to our embedding framework. We
accomplish this by adding a fixed vector for the background class in our embed-
ding space. Such ‘statically-assigned’ background modeling in ZSD, while provid-
ing a way to incorporate background information, has some limitations. First, we
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are working with the structure imposed by the semantic text embeddings that
represent each class by a vector relative to other semantically related classes.
In such a case it is difficult to learn a projection that can map all the diverse
background appearances, which surely belong to semantically varied classes, to
a single embedding vector representing one monolithic background class. Sec-
ond, even if we are able to learn such a projection function, the model might
not work well during testing. It can map any unseen class to the single vector
corresponding to the background, as it has learned to map everything, which is
not from seen classes, to the singleton background class.

Latent Assignment Based (LAB) Zero-Shot Detection. We solve the
problems above by spreading the background boxes over the embedding space
by using an Expectation Maximization (EM)-like algorithm. We do so by assign-
ing multiple (latent) classes to the background objects and thus covering a wider
range of visual concepts. This is reminiscent of semi-supervised learning algo-
rithms [48]; we have annotated objects for seen classes and unlabeled boxes for
the rest of the image regions. At a higher level we encode the knowledge that a
background box does not belong to the set of seen classes (S), and could poten-
tially belong to a number of different classes from a large vocabulary set, referred
to as background set and denoted as O.

We first train a baseline ZSD model on boxes that belong to the seen classes.
We then follow an iterative EM-like training procedure (Algorithm 1), where,
in the first of two alternating steps, we assign labels to some randomly sampled
background boxes in the training set as classes in O using our trained model with
equation 3. In the second step, we re-train our detection model with the boxes,
labeled as above, included. In the next iteration, we repeat the first step for
another part of background boxes and retrain our model with the new training
data. This proposed approach is also related to open-vocabulary learning where
we are not restricted by a fixed set of classes [20,57], and to latent-variable based
classification models e.g. [49].

3.3 Densely Sampled Embedding Space (DSES)

The ZSD method, described above, relies on learning a common embedding
space that aligns object features with label embeddings. A practical problem
in learning such a model with small datasets is that there are only a small
number of seen classes, which results in a sparse sampling of the embedding
space during training. This is problematic particularly for recognizing unseen
classes which, by definition, lie in parts of the embedding space that do not have
training examples. As a result the method may not converge towards the right
alignment between visual and text modalities. To alleviate this issue, we propose
to augment the training procedure with additional data from external sources
that contain boxes belonging to classes other than unseen classes, yi ∈ C −U . In
other words, we aim to have a dense sampling of the space of object classes during
training to improve the alignment of the embedding spaces. We show empirically
that, because the extra data being used is from diverse external sources and is
distinct from seen and unseen classes, it improves the baseline method.
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Algorithm 1. LAB algorithm
Given: annoData (annotated data), bgData (background/unannotated data), C (set
of all classes), S (seen classes), U (unseen classes), O (background set), initModel
(pre-trained network)
currModel ← train(initModel, annoData)
for i = 1 to niters do

currBgData ← φ
for b in bgData do

// distribute background boxes over open vocabulary minus seen classes
bnew ←predict(b, currModel, O)
// O = C \ (S ∪ U)
currBgData ← currBgData ∪{bnew}

currAnnoData ← annoData ∪ currBgData

currModel←train(currModel,currAnnoData)

return currModel

4 Experiments

We first describe the challenging public datasets we use to validate the pro-
posed approaches, and give the procedure for creating the novel training and
test splits1. We then discuss the implementation details and the evaluation pro-
tocol. Thereafter, we give the empirical performance for different models fol-
lowed by some ablation studies and qualitative results to provide insights into
the methods.

MSCOCO [30] We use training images from the 2014 training set and randomly
sample images for testing from the validation set.

VisualGenome (VG) [25] We remove non-visual classes from the dataset; use
images from part-1 of the dataset for training, and randomly sample images from
part-2 for testing.

OpenImages (OI) [24] We use this dataset for densely sampling the label space
as described in Sect. 3.3. It contains about 1.5 million images containing 3.7
million bounding boxes that span 545 object categories.

Procedure for Creating Train and Test Splits: For dividing the classes
into seen (train) and unseen (test) classes, we use a procedure similar to [3].
We begin with word-vector embeddings for all classes and cluster them into
K clusters using cosine similarity between the word-vectors as the metric. We
randomly select 80% classes from each cluster and assign these to the set of seen
classes. We assign the remaining 20% classes from each cluster to the test set.
We set the number of clusters to 10 and 20 for MSCOCO and VisualGenome
respectively. Out of all the available classes, we consider only those which have
a synset associated with them in the WordNet hierarchy [36] and also have a
word vector available. This gives us 48 training classes and 17 test classes for
1 Visit http://ankan.umiacs.io/zsd.html.

http://ankan.umiacs.io/zsd.html
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MSCOCO and 478 training classes and 130 test classes for VisualGenome. For
MSCOCO, to avoid taking unseen categories as background boxes, we remove all
images from the training set which contain any object from unseen categories.
However, we can not do this for VG because the large number of test categories
and dense labeling results in most images being eliminated from the training
set. After creating the splits we have 73,774 training and 6,608 test images for
MSCOCO, and 54,913 training and 7,788 test images for VG.

4.1 Implementation Details

Preparing Datasets for Training: We first obtain bounding box proposals
for each image in the training set. We construct the training datasets by assign-
ing each proposal a class label from seen classes or the “background” class based
on its IoU (Intersection over Union) with a ground truth bounding box. Since,
majority of the proposals belong to background, we only include a part of the
background boxes. Any proposal with 0 < IoU < 0.2 with a ground truth bound-
ing box is included as a background box in the training set. Apart from these, we
also include a few randomly selected background boxes with IoU = 0 with any
ground truth bounding boxes. Any proposal with an IoU > 0.5 with a ground-
truth box is assigned to the class of the ground-truth box. Finally, we get 1.4
million training boxes for MSCOCO and 5.8 million training boxes for VG. We
use these boxes for training the two background aware models. As previously
mentioned, we only use boxes belonging to seen classes for training the baseline
ZSD model. In this case, we have 0.67 million training boxes for MSCOCO and
about 2.6 million training boxes for VG. We train our model on these training
sets and test them on the test sets as described above.

Baseline ZSD Model: We build our ZSD model on the RCNN framework
that first extracts region proposals, warps them, and then classifies them. We
use the Edge-Boxes method [62] with its default parameters for generating region
proposals and then warp them to an image of size 224 × 224. We use the (pre-
trained) Inception-ResNet v2 model [51] as our base CNN for computing deep
features. We project image features from a proposal box to the 300 dimensional
semantic text space by adding a fully-connected layer on the last layer of the
CNN. We use the Adam optimizer [22] with a starting learning rate of 10−3

for the projection matrix and 10−5 for the lower layers. The complete network,
including the projection layer, is first pre-trained on the MSCOCO dataset with
the test classes removed for different models and datasets. For each algorithm,
we perform end-to-end training while keeping the word embeddings fixed. The
margin for ranking loss was set to 1 and the reconstruction loss was added to
max-margin loss after multiplying it by a factor of 10−3. We provide algorithm
specific details below.

Static Background Based ZSD: In this case, we include the background
boxes obtained as described above in the training set. The single background
class is assigned a fixed label vector [1, . . . , 0] (this fixed background vector was
chosen so as to have norm one similar to the other class embeddings).
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LAB: We first create a vocabulary (C) which contains all the words for which we
have word-vectors and synsets in the WordNet hierarchy [36]. We then remove
any label from seen and unseen classes from this set. The size of the vocabulary
was about 82 K for VG and about 180 K for MSCOCO. In the first iteration, we
use our baseline ZSD model to obtain labels from the vocabulary set for some of
the background boxes. We add these boxes with the newly assigned labels to the
training set for the next iteration (see Algorithm 1). We fine-tune the model from
the previous iteration using this new training set for about one epoch. During
our experiments we iterate over this process five times. Our starting learning
rates were the same as above and we decreased them by a factor of 10 after
every 2 iterations.

Dense Sampling of the Semantic Space: To increase the label density, we
use additional data from OI to augment the training sets for both VG and
MSCOCO. We remove all our test classes from OI and add the boxes from
remaining classes to the training sets. This led to an addition of 238 classes to
VG and 330 classes to MSCOCO during training. This increases the number of
training bounding boxes for VG to 3.3 million and to 1 million for MSCOCO.

4.2 Evaluation Protocol

During evaluation we use Edge-Boxes for extracting proposals for each image
and select only those proposals that have a proposal score (given by Edge-
Boxes) greater than 0.07. This threshold was set based on trade-offs between
performance and evaluation time. We pass these proposals through the base
CNN and obtain a score for each test class as outlined in Sect. 3.1. We apply
greedy non-maximal suppression [17] on all the scored boxes for each test class
independently and reject boxes that have an IoU greater than 0.4 with a higher
scoring box. We use recall as the main evaluation metric for detection instead of
the commonly used mean average precision (mAP). This is because, for large-
scale crowd-sourced datasets such as VG, it is often difficult to exhaustively
label bounding box annotations for all instances of an object. Recall has also
been used in prior work on detecting visual relationships [33] where it is infeasi-
ble to annotate all possible instances. The traditional mAP metric is sensitive to
missing annotations and will count such detections as false positives. We define
Recall@K as the recall when only the top K detections (based on prediction
score) are selected from an image. A predicted bounding box is marked as true
positive only if it has an IoU overlap greater than a certain threshold t with a
ground truth bounding box and no other higher confidence predicted bounding
box has been assigned to the same ground truth box. Otherwise it is marked as
a false positive. For MSCOCO we also report the mAP since all object instances
in MSCOCO are annotated.

4.3 Quantitative Results

We present extensive results (Recall@100) for different algorithms on MSCOCO
and VG datasets in Table 1 for three different IoU overlap thresholds. We also
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Table 1. |S|, |U|, and |O| refer to the number of seen, unseen and the average number
of active background classes considered during training respectively. BG-aware means
background-aware representations. This table shows Recall@100 performance for the
proposed zero-shot detection approaches (see Sect. 3) on the two datasets at different
IoU overlap thresholds with the ground-truth boxes. The numbers in parentheses are
mean average precision (mAP) values for MSCOCO. The number of test (unseen)
classes for MSCOCO and VisualGenome are 17 and 130 respectively.

show the number of seen, unseen, and background classes for each case. During
our discussion we report Recall@100 at a threshold of IoU ≥ 0.5 unless specified
otherwise.

On the VG dataset the baseline model achieves 5.19% recall and the static
background (SB) model achieves a recall of 4.09%. This marked decline in per-
formance is because all the background boxes are being mapped to a single
vector. In VG some of these background boxes might actually belong to the
seen (train) or unseen (test) categories. This leads to the SB model learning
sub-optimal visual embeddings. However, for MSCOCO we observe that the SB
model increases the recall to 24.39% from the 22.14% achieved by the baseline
model. This is because we remove all images that contain any object from unseen
classes from the training set for MSCOCO. This precludes the possibility of hav-
ing any background boxes belonging to the test classes in the training set. As
a result, the SB model is not corrupted by non-background objects and is thus
more robust than the baseline.

When we densely sample the embedding space and augment the training
classes with additional data, the recall for MSCOCO increases significantly from
22.14% (for baseline) to 27.19%. This shows that dense sampling is beneficial
for predicting unseen classes that lie in sparsely sampled parts of the embed-
ding space. With dense sampling, the number of train classes in MSCOCO are
expanded by a factor of 7.8 to 378. In contrast, VG a priori has a large set
of seen classes (478 versus 48 in MSCOCO), and the classes expand only by a
factor of 1.5 (716) when using DSES. As a result dense sampling is not able to
improve the embedding space obtained by the initial set of categories. In such
scenarios it might be beneficial to use more sophisticated methods for sampling
additional classes that are not represented well in the training set [15,29,40].

The latent assignment based (LAB) method outperforms the baseline, SB,
and DSES on VG. It achieves a recall of 5.40% compared to 5.19%, 4.09%
and 4.75% achieved by baseline, SB, and DSES respectively. The consistent
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improvement across all IoUs compared to SB, that uses a static background,
confirms the benefits of spreading background objects over the embedding space.
However, LAB gives a lower performance compared to the baseline for MSCOCO
(20.52% by LAB versus 22.14% by baseline). This is not surprising since the iter-
ations for LAB initialize with a larger set of seen classes for VG as compared
to MSCOCO, resulting in an embedding that covers a wider spectrum of visual
space. As a result, LAB is able to effectively spread the background boxes over a
larger set of classes for VG leading to better detections. On the other hand, for
MSCOCO a sparsely sampled embedding space restricts the coverage of visual
concepts leading to the background boxes being mapped to a few visual cate-
gories. We also see this empirically in the average number of background classes
(set O) assigned to the background boxes during iterations for LAB, which were
1673 for VG versus 343 for MSCOCO. In the remainder of the paper we focus
on LAB method for VG and SB for MSCOCO due to their appropriateness for
the respective datasets.

We observe that the relative class-wise performance trends are similar to
object detection methods, such as Faster RCNN2 trained on fully supervised
data. For example, classes such as “bus” and “elephant” are amongst the best
performing while “scissors” and “umbrella” rank amongst the worst in perfor-
mance. In addition to these general trends, we also discover some interesting
findings due to the zero-shot nature of the problem. For example, the class
“cat”, which generally performs well with standard object detectors, did not
perform well with SB. This results from having an insufficient number of seman-
tically related categories for this class in the training set which does not allow
the model to effectively capture the appearance of class “cat” during testing.
For such cases we find dense sampling to be useful during training. The class
“cat” is one of the top performing categories with DSES. Based on such cases
we infer that for ZSD the performance is both a function of appearance char-
acteristics of the class as well as its relationship to the seen classes. For VG,
the best performing classes, such as “laptop”, “car”, “building”, “chair”, seem
to have well defined appearance characteristics compared to bad performing
classes, such as “gravel”, “vent”, “garden”, which seem to be more of“stuff”
than “things”. We also observe that the model is unable to capture any true
positive for the class “zebra” and is instead detecting instances of “zebra” as
either “cattle” or “horse”. This is because the model associates a “zebra” with
a “giraffe”, which is close in the semantic space. The model is able to adapt the
detector for the class “giraffe” to the class “zebra” but fails to infer additional
knowledge needed for a successful detector that a zebra differs from a giraffe in
having white stripes, lower height, and has a body structure similar to a horse.
Finally, we also observe that compared to the baseline, LAB achieves similar or
better performance on 104 of 130 classes on VG. While for MSCOCO, SB and
DSES achieve better or similar performance on 12 and 13 classes respectively
out of 17 classes, highlighting the advantages of the proposed models.

2
http://cocodataset.org/#detections-leaderboard.

http://cocodataset.org/#detections-leaderboard


Zero-Shot Object Detection 409

4.4 Generalized Zero-Shot Detection (GZSD)

The generalized zero-shot learning setting is more realistic than the previously
discussed zero-shot setting [53] because both seen and unseen classes are present
during evaluation. This is more challenging than ZSD because it removes the
prior knowledge that the objects at test time belong to unseen classes only. We
use a simple novelty detection step which does not need extra supervision. Given
a test bounding box, bi, we first find the most probable train and test classes
(see (3)) (ŷs

i and ŷu
i respectively) and the corresponding similarity scores (si and

ui). As the novelty detection step, we check if ui is greater than some threshold
nt. We assign the given bounding box to class ŷu

i if ui ≥ nt, otherwise to ŷs
i .

For MSCOCO, DSES gives the best performance in the GZSD setting too. At
nt = 0.2, DSES achieves a Recall@100 of 15.02% for seen classes and 15.32%
for unseen classes (harmonic mean (HM) 15.17% [53]) at IoU ≥ 0.5 compared
to 14.54% and 10.57% (HM 12.24%) for the LAB model and 16.93% and 8.91%
(HM 11.67%) for baseline.

4.5 Ablation Studies

We compare results when considering different number, K, of high-confidence
detections. We define K = All as the scenario where we consider all boxes
returned by the detector with a confidence score greater than the threshold
for evaluation. We compare LAB and the SB models for VG and MSCOCO
respectively, with the corresponding baseline models in Table 2.

Table 2. Ablation studies on background-aware approaches for ZSD. We highlight
results where the performance is higher for background-aware approaches compared to
the corresponding baseline. For MSCOCO, the values in parentheses are mAP values.

The difference in performance between the cases K = All and K = 100 is
small, in general, for the background-aware algorithms unlike the baseline. For
example, on MSCOCO the recall for SB falls by an average (across IoUs) of
1.14% points, compared to a fall of 3.37% for the baseline. This trend continues
further down to K = 80 and K = 50 with a gradual decline in performance as
K decreases. This shows that the high confidence detections produced by our
model are of high quality.

We observe that the background-aware models give better quality detections
compared to baselines. The Recall@K for the corresponding background-aware
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models are better than the baseline at lower K and higher IoU threshold values
for both datasets. This region represents higher quality detections. This shows
that incorporating knowledge from background regions is an important factor
for improving detection quality and performance for ZSD.

4.6 Qualitative Results

Figure 2 shows output detections by the background aware models, i.e. LAB on
VisualGenome (first two rows) and SB on MSCOCO (last row). Blue boxes show
correct detections and red boxes show false positives. These examples confirm
that the proposed models are able to detect unseen classes without observing
any samples during training. Further, the models are able to successfully detect
multiple objects in real-world images with background clutter. For example, in
the image taken in an office (1st row 3rd column), the model is able to detect
object classes such as “writing”, “chair”, “cars”. It is also interesting to note
that our approach understands and detects “stuff” classes such as “vegetation”,
and “floor”. As discussed in Sect. 4.3, we have shown a failure case “zebra”, that
results from having limited information regarding the fine-grained differences
between seen and unseen classes.

Fig. 2. This figure shows some detections made by the background-aware methods.
We have used Latent Assignment Based model for VisualGenome (rows 1–2) and the
Static Background model (row 3) for MSCOCO. Reasonable detections are shown in
blue and two failure cases in red. (Color figure online)
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5 Discussion and Conclusion

We used visual-semantic embeddings for ZSD and addressed the problems
associated with the framework which are specific for ZSD. We proposed two
background-aware approaches; the first one uses a fixed background class while
the second iteratively assigns background boxes to classes in a latent variable
framework. We also proposed to improve the sampling density of the semantic
label space using auxiliary data. We proposed novel splits of two challenging
public datasets, MSCOCO and VisualGenome, and gave extensive quantitative
and qualitative results to validate the methods proposed.

Some of the limitations of the presented work, and areas for future work,
are as follows. It is important to incorporate some lexical ontology information
(“is a” and “is part of” relationships) during training and testing for learning
models on large vocabularies. Most current object detection frameworks ignore
the hierarchical nature of object classes. For example, a “cat” object should
incur a lower loss when predicted as “animal” vs. when predicted as “vehicle”.
Although a few works have tried to address this issue [18,44], we believe further
work in this direction would be beneficial for zero-shot detection. We also feel
that additional work is needed to generalize bounding-box regression and hard-
negative mining for new objects.
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