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Abstract. Semantic keypoints provide concise abstractions for a variety
of visual understanding tasks. Existing methods define semantic key-
points separately for each category with a fixed number of semantic
labels in fixed indices. As a result, this keypoint representation is in-
feasible when objects have a varying number of parts, e.g. chairs with
varying number of legs. We propose a category-agnostic keypoint repre-
sentation, which combines a multi-peak heatmap (StarMap) for all the
keypoints and their corresponding features as 3D locations in the canoni-
cal viewpoint (CanViewFeature) defined for each instance. Our intuition
is that the 3D locations of the keypoints in canonical object views contain
rich semantic and compositional information. Using our flexible represen-
tation, we demonstrate competitive performance in keypoint detection
and localization compared to category-specific state-of-the-art methods.
Moreover, we show that when augmented with an additional depth chan-
nel (DepthMap) to lift the 2D keypoints to 3D, our representation can
achieve state-of-the-art results in viewpoint estimation. Finally, we show
that our category-agnostic keypoint representation can be generalized to
novel categories.

Keywords: 3D vision · Category-agnostic · Keypoint estimation
Viewpoint estimation · Pose estimation

1 Introduction

Semantic keypoints, such as joints on a human body or corners on a chair, pro-
vide concise abstractions of visual objects regarding their compositions, shapes,
and poses. Accurate semantic keypoint detection forms the basis for many visual
understanding tasks, including human pose estimation [4,22,25,51], hand pose
estimation [46,52], viewpoint estimation [24,35], feature matching [15], fine-
grained image classification [47], and 3D reconstruction [9,10,36,39].
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Fig. 1. Illustration of Canonical View Semantic Feature. It is shared across all object
categories. We show 2 categories: chair (in blue) and table (in green). For the left frontal
leg of chair on bottom left, it has (i) the same CanViewFeature with the same chair
keypoint from a different viewpoint (bottom right), (ii) similar feature with another
chair instance’s corresponding keypoint (top right), and (iii) similar feature with left
frontal leg from a table (top left). We Can View this feature in 3D space (middle).
(Color figure online)

Existing methods define a fixed number of semantic keypoints for each object
category in isolation [22,24,35,40]. A standard approach is to allocate a heatmap
channel for each keypoint. Or in other words, keypoints are inferred as separate
heat maps according to their encoding order. This approach, however, is not
suitable when objects have a varying number of parts, e.g. chairs with varying
numbers of legs. The approach is even more limiting when we want to share
and use keypoint labels of multiple different categories. In fact, keypoints of
different categories do share rich compositional similarities. For instance, chairs
and tables may share the same configuration of legs, and motorcycles and bicycles
all contain wheels. Category-specific keypoint encodings fail to capture both the
intra-category part variations and the inter-category part similarities.

In this paper, we propose a novel, category-agnostic keypoint representa-
tion. Our representation consists of two components: (1) a single channel, multi-
peak heatmap, termed StarMap, for all keypoints of all objects; and (2) their
respective feature (Fig. 1), termed CanViewFeature, which is defined as the 3D
locations in a normalized canonical object view (or a world coordinte system).
Specifically, StarMap combines the separate keypoint heat maps in previous
approaches [24,35] into a single heat map, and thus unifies the detection of
different keypoints. CanViewFeature provides semantic discrimination between
keypoints, i.e., through their locations in the normalized canonical object view.
One intuition behind this representation is that the distribution of keypoints’
3D locations in the canonical object view encodes rich semantic and composi-
tional information. For example, the locations of all legs are close to the ground,
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and they are below the seats. Our representation can be obtained via
supervised training on any standard datasets with 3D viewpoint annotations,
such as Pascal3D+ [42] and ObjectNet3D [41].

Our representation provides the flexibility to represent varying numbers of
keypoints across different categories by eliminting the hard-encoding of key-
points. Additionally, we demonstrate that our representation can still achieve
competitive results in keypoint detection and localization compared to the state-
of-the-art category-specific approaches [15,35] (Sect. 4.2) by using simple nearest
neighbor association on the category-level keypoint templates.

One direct application of our representation is viewpoint estimation [19,28,
35], which can be achieved by solving a perspective-n-points (PnP) [12] prob-
lem to align the CanViewFeature with the StarMap. Further, we observed con-
siderable performance gains in this task by augmenting the StarMap with an
additional depth channel (DepthMap) to lift the 2D image coordinates into 3D.
We report state-of-the-art performance compared to previous viewpoint estima-
tion methods [19,24,28,35] with ablation studies on each component. Finally,
we show our method works well when applied to unseen categories. Full code is
publicly available at https://github.com/xingyizhou/StarMap.

2 Related Works

Keypoint Estimation. Keypoint estimation, especially human joint estima-
tion [4,22,31,33,49] and rigid object keypoint estimation [40,50], is a widely stud-
ied problem in computer vision. In the simplest case, a 2D/3D keypoint can be rep-
resented by a 2/3-dimension vector and learned by supervised regression. Toshev
et al. [33] first trained a deep neural network for 2D human pose regression and
Li et al. [13] extended this approach to 3D. Starting from Tompson et al. [32],
the heatmap representation has dominated the 2D keypoint estimation commu-
nity and has achieved great success in both 2D human pose estimation [22,38,44]
and single category man-made object keypoint detection [39,40]. Recently, the
heatmap representation has been generalized in various different directions. Cao et
al. [4] and Newell et al. [21] extended the single peak heatmap (for single keypoint
detection) to a multi-peak heatmap where each peak is one instance of a specific
type of keypoint, enabling bottom-up, multi-person pose estimation. Pavlakos et
al. [25] lifted the 2D pixel heatmap to a 3D voxel heatmap, resulting in an end-to-
end 3D human pose estimation system. Tulsiani et al. [35] and Pavlakos et al. [24]
stacked keypoint heatmaps from different object categories together for multi-
category object keypoint estimation. Despite good performance gained by these
approaches, they share a common limitation: each heatmap is only trained for a
specific keypoint type from a specific object. Learning each keypoint individually
not only ignores the intra-category variations or inter-category similarities, but
also makes the representation inherently impossible to be generalized to unknown
keypoint configurations for novel categories.

Viewpoint Estimation. Viewpoint estimation, i.e., estimating an object’s
orientation in a given frame, is a practical problem in computer vision and

https://github.com/xingyizhou/StarMap
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robotics [11,24]. It has been well explored by traditional techniques that solve
for transformations between corresponding points in the world and image views;
this is known as the Perspective-n-Point Problem [12,17]. Lately, viewpoint esti-
mation accuracy and utility have been greatly improved in the deep learning era.
Tulsiani et al. [35] introduced viewpoint estimation as a bin classification prob-
lem for each viewing angle (azimuth, elevation and in-plane rotation). Mousavian
et al. [19] augmented the bin classification scheme by adding regression offsets
within each bin so that predictions could be more fine-grained. Szeto et al. [29]
used annotated keypoints as additional input to further improve bin classifica-
tion. To combat scarcity of training data and generic features, Su et al. [28] pro-
posed to synthesize images with known 3D viewpoint annotations and proposed
a geometry-aware loss to further boost the estimation performance. Recently,
Pavlakos et al. [24] proposed to use detected semantic keypoint followed by a
PnP algorithm [12] to solve for the resulting viewpoint matrix and achieved
state-of-the-art results. However, this method relies on category-specific key-
point annotation and is not generalizable. On the contrary, our approach is both
accurate and category-agnostic, by utilizing category-agnostic keypoints.

General Keypoint Detection. There are several related concepts similar to
our general semantic keypoint. The most well-known one is the SIFT descrip-
tor [16], which aims to detect a large number of interest points based on local
and low level image statistics. Also, the heatmap representation has been used in
saliency detection [8] and visual attention [43], which detects a region of image
which is “important” in the context. Similarly, Altwaijry et al. [1] used the
heatmap representation to detect a set of points that is useful for feature match-
ing. The key difference between our keypoint and the above concepts is that their
keypoints do not contain semantic meanings and are not annotated by humans,
making them less useful in high level vision tasks such as pose estimation.

To our best knowledge, we are the first to propose a category-agnostic
keypoint representation and show that it is directly applicable to viewpoint
estimation.

3 Approach

In this section, we describe our approach for learning a category-agnostic key-
point representation from a single RGB image. We begin with describing the
representation in Sect. 3.1. We then introduce how to learn this representation
in Sect. 3.2. Finally, we show a direct application of our representation in view-
point estimation in Sect. 3.3.

3.1 Category-Agnostic Keypoint Representation

A desired general purpose keypoint representation should be both adaptive (i.e.,
should be able to represent different content of different visual objects) and
semantically meaningful (i.e., should convey certain semantic information for
downstream applications).
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Fig. 2. Illustration of our framework. For an input image, our network predicts three
component: StarMap, Canonical View Feature, and DepthMap. Varying number of
keypoints are extracted at the peak location of StarMap and their Depth and Can-
ViewFeature can be accessed at the corresponding channels.

So far the most widely used keypoint representation is the category specific
stacked keypoint vector [33], which represents object keypoints by a N × D
vector (N for number of keypoints and D for dimensions), or multi-channel
heatmaps [22,32], which associate each channel with one specific keypoint on a
specific object category, e.g., 16-channel heatmaps for human [22,32], 10-channel
heatmaps for chair [40]. Although these representations are certainly semanti-
cally meaningful (e.g., the first channel of human heatmaps is the left ankle), it
does not satisfy the adaptive property, e.g., chairs with legged bases and swivel
bases cannot be learned together due to varying number of keypoints. As a
result, they can not be considered as the same category based on their different
keypoint configurations. To generalize heatmaps to multiple categories, a pop-
ular approach is to stack all heatmaps from all categories [24,35] (resulting in∑

Nc output channels, where Nc is the number of keypoints of category c). In
such a representation, keypoints from different objects are completely separated,
e.g. seat corners from swivel chairs are irrelevant to seat corners from chairs. To
merge keypoints from different objects, one has to establish consistent corre-
spondences [48] between different keypoints across multiple categories, which is
difficult or sometimes impossible.

In this paper, we introduce a hybrid representation that meets all desired
properties. As illustrated in Fig. 2, our hybrid representation consists of three
components, StarMap, CanViewFeature and DepthMap. In particular, StarMap
specifies the image coordinates of keypoints where the number of keypoints can
vary across different categories; CanViewFeature specifies the 3D locations of
keypoints in a canonical coordinate system, which provide an identity for each
keypoint; DepthMap lifts 2D keypoints into 3D. As we will see later, it enhances
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the performance of using this representation for the application of viewpoint
estimation. Now we describe each component in more details.

StarMap. As shown in Fig. 2 (top left), StarMap is a single channel heatmap
whose local maximums encode the image locations of the underlying points.
It is motivated by the success of using one heatmap to encode occurrences of
one keypoint on multiple persons [4,21]. In our setting, we generalize the idea
to encode all keypoints of each object. This is in contrast to [4,21], which use
multi-peak heatmaps to detect multiple instances of the same specific keypoint.
In our implementation, given a heatmap, we extract the corresponding keypoints
by detecting all local maximums, with respect to the 8-ring neighborhood whose
values are above 0.05.

When comparing multi-channel heatmaps and a single channel heatmap,
one intuition is that multi-channel heatmaps, which are category-specific and
keypoint-specific representations, lead to better accuracy. However, as we will
see later, using a single channel allows us to train the representation from bigger
training data (multiple categories), leading to an overall better keypoint predic-
tor. We also argue that a single-channel representation (1 channel vs 100+ chan-
nels on Pascal3D+ [42]) is favored when computational and memory resources
are limited. On the other hand, StarMap alone does not provide the semantic
meaning of each detected point. This drawback motivates the second component
of our hybrid keypoint representation.

CanViewFeature. CanViewFeature collects the 3D locations of the keypoints
in the canonical view. In our implementation, we allocate three channels for
CanViewFeature. Specifically, after detecting a keypoint (peak) in StarMap, the
values of these three channels at the corresponding pixel specify the 3D location
in the canonical coordinate system. The design of CanViewFeature is motivated
from recent works on embedding visual objects into latent spaces [30,37]. Such
latent spaces provide a shared platform for comparing and linking different visual
objects. Our representation shares the same abstract idea, yet we make the
embedding explicit in 3D (where we can view the learned representation) and
learnable in a supervised manner. This enables additional applications such as
viewpoint estimation, as we will discuss later. When considering the space of
keypoint configurations in the canonical space, it is easy to find that the feature
is invariant to object pose and image appearance (scale, translation, rotation,
lighting), little-variance to object shape (e.g., left frontal wheels from different
cars are always in the left frontal area), and little variance to object category
(e.g., frontal wheels from different categories are always in bottom frontal area).

Although CanViewFeature only provides 3D locations, we can leverage this
to classify the keypoints, by using nearest neighbor association on the category-
level keypoint templates.

DepthMap. CanViewFeature and StarMap are related to each other via a sim-
ilarity transform (rotation, translation, scaling) and a perspective projection. It
is certainly possible to solve a non-linear optimization problem to recover the
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underlying similarity transform. However, since the network predictions are not
perfect, we found that this approach leads to sub-optimal results.

To stabilize this process and make the relation even simpler, we augment
StarMap with one additional channel called DepthMap. The encoding is the
same as CanViewFeature. More precisely, we first extract keypoints at peak
locations and then access the corresponding pixels to obtain the depth values.
When the camera intrinsic parameters are present, we use them to convert image
coordinates and depth value into the true 3D location of the corresponding pixel.
Otherwise, we assume weak-perspective projection, and directly use the image
coordinates and depth value as an approximation of the underlying 3D location.

3.2 Learning Hybrid Keypoint Representation

Data Preparation. Training our hybrid representation requires annotations of
2D keypoints, their corresponding depths, and their corresponding 3D locations
in the canonical view. We remark that such training data is feasible to obtain
and publicly available [41,42]. 2D keypoint annotations per image are straight-
forward to retrieve [23] and thus widely available [2,3,14]. Also, annotating 3D
keypoints of a CAD model [45] is not a hard task, given an interactive 3D UI such
as MeshLab [5]. The canonical view of a CAD model is defined as the front view
of an object with the largest 3D bounding box dimension scaled to [−0.5, 0.5]
(meaning it is zero centered). Note that just a few 3D CAD models need to
be annotated for each category (about 10 per category), because keypoint con-
figuration variation is orders of magnitude smaller than the image appearance
variation. Given a collection of images and a small set of CAD models of the
corresponding categories, a human annotator is asked to select the closest CAD
model to the image’s content, as done in Pascal3D+ and ObjectNet3D [41,42].
A coarse viewpoint is also annotated by manually dragging the selected CAD
model to align the image appearance. In summary, all the annotations required to
train our hybrid representation are relatively easy to acquire. We refer to [41,42]
for more details on how to annotate such data.

We now describe how we calculate the depth annotation. Ideally, the trans-
formation between the canonical view and image pixel coordinate is a full-
perspective camera model:

s[u v 1]T = A[R|t][x y z 1]T , s.t., RT R = I (1)

where A describes intrinsic camera parameters, (u, v) is the 2D keypoint location
in the image coordinate system, (x, y, z) is the 3D location in canonical coor-
dinate system. R, t, and s are the rotation matrix (i.e. viewpoint), translation
vector, and scale factor, respectively. However, the camera intrinsic parameters
are most likely unavailable in testing scenarios. In those cases, a weak-perspective
camera model is often applied to approximate the 3D-to-2D transformation for
keypoint estimation [24,49], by changing Eq. 1 to

s[u − cx v − cy d]T = [R|t][x y z 1]T , s.t., RT R = I (2)
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where (u, v) specifies the location of the keypoint, d is its associated depth, and
(cx, cy) denotes the center of the image.

Letting [x, y, z] = [R|t][x, y, z, 1]T be the transformed 3D keypoints in the
metric space, we have [u, v, d] = [x/s + cx, y/s + cy, z/s] (with unknown s),
which transforms one point from the 3D metric space to the 2D pixel space
with an augmented depth value d. In training, let Nc be the number of key-
points in category c. Both the viewpoint transformation matrix [R|t] and the
canonical points {xi, yi, zi}Nc

i=1 are known, and we can calculate the rotated key-
points {xi, yi, zi}Nc

i=1. Moreover, the corresponding 2D keypoints {(ui, vi)}Nc
i=1

are known, so we can simply solve the scale factor s by aligning the (u, v)
and (x, y) plane bounding box size: s = max(maxi(xi)−mini(xi),maxi(yi)−mini(yi))

max(maxi(ui)−mini(ui),maxi(vi)−mini(vi))
,

which gives rise to the underlying depth value.

Network Training. As described above, we have full supervision for all of our
3 output components. Training is done as a supervised heatmap regression, i.e.,
we minimize the L2 distance between the output 5-channel heatmap and their
ground truth. Note that for CanViewFeature and DepthMap, we only care about
the output at peak locations. Following [20,21], we ignore the non-peak output
locations rather than forcing them to be zero. This can be simply implemented
by multiplying a mask matrix to both the network output and ground truth and
then using a standard L2 loss.

Implementation Details. Our implementation is done in the PyTorch frame-
work. We use a 2-stacks HourglassNetwork [22], which is the state-of-the-art
architecture for 2D human pose estimation [2]. We trained our network using
curriculum learning, i.e., we first train the network with only StarMap output for
90 epochs and then fine-tune the network with the CanViewFeature followed by
DepthMap supervision for additional 90 epochs each. The whole training stages
took about 2 days on one GTX 1080 TI GPU. All the hyper-parameters are set
to the default values in the original Hourglass implementation [22].

3.3 Application in Viewpoint Estimation

The output of our approach (StarMap, DepthMap and CanViewFeature) can
directly be used to estimate the viewpoint of the input image with respect to
the canonical view (i.e., camera pose estimation). Specifically, Let pi = (ui −
cx, vi − cy, di) be the un-normalized 3D coordinate of keypoint pi, where (cx,
cy) is the image center. Let qi be its counterpart in the canonical view. With
wi ∈ [0, 1] we denote this keypoint’s value on the heatmap, which indicates
a confidence score. We solve for a similarity transformation between the image
coordinate system and world coordinate system that is parameterized by a scalar
s ∈ R

+, a rotation R ∈ SO(3), and a translation t. This is done by minimizing
the following objective function:

s�, R�, t� = argmin
s,R,t

NI∑

i=1

wi‖sRpi + t − qi‖2. (3)
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Note that (3) admits an explicit solution as described in [7], which we include
here for completeness. The optimal rotation is given by

R� = Udiag(1, 1, sign(M))V T , M :=
NI∑

i=1

wi(pi − p)(qi − q) (4)

where UΣV T = M is the SVD and p, q are the mean of pi, qi.

4 Experiments

In this section, we perform experimental evaluations on the proposed hybrid
keypoint representation. We begin with describing the experimental setup in
Sect. 4.1. We then evaluate the accuracy of our keypoint detector and the appli-
cation in viewpoint estimation in Sects. 4.2 and 4.3, respectively. We then present
advanced analysis of our hybrid keypoint representation in Sect. 4.4. Finally, we
show that our category-agnostic keypoint representation can be extended to
novel categories in Sect. 4.5. Table 5 collect some qualitative results, and more
results are deferred to the supplementary material.

4.1 Experimental Setup

We use Pascal3D+ [42] as our major evaluation benchmark. This dataset con-
tains 12 man-made object categories with 2 K to 4 K images per category. We
make use of the following annotations in our training: object bounding box,
category-specific 2D keypoints (annotations from [3]), approximate 3D CAD
model of the object, viewpoint of the image, and category-specific 3D keypoint
annotations (corresponds with the 2D keypoint configuration) in the canonical
coordinate system defined on each CAD model. Following [28,35], evaluation is
done on the subset of the validation set that is non-truncated and non-occluded,
which contains 2113 samples in total. As the evaluation protocols and baseline
approaches vary across different tasks, we will describe them for each specific set
of evaluations.

4.2 Keypoint Localization and Classification

We first evaluate our method on the keypoint estimation task, which specifies the
locations of the predicted keypoints. Since keypoint locations alone do not carry
the identities of each keypoint and cannot be used as identity-specific evaluation,
we perform the evaluation by using two protocols – namely, with identification
inferred from our learned CanViewFeature or with oracle assigned identification.
Specifically, for the first protocol, for each category, we calculate the mean of the
locations of each keypoint in the world coordinate system among all CAD mod-
els and use this as the category-level template. We then associate each keypoint
with the ID of its nearest mean annotated keypoint in the template. For the
second protocol, we assume a perfect ID assignment (or keypoint classification)
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by assigning the output keypoint ID as the closest annotation (in image coor-
dinates). The second protocol can also be thought of as randomly perturbing
the annotated keypoint order and picking the best one. Following the conven-
tions [15,35], we use PCK(α = 0.1), or Percentage of Correct Keypoints, as the
evaluation metric. PCK considers a keypoint to be correct if its L2 2D pixel
distance from the ground truth keypoint location is less than 0.1 × max(h,w),
where h and w are the object’s bounding box dimensions.

Table 1. 2D Keypoint Localization Results. The results are shown in PCK(α = 0.1).
Top: our result with nearest canonical feature as keypoint identification. Bottom:
results with oracle keypoint identification.

PCK

(α = 0.1)

Aero Bike Boat Bottle Bus Car Chair Table Mbike Sofa Train Tv Mean

Long [15] 53.7 60.9 33.8 72.9 70.4 55.7 18.5 22.9 52.9 38.3 53.3 49.2 48.5

Tulsiani [35] 66.0 77.8 52.1 83.8 88.7 81.3 65.0 47.3 68.3 58.8 72.0 65.1 68.8

Pavlakos [24] 84.1 86.9 62.3 87.4 96.0 93.4 76.0 N/A N/A 78.0 58.4 84.8 82.5

Ours 75.2 83.2 54.8 87.0 94.4 90.0 75.4 58.0 68.8 79.8 54.0 85.8 78.6

Pavlakos [24]

Oracle Id

92.3 93.0 79.6 89.3 97.8 96.7 83.9 N/A N/A 85.1 73.3 88.5 89.0

Ours Oracle Id 93.1 92.6 84.1 92.4 98.4 96.0 91.7 90.0 90.1 89.7 83.0 95.2 92.2

The keypoint localization and classification results are shown in Table 1. We
show 3 state-of-the-art methods [15,24,35] for category-specific keypoint local-
ization for comparison. The evaluation of [24] is done by ourselves based on their
published model. For the first protocol, our result of 78.6% mean PCK(α = 0.1)
is marginally better than the state-of-the-arts in 2014 [15,35], probably because
we used a more up-to-date HourglassNetwork [22]. Our performance is slightly
worse than [24], who uses the same Hourglass architecture but with stacked
category-specific channels output (

∑
c Nc output channels in total), which is

expected. This is due to the error caused by incorrect keypoint ID association.
We emphasize that all counterpart methods are category-specific, thus requiring
ground truth object category as input while ours is general.

The second protocol (Bottom of Table 1) factors out the error caused by
incorrect keypoint ID association. For a fair comparison, we also allow [24] to
change its output order with the oracle nearest location (to eliminate the com-
mon left-right flip error [26]). We can see our score is 92.2%, which is 3.2% higher
than that of Pavlakos et al [24]. This is quite encouraging since our approach is
designed to be a general purpose keypoint predictor. This result shows that it
is advantageous to train a unified network to predict keypoint locations, as this
allows to train a single network with more relevant training data.

4.3 Viewpoint Estimation

Some qualitative results are shown in Table 5, and more results can be found in
the supplementary material.
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As a direct application, we evaluate our hybrid representation on the task
of viewpoint estimation. The objective of viewpoint estimation is to predict
the azimuth (a), elevation (e), and in-plane rotation (θ) of the image object
with respect to the world coordinate system. In our experiment, we follow the
conventions [28,35] by measuring the angle between the predicted rotation vector

and the ground truth rotation vector: Δ(Rpred, Rgt) = ||logm(RT
predRgt)||F√
2

, where
R = RZ(θ)RX(e−π/2)RZ(−a) transforms the viewpoint representation (a, e, θ)
into a rotation matrix. Here RX , RY and RZ are rotations along X, Y and Z
axis, respectively.

We consider two metrics that are commonly applied in the literature [19,24,
28,35], namely, Median Error, which is the median of the rotation angle error,
and Accuracy at θ, which is the percentage of keypoints whose error is less than
θ. We use θ = π

6 , which is a default setting in the literature.
A popular approach for solving viewpoint estimation is to cast the problem

as bin classification by discretiziing the space of (a, e, θ) [18,19,28,35]. Since
network architecture governs the performance of a neural network, we re-train
the baseline models [35] with more modern network architectures [6]. We imple-
mented a ResNet18 (Res18-Specific) with the same hyper-parameters as [35]
(we also tried VGG [27] or ResNet50 [6] but observed very similar or worse
performance).

We also want to remark that although viewpoint estimation itself is not a
category-specific task, all the studied preview works have used a category-specific
formulation, e.g., use separate last-layer bin classifiers for each category, resulting
in 3 × Ncategories × Nbins output units [34]. We also provide a general 3 × Nbins

viewpoint estimator as a baseline (Res18-General).
Table 2 compares our approach with previous techniques. Our method out-

performs all previous methods and baselines in both testing metrics. Specifically
with respect to MedErr, our approach achieved 10.4, which is lower than the
prior state-of-the-art result reported in Mousavian et al [19]. In terms of Accπ

6
,

our method outperforms the state-of-the-art result of Su et al [28]. This is a
quite positive result, since [28] uses additional rendered images for training.

We further evaluate Acc π
18

, which assesses the percentage of very accurate
predictions. In this case, we simply compare against our re-implemented Res18,
which achieved similar results with other state-of-the-art techniques. As shown
in Table 2, our approach is significantly better than Res18-General/Specific with
respect to Acc π

18
. This shows the advantage of performing keypoint alignment

for pose estimation.
Note that it is also possible to directly align CanViewFeature with StarMap

for viewpoint estimation by a weak-perspective PnP [24] algorithm (PnP in
Table 2). In this case, utilizing DepthMap outperforms the direct alignment by
8.1% in terms of Acc π

6
and 1.75% in terms of Acc π

18
, respecctively. On one hand,

this shows the usefulness of DepthMap, particularly when the prediction is noisy.
On the other hand, the performance of both approaches becomes similar when
the predictions are very accurate (Acc π

18
). This is expected since both approaches

should output identical results when the predictions are perfect.
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Table 2. Viewpoint Estimation on Pascal3D+ [42]. We compare our results with the
state-of-the-arts and baselines. The results are shown in Median Error (lower better)
and Accuracy (higher better).

Aero Bike Boat Bottle Bus Car Chair Table Mbike Sofa Train Tv Mean

MedErr

(Tulsiani [35])

13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6

MedErr

(Pavlakos [24])

8.0 13.4 40.7 11.7 2.0 5.5 10.4 N/A N/A 9.6 8.3 32.9 N/A

MedErr

(Mousavian [19])

13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1

MedErr (Su [28]) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7

MedErr

(Mahendran [18])

14.2 18.7 27.2 9.5 3.0 6.9 15.8 14.4 16.4 10.7 6.6 14.3 13.1

MedErr

(Res18-General)

14.3 16.7 26.9 13.2 5.8 8.8 17.7 26.7 15.7 14.4 8.8 16.2 13.3

MedErr

(Res18-Specific)

14.7 15.8 25.6 13.1 5.7 8.6 16.3 18.1 15.1 13.8 8.2 14.1 12.8

MedErr (PnP) 9.5 14.0 43.6 9.9 3.3 6.6 11.4 64.9 14.3 11.5 7.7 21.8 11.2

MedErr (Ours) 10.1 14.5 30.0 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 10.4

Acc π
6

(Tulsiani [35])

0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075

Acc π
6

(Pavlakos [24])

0.81 0.78 0.44 0.79 0.96 0.90 0.80 N/A N/A 0.74 0.79 0.66 N/A

Acc π
6

(Mousavian [19])

0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103

Acc π
6

(Su [28]) 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.82

Acc π
6

(Res18-General)

0.79 0.75 0.53 0.90 0.96 0.93 0.62 0.57 0.85 0.82 0.81 0.77 0.7875

Acc π
6

(Res18-Specific)

0.79 0.77 0.54 0.93 0.95 0.93 0.75 0.57 0.84 0.79 0.81 0.84 0.8121

Acc π
6

(PnP) 0.80 0.70 0.37 0.88 0.94 0.86 0.76 0.48 0.80 0.92 0.74 0.57 0.7416

Acc π
6

(Ours) 0.82 0.86 0.50 0.92 0.97 0.92 0.79 0.62 0.88 0.92 0.77 0.83 0.8225

Acc π
18

(Res18-General)

0.28 0.18 0.17 0.27 0.82 0.61 0.23 0.33 0.18 0.15 0.61 0.27 0.3502

Acc π
18

(Res18-Specific)

0.29 0.21 0.21 0.30 0.86 0.62 0.28 0.33 0.21 0.18 0.59 0.30 0.3777

Acc π
18

(PnP) 0.52 0.36 0.13 0.50 0.83 0.65 0.48 0.29 0.31 0.44 0.61 0.27 0.4643

Acc π
18

(Ours) 0.49 0.34 0.14 0.56 0.89 0.68 0.45 0.29 0.28 0.46 0.58 0.37 0.4818

4.4 Analysis of Our Hybrid Keypoint Representation

Analysis of CanViewFeature. We use the ground-truth keypoint location,
and compare their learned 3D locations for keypoint classification with popular
point features used in the literature, namely, SIFT [16] and Conv5 of VGG [27].
For CanViewFeature, we still follow the same procedure of using nearest neighbor
for keypoint classification. For SIFT and Conv5, a linear SVM is used to classify
the keypoints [15].

Table 3 compares CanViewFeature with the two baseline approaches
from [15]. We can see that CanViewFeature is significantly better than baseline
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Table 3. Results for keypoint classification on Pascal3D+ Dataset [42]. We show key-
point classification accuracy of each category.

Aero Bike Boat Bottle Bus Car Chair Table Mbike Sofa Train Tv Mean

SIFT [15] 35 54 41 76 68 47 39 69 49 52 74 78 57

Conv [15] 44 53 42 78 70 45 41 68 53 52 73 76 58

Ours 77 79 64 96 95 92 84 66 71 90 65 94 81

Table 4. Error analysis on Pascal3D+. We show results in Median Error and Accuracy.

Aero Bike Boat Bottle Bus Car Chair Table Mbike Sofa Train Tv Mean

MedErr (Ours) 10.1 14.5 30.0 9.1 3.1 6.5 11.0 23.7 14.1 11.1 7.4 13.0 10.43

MedErr (GT Star) 9.2 13.3 31.3 8.2 3.1 5.7 10.7 78.2 13.8 10.1 7.0 13.4 9.92

MedErr

(GT Star+SCSF)

7.7 12.9 22.0 8.0 3.0 5.9 9.3 14.6 10.8 8.3 6.3 12.9 9.1

MedErr

(GT Star+Depth)

6.2 6.2 14.1 2.4 2.1 3.9 6.5 72.9 7.0 5.4 6.8 1.9 4.7

Acc π
6

(Ours) 0.82 0.86 0.50 0.92 0.97 0.92 0.79 0.62 0.88 0.92 0.77 0.83 0.8225

Acc π
6

(GT Star) 0.85 0.84 0.50 0.92 0.96 0.93 0.80 0.38 0.85 0.90 0.77 0.82 0.8211

Acc π
6

(GT Star+SCSF)

0.86 0.84 0.63 0.95 0.99 0.95 0.88 0.62 0.84 0.92 0.88 0.85 0.8651

Acc π
6

(GT Star+Depth)

0.86 0.93 0.63 0.95 0.97 0.91 0.82 0.38 0.87 0.92 0.84 0.93 0.8637

approaches. This shows the advantage of using a shared keypoint representation
for training a general purpose keypoint detector.

Ablation Study on Representation Components. To better understand
the importance of each component of our representation and whether they are
well-trained, we provide error analysis by replacing each output component with
its ground truth. To this end, we use viewpoint estimation as the task for evalu-
ation, and Table 4 summarizes the results. Specifically, replacing StarMap with
its ground truth does not provides much performance gains in both metrics,
indicating that StarMap is fairly accurate. This is justified by the high keypoint
accuracy reported in Sect. 4.2. Moreover, replacing either CanViewFeature or
DepthMap with the underlying ground truth provides considerable performance
gains in terms of Acc π

6
. In particular, using perfect DepthMap leads noticeable

decrease in median error. This is expected since the general task of estimating
pixel depth remains quite challenging.

4.5 Keypoint and Viewpoint Induction for Novel Categories

Our keypoint representation is category-agnostic and is free to be extended to
novel object categories [34].

We note that Pascal3D+ [42] only contains 12 categories and it is hard to
learn common inter-category information with such limited category samples.
To further verify the generalization ability of our method, we used a newly
published large scale 3D dataset, ObjectNet3D [41]. ObjectNet3D [41] has the
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Table 5. Qualitative results of our full pipeline on Pascal3D+ [42] Dataset. 1st column:
the input image; 2nd column: our predicted StarMap (shown on image); 3rd column:
extracted keypoints after taking local maximum on StarMap, we show ground truth in
large dots and prediction in small circled dots (The RGB color of the point encodes xyz
coordinate for correspondence; 4th column: our predicted CanViewFeature (triangle)
and their ground truth (circle); 5th column: our prediced 3D uvd coordinates, obtained
by uv from StarMap and d from DepthMap; 6th column: rotated 3D point with our
predicted viewpoint (cross) and ground truth viewpoint (triangle).
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Table 6. Viewpoint estimation for novel categories results on ObjectNet3D+ [41]. We
shown our results in Acc π

6
.

Bed Bookshelf Calculator Cellphone Computer Filing

cabinet

Guitar Iron Knife

Acc π
6

(Sup) 0.73 0.78 0.91 0.57 0.82 0.84 0.73 0.03 0.18

Acc π
6

(Novel) 0.37 0.69 0.19 0.52 0.73 0.78 0.61 0.02 0.09

Microwave Pen Pot Rifle Slipper Stove Toilet Tub Wheelchair

Acc π
6

(Sup) 0.94 0.13 0.56 0.04 0.12 0.87 0.71 0.51 0.60

Acc π
6

(Novel) 0.88 0.12 0.51 0.00 0.11 0.82 0.41 0.49 0.14

same annotations as Pascal3D+ [42] but with 100 categories. We evenly hold
out 20 categories (every 5 categories sorted in the alphabetical order) from the
training data and only used them for testing. Because Shoe and Door do not
have keypoint annotation, we remove them from the testing set, resulting in 18
novel categories. Please refer to the supplementary for details on dataset details.

We compare the performance gap between including and withholding the
18 categories during training. The results are shown in Table 6. As expected,
the viewpoint estimation accuracy of most categories drops. For some categories
(Iron, Knife, Pen, Rifle, Slipper), both experiments fail (with accuracy lower
than 20%). One explanation is that these 5 failed categories are small and nar-
row objects, whose annotations may not be accurate. For example, the keypoint
annotations on ObjectNet3D [41] for small object are not always well-defined
(see qualitative results in supplementary), e.g., Key and Spoon have dense key-
points annotation on their silhouette. For half of the 18 novel objects (bookshelf,
cellphone, computer, filing cabinet, guitar, microwave, pot, stove, tub), the per-
formance gap between including and withholding training data is less than 10%.
This indicates that our representation is fairly general and can extend viewpoint
estimation to novel categories.

Acknowledgement. We thank Shubham Tulsiani and Angela Lin for the helpful
discussions.
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