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Abstract. Recently, Siamese networks have drawn great attention in
visual tracking community because of their balanced accuracy and speed.
However, features used in most Siamese tracking approaches can only dis-
criminate foreground from the non-semantic backgrounds. The seman-
tic backgrounds are always considered as distractors, which hinders the
robustness of Siamese trackers. In this paper, we focus on learning
distractor-aware Siamese networks for accurate and long-term tracking.
To this end, features used in traditional Siamese trackers are analyzed
at first. We observe that the imbalanced distribution of training data
makes the learned features less discriminative. During the off-line train-
ing phase, an effective sampling strategy is introduced to control this
distribution and make the model focus on the semantic distractors. Dur-
ing inference, a novel distractor-aware module is designed to perform
incremental learning, which can effectively transfer the general embed-
ding to the current video domain. In addition, we extend the proposed
approach for long-term tracking by introducing a simple yet effective
local-to-global search region strategy. Extensive experiments on bench-
marks show that our approach significantly outperforms the state-of-the-
arts, yielding 9.6% relative gain in VOT2016 dataset and 35.9% relative
gain in UAV20L dataset. The proposed tracker can perform at 160 FPS
on short-term benchmarks and 110 FPS on long-term benchmarks.
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1 Introduction

Visual object tracking, which locates a specified target in a changing video
sequence automatically, is a fundamental problem in many computer vision top-
ics such as visual analysis, automatic driving and pose estimation. A core prob-
lem of tracking is how to detect and locate the object accurately and efficiently
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in challenging scenarios with occlusions, out-of-view, deformation, background
cluttering and other variations [38].

Recently, Siamese networks, which follow a tracking by similarity compari-
son strategy, have drawn great attention in visual tracking community because
of favorable performance [2,7,8,16,31,33,36,37]. SINT [31], GOTURN [8],
SiamFC [2] and RASNet [36] learn a priori deep Siamese similarity function
and use it in a run-time fixed way. CFNet [33] and DSiam [7] can online update
the tracking model via a running average template and a fast transformation
learning module, respectively. SiamRPN [16] introduces a region proposal net-
work after the Siamese network, thus formulating the tracking as a one-shot local
detection task.

Although these tracking approaches obtain balanced accuracy and speed,
there are 3 problems that should be addressed: firstly, features used in most
Siamese tracking approaches can only discriminate foreground from the non-
semantic background. The semantic backgrounds are always considered as
distractors, and the performance can not be guaranteed when the back-
grounds are cluttered. Secondly, most Siamese trackers can not update the
model [2,8,16,31,36]. Although their simplicity and fixed-model nature lead to
high speed, these methods lose the ability to update the appearance model online
which is often critical to account for drastic appearance changes in tracking sce-
narios. Thirdly, recent Siamese trackers employ a local search strategy, which
can not handle the full occlusion and out-of-view challenges.

In this paper, we explore to learn Distractor-aware Siamese Region Proposal
Networks (DaSiamRPN) for accurate and long-term tracking. SiamFC uses a
weighted loss function to eliminate class imbalance of the positive and negative
examples. However, it is inefficient as the training procedure is still dominated by
easily classified background examples. In this paper, we identify that the imbal-
ance of the non-semantic background and semantic distractor in the training
data is the main obstacle for the representation learning. As shown in Fig. 1, the
response maps on the SiamFC can not distinguish the people, even the athlete
in the white dress can get a high similarity with the target person. High quality
training data is crucial for the success of end-to-end learning tracker. We con-
clude that the quality of the representation network heavily depends on the dis-
tribution of training data. In addition to introducing positive pairs from existing
large-scale detection datasets, we explicitly generate diverse semantic negative
pairs in the training process. To further encourage discrimination, an effective
data augmentation strategy customizing for visual tracking are developed.

After the offline training, the representation networks can generalize well to
most categories of objects, which makes it possible to track general targets.
During inference, classic Siamese trackers only use nearest neighbour search
to match the positive templates, which might perform poorly when the target
undergoes significant appearance changes and background clutters. Particularly,
the presence of similar looking objects (distractors) in the context makes the
tracking task more arduous. To address this problem, the surrounding contextual
and temporal information can provide additional cues about the targets and help
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to maximize the discrimination abilities. In this paper, a novel distractor-aware
module is designed, which can effectively transfer the general embedding to the
current video domain and incrementally catch the target appearance variations
during inference.

Besides, most recent trackers are tailored to short-term scenario, where the
target object is always present. These works have focused exclusively on short
sequences of a few tens of seconds, which is poorly representative of practitioners’
needs. Except the challenging situations in short-term tracking, severe out-of-
view and full occlusion introduce extra challenges in long-term tracking. Since
conventional Siamese trackers lack discriminative features and adopt local search
region, they are unable to handle these challenges. Benefiting from the learned
distractor-aware features in DaSiamRPN, we extend the proposed approach for
long-term tracking by introducing a simple yet effective local-to-global search
region strategy. This significantly improves the performance of our tracker in
out-of-view and full occlusion challenges.

We validate the effectiveness of proposed DaSiamRPN framework on
extensive short-term and long-term tracking benchmarks: VOT2016 [14],
VOT2017 [12], OTB2015 [38], UAV20L and UAV123 [22]. On short-term
VOT2016 dataset, DaSiamRPN achieves a 9.6% relative gain in Expected Aver-
age Overlap compared to the top ranked method ECO [3]. On long-term UAV20L
dataset, DaSiamRPN obtains 61.7% in Area Under Curve which outperforms the
current best-performing tracker by relative 35.9%. Besides the favorable perfor-
mance, our tracker can perform at far beyond real-time speed: 160 FPS on
short-term datasets and 110 FPS on long-term datasets. All these consistent
improvements demonstrate that the proposed approach establish a new state-
of-the-art in visual tracking.

1.1 Contributions

The contributions of this paper can be summarized in three folds as follows:
1, The features used in conventional Siamese trackers are analyzed in detail.

And we find that the imbalance of the non-semantic background and semantic
distractor in the training data is the main obstacle for the learning.

2, We propose a novel Distractor-aware Siamese Region Proposal Networks
(DaSiamRPN) framework to learn distractor-aware features in the off-line train-
ing, and explicitly suppress distractors during the inference of online tracking.

3, We extend the DaSiamRPN to perform long-term tracking by introducing
a simple yet effective local-to-global search region strategy, which significantly
improves the performance of our tracker in out-of-view and full occlusion chal-
lenges. In comprehensive experiments of short-term and long-term visual track-
ing benchmarks, the proposed DaSiamRPN framework obtains state-of-the-art
accuracy while performing at far beyond real-time speed.
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2 Related Work

Siamese Networks Based Tracking. Siamese trackers follow a tracking by
similarity comparison strategy. The pioneering work is SINT [31], which sim-
ply searches for the candidate most similar to the exemplar given in the starting
frame, using a run-time fixed but learns a priori deep Siamese similarity function.
As a follow-up work, Bertinetto et.al [2] propose a fully convolutional Siamese
network (SiamFC) to estimate the feature similarity region-wise between two
frames. RASNet [36] advances this similarity metric by learning the attention
mechanism with a Residual Attentional Network. Different from SiamFC and
RASNet, in GOTURN tracker [8], the motion between successive frames is pre-
dicted using a deep regression network. These threee trackers are able to perform
at 86 FPS, 83FPS and 100 FPS respectively on GPU because no fine-tuning is
performed online. CFNet [33] interprets the correlation filters as a differentiable
layer in a Siamese tracking framework, thus achieving an end-to-end represen-
tation learning. But the performance improvement is limited compared with
SiamFC. FlowTrack [40] exploits motion information in Siamese architecture to
improve the feature representation and the tracking accuracy. It is worth noting
that CFNet and FlowTrack can efficiently online update the tracking model.
Recently, SiamRPN [16] formulates the tracking as a one-shot local detection
task by introducing a region proposal network after a Siamese network, which is
end-to-end trained off-line with large-scale image pairs.

Features for Tracking. Visual features play a significant role in computer
vision tasks including visual tracking. Possegger et.al [26] propose a distractor-
aware model term to suppress visually distracting regions, while the color his-
tograms features used in their framework are less robust than the deep fea-
tures. DLT [35] is the seminal deep learning tracker which uses a multi-layer
autoencoder network. The feature is pretrained on part of the 80M Tiny Image
dataset [32] in an unsupervised fashion. Wang et al. [34] learn a two-layer neu-
ral network on a video repository, where temporally slowness constraints are
imposed for feature learning. DeepTrack [17] learns two-layer CNN classifiers
from binary samples and does not require a pre-training procedure. UCT [39]
formulates the features learning and tracking process into a unified framework,
enabling learned features are tightly coupled to tracking process.

Long-Term Tracking. Traditional long-term tracking frameworks can be
divided into two groups: earlier methods regard tracking as local key point
descriptors matching with a geometrical model [21,24,25], and recent approaches
perform long-term tracking by combining a short-term tracker with a detector.
The seminal work of latter categories is TLD [10], which proposes a memory-less
flock of flows as a short-term tracker and a template-based detector run in par-
allel. Ma et al. [20]propose a combination of KCF tracker and a random ferns
classifier as a detector that is used to correct the tracker. Similarly, MUSTer [9] is
a long-term tracking framework that combines KCF tracker with a SIFT-based
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detector that is also used to detect occlusions. Fan and Ling [6] combines a
DSST tracker [4] with a CNN detector [31] that verifies and potentially corrects
proposals of the short-term tracker.

(a) ROI (b) SiamFC (c) SiamRPN (d) SiamRPN+ (e) Ours

Fig. 1. Visualization of the response heatmaps of Siamese network trackers. (a) shows
the search images. (b–e) show the heatmaps that produced by SiamFC, SiamRPN,
SiamRPN+ (trained with distractors) and the DaSiamRPN.

3 Distractor-Aware Siamese Networks

3.1 Features and Drawbacks in Traditional Siamese Networks

Before the detailed discussion of our proposed framework, we first revisit the
features of conventional Siamese network based tracking [2,16]. Siamese track-
ers use metric learning at their core. The goal is to learn an embedding space
that can maximize the interclass inertia between different objects and minimize
the intraclass inertia for the same object. The key contribution leading to the
popularity and success of Siamese trackers is their balanced accuracy and speed.

Figure 1 visualizes of response maps of SiamFC and SiamRPN. It can be
seen that for the targets, those with large differences in the background also
achieve high scores, and even some extraneous objects get high scores. The rep-
resentations obtained in SiamFC usually serve the discriminative learning of the
categories in training data. In SiamFC and SiamRPN, pairs of training data
come from different frames of the same video, and for each search area, the
non-semantic background occupies the majority, while semantic entities and
distractor occupy less. This imbalanced distribution makes the training model
hard to learn instance-level representation, but tending to learn the differences
between foreground and background.

During inference, nearest neighbor is used to search the most similar object in
the search region, while the background information labelled in the first frame are
omitted. The background information in the tracking sequences can be effectively
utilized to increase the discriminative capability as shown in Fig. 1e.

To eliminate these issues, we propose to actively generate more semantics
pairs in the offline training process and explicitly suppress the distractors in the
online tracking.
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3.2 Distractor-Aware Training

High quality training data is crucial for the success of end-to-end representation
learning in visual tracking. We introduce series of strategies to improve the
generalization of the learned features and eliminate the imbalanced distribution
of the training data.

(a) detection pairs (b) negative pairs from the
same categories

(c) negative pairs from 
different categories

Fig. 2. (a) Positive pairs generated from detection datasets through augmenting still
images. (b) negative pairs from the same category. (c) negative pairs from different
categories.

Diverse Categories of Positive Pairs Can Promote the Generaliza-
tion Ability. The original SiamFC is trained on the ILSVRC video detection
datasets, which consists of only about 4,000 videos annotated frame-by-frame
[28]. Recently, SiamRPN [16] explores to use sparsely labelled Youtube-BB [27]
videos which consists of more than 200,000 videos annotated once in every 30
frames. In these two methods, target pairs of training data come from different
frames in the same video. However, these video detection datasets only contain
few categories (20 for VID [28], 30 for Youtube-BB [27]), which is not suffi-
cient to train high-quality and generalized features for Siamese tracking. Besides,
the bounding box regression branch in the SiamRPN may get inferior predic-
tions when encountering new categories. Since labelling videos is time-consuming
and expensive, in this paper, we greatly expand the categories of positive pairs
by introducing large-scale ImageNet Detection [28] and COCO Detection [18]
datasets. As shown in Fig. 2(a), through augmentation techniques (translation,
resize, grayscale et.al), still images from detection datasets can be used to gen-
erate image pairs for training. The diversity of positive pairs is able to improve
the tracker’s discriminative ability and regression accuracy.

Semantic Negative Pairs Can Improve the Discriminative Ability. We
attribute the less discriminative representation in SiamFC [2] and SiamRPN [16]
to two level of imbalanced training data distribution. The first imbalance is the
rare semantic negative pairs. Since the background occupies the majority in the
training data of SiamFC and SiamRPN, most negative samples are non-semantic
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(a) General Siamese tracker (b) Distractor-aware Siamese tracker

Fig. 3. Illustrations of our proposed Distractor-aware Siamese Region Proposal Net-
works (DaSiamRPN). The target and the background information are fully utilized in
DaSiamRPN, which can suppress the influence of distractor during tracking.

(not real object, just background), and they can be easily classified. That is to
say, SiamFC and SiamRPN learn the differences between foreground and back-
ground, and the losses between semantic objects are overwhelmed by the vast
number of easy negatives. Another imbalance comes from the intraclass distrac-
tors, which usually perform as hard negative samples in the tracking process.
In this paper, semantic negative pairs are added into the training process. The
constructed negative pairs consist of labelled targets both in the same cate-
gories and different categories. The negative pairs from different categories can
help tracker to avoid drifting to arbitrary objects in challenges such as out-of-
view and full occlusion, while negative pairs from the same categories make the
tracker focused on fine-grained representation. The negative examples are shown
in Fig. 2(b) and (c).

Customizing Effective Data Augmentation for Visual Tracking. To
unleash the full potential of the Siamese network, we customize several data
augmentation strategies for training. Except the common translation, scale vari-
ations and illumination changes, we observe that the motion pattern can be
easily modeled by the shallow layers in the network. We explicitly introduce
motion blur in the data augmentation.

3.3 Distractor-Aware Incremental Learning

The training strategy in the last subsection can significantly improve the dis-
crimination power on the offline training process. However, it is still hard to
distinguish two objects with the similar attributes like Fig. 3a. SiamFC and
SiamRPN use a cosine window to suppress the distractors. In this way, the per-
formance is not guaranteed when the motion of objects are messy. Most existing
Siamese network based approaches provide inferior performance when encoun-
tering with fast motion or background clutter. In summary, the potential flaw
is mainly due to the misalignment of the general representation domain and the
specifical target domains. In this section, we propose a distractor-aware module
to effectively transfer the general representation to the video domain.
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The Siamese tracker learns a similarity metric f(z, x) to compare an exemplar
image z to a candidate image x in the embedding space ϕ:

f(z, x) = ϕ(z) � ϕ(x) + b · 1 (1)

where � denotes cross correlation between two feature maps, b ·1 denotes a bias
which is equated in every location. The most similar object of the exemplar will
be selected as the target.

To make full use of the label information, we integrate the hard negative
samples (distractors) in context of the target into the similarity metric. In
DaSiamRPN, the Non Maximum Suppression (NMS) is adopted to select the
potential distractors di in each frames, and then we collect a distractor set
D := {∀di ∈ D, f(z, di) > h ∩ di �= zt}, where h is the predefined threshold,
zt is the selected target in frame t and the number of this set |D| = n. Specifi-
cally, we get 17 ∗ 17 ∗ 5 proposals in each frame at first, and then we use NMS to
reduce redundant candidates. The proposal with highest score will be selected
as the target zt. For the remaining, the proposals with scores greater than a
threshold are selected as distractors.

After that, we introduce a novel distractor-aware objective function to re-
rank the proposals P which have top-k similarities with the exemplar. The final
selected object is denoted as q:

q = argmax
pk∈P

f(z, pk) − α̂
∑n

i=1 αif(di, pk)
∑n

i=1 αi
(2)

the weight factor α̂ control the influence of the distractor learning, the weight
factor αi is used to control the influence for each distractor di. It is worth noting
that the computational complexity and memory usage increase n times by a
direct calculation. Since cross correlation operation in the Eq. (1) is a linear
operator, we utilize this property to speed up the distractor-aware objective:

q = argmax
pk∈P

(ϕ(z) − α̂
∑n

i=1 αiϕ(di)∑n
i=1 αi

) � ϕ(pk) (3)

it enables the tracker run in the comparable speed in comparisons with
SiamRPN. This associative law also inspires us to incrementally learn the target
templates and distractor templates with a learning rate βt:

qT+1 = argmax
pk∈P

(
∑T

t=1 βtϕ(zt)
∑T

t=1 βt

−
∑T

t=1 βtα̂
∑n

i=1 αiϕ(di,t)
∑T

t=1 βt

∑n
i=1 αi

) � ϕ(pk) (4)

This distractor-aware tracker can adapt the existing similarity metric (general)
to a similarity metric for a new domain (specific). The weight factor αi can
be viewed as the dual variables with sparse regularization, and the exemplars
and distractors can be viewed as positive and negative samples in correlation
filters. Actually, an online classifier is modeled in our framework. So the adopted
classifier is expected to perform better than these only use general similarity
metric.
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3.4 DaSiamRPN for Long-Term Tracking

In this section, the DaSiamRPN framework is extended for long-term tracking.
Besides the challenging situations in short-term tracking, severe out-of-view and
full occlusion introduce extra challenges in long-term tracking, which are shown
in Fig. 4. The search region in short-term tracking (SiamRPN) can not cover the
target when it reappears, thus failing to track the following frames. We propose a
simple yet effective switch method between short-term tracking phase and failure
cases. In failure cases, an iterative local-to-global search strategy is designed to
re-detect the target.

In order to perform switches, we need to identify the beginning and the end
of failed tracking. Since the distractor-aware training and inference enable high-
quality detection score, it can be adopted to indicate the quality of tracking
results. Figure 4 shows the detection scores and according tracking overlaps in
SiamRPN and DaSiamRPN. The detection scores of SiamRPN are not indica-
tive, which can be still high even in out-of-view and full occlusion. That is to
say, SiamRPN tends to find an arbitrary objectness in these challenges which
causes drift in tracking. In DaSiamRPN, detection scores successfully indicate
status of the tracking phase.

During failure cases, we gradually increase the search region by local-to-
global strategy. Specifically, the size of search region is iteratively growing with
a constant step when failed tracking is indicated. As shown in Fig. 4, the local-
to-global search region covers the target to recover the normal tracking. It is
worth noting that our tracker employs bounding box regression to detect the
target, so the time-consuming image pyramids strategy can be discarded. In
experiments, the proposed DaSiamRPN can perform at 110 FPS on long-term
tracking benchmark.
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(a) scores and overlaps in SiamRPN
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(b) scores and overlaps in DaSiamRPN

Fig. 4. The tracking results of video person7 in out-of-view challenge. First row: track-
ing snapshots of SiamRPN and DaSiamRPN. Second row: detection scores and accord-
ing overlaps of the two methods. The overlaps are defined as intersection-over-union
(IOU) between tracking results and ground truth. Red: ground truth. Green: tracking
box. Blue: Search region box. (Color figure online)
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4 Experiments

Experiments are performed on extensive challenging tracking datasets, includ-
ing VOT2015 [13], VOT2016 [14] and VOT2017 [12], each with 60 videos,
UAV20L [22] with 20 long-term videos, UAV123 [22] with 123 videos and
OTB2015 [38] with 100 videos. All the tracking results are provided by official
implementations to ensure a fair comparison.
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Fig. 5. Expected average overlap plot for VOT2016 (a) and VOT2017 (b).

4.1 Experimental Details

The modified AlexNet [15] pretrained using ImageNet [28] is used as described in
SiamRPN [16]. The parameters of the first three convolution layers are fixed and
only the last two convolution layers are fine-tuned. There are totally 50 epoches
performed and the learning rate is decreased in log space from 10−2 to 10−4. We
extract image pairs from VID [28] and Youtube-BB [27] by choosing frames with
interval less than 100 and performing crop procedure as described in Sect. 3.2.
In ImageNet Detection [28] and COCO Detection [18] datasets, image pairs are
generated for training by augmenting still images. To handle the gray videos in
benchmarks, 25% of the pairs are converted to grayscale during training. The
translation is randomly performed within 12 pixels, and the range of random
resize varies from 0.85 to 1.15.

During inference phase, the distractor factor α̂ in Eq. (2) is set to 0.5, αi is
set to 1 for each distractor, and the incremental learning factor βt in Eq. (4) is
set to

∑t−1
i=0(

η
1−η )i, where η = 0.01. In the long-term tracking, we find that one

step iteration of local-to-global is sufficient. Specifically, the sizes of the search
region in short-term phase and defined failure cases are set to 255 and 767,
respectively. The thresholds to enter and leave failure cases are set to 0.8 and
0.95. Our experiments are implemented using PyTorch on a PC with an Intel i7,
48G RAM, NVIDIA TITAN X. The proposed tracker can perform at 160 FPS
on short-term benchmarks and 110 FPS on long-term benchmarks.

4.2 State-of-the-Art Comparisons on VOT Datasets

In this section the latest version of the Visual Object Tracking toolkit (vot2017-
challenge) is used. The toolkit applies a reset-based methodology. Whenever



DaSiameseRPN 113

a failure (zero overlap with the ground truth) is detected, the tracker is re-
initialized five frames after the failure. The performance is measured in terms of
accuracy (A), robustness (R), and expected average overlap (EAO). In addition,
VOT2017 also introduces a real-time experiment. We report all these metrics
compared with a number of the latest state-of-the-art trackers on VOT2015,
VOT2016 and VOT2017.

The EAO curve evaluated on VOT2016 is presented in Fig. 5a and 70
other state-of-the-art trackers are compared. The EAO of our baseline tracker
SiamRPN on VOT2016 is 0.3441, which already outperforms most of state-of-
the-arts. However, there is still a gap compared with the top-ranked tracker ECO
(0.375), which improves continuous convolution operators on multi-level feature
maps. Most remarkably, the proposed DaSiamRPN obtains a EAO of 0.411, out-
performing state-of-the-arts by relative 9.6%. Furthermore, our tracker runs at
state-of-the-art speed with 160FPS, which is 500× faster than C-COT and 20×
faster than ECO.

For the evaluation on VOT2017, Fig. 5b reports the results of ours against
51 other state-of-the-art trackers with respect to the EAO score. DaSiamRPN
ranks first with an EAO score of 0.326. Among the top 5 trackers, CFWCR,
CFCF, ECO, and Gnet apply continuous convolution operator as the baseline
approach. The top performer LSART [30] decomposes the target into patches
and applies a weighted combination of patch-wise similarities into a kernelized
ridge regression. While our method is conceptually much simpler, powerful and
is also easy to follow.

Figure 5b also reveals the EAO values in the real-time experiment denoted by
red points. Our tracker obviously is the top-performer with a real-time EAO of
0.326 and outperforms the latest state-of-the-art real-time tracker CSRDCF++
by relative 53.8%.

Table 1 shows accuracy (A) and robustness (R), as well as expected average
overlap (EAO) on VOT2015, VOT2016 and VOT2017. The baseline approach
SiamRPN can process an astounding 200 frames per second while still getting
an comparable performance with the state-of-the-arts. We find the performance
gains of SiamRPN are mainly due to their accurate multi-anchors regression
mechanism. We propose the distractor-aware module to improve the robustness,
which can make our tracker much more harmonious. As a result, our approach,
with the EAO of 0.446, 0.411 and 0.326 on three benchmarks, outperforms all the
existing trackers by a large margin. We believe that the consistent improvements
demonstrate that our approach makes real contributions by both the training
process and online inference.

4.3 State-of-the-Art Comparisons on UAV Datasets

The UAV [22] videos are captured from low-altitude unmanned aerial vehicles.
The dataset contains a long-term evaluation subset UAV20L and a short-term
evaluation subset UAV123. The evaluation is based on two metrics: precision
plot and success plot.
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Table 1. Performance comparisons on public short-term benchmarks. OP: mean over-
lap precision at the threshold of 0.5; DP: mean distance precision of 20 pixels; EAO:
expected average overlap, and mean speed (FPS). The red bold fonts and blue italic
fonts indicate the best and the second best performance.

Trackers OTB-2015 VOT2015 VOT2016 VOT2017 FPS

OP DP A R EAO A R EAO A R EAO

SiamFC 73.0 77.0 0.533 0.88 0.289 0.53 0.46 0.235 0.50 0.59 0.188 86

CFNet 69.9 74.7 - - - - - - - - - 75

Staple 70.9 78.4 0.57 1.39 0.300 0.54 0.38 0.295 0.52 0.69 0.169 80

CSRDCF 70.7 78.7 0.56 0.86 0.320 0.51 0.24 0.338 0.49 0.36 0.256 13

BACF 76.7 81.5 0.59 1.56 - - - - - - - 35

ECO-HC 78.4 85.6 - - - 0.54 0.30 0.322 0.49 0.44 0.238 60

CREST 77.5 83.7 - - - 0.51 0.25 0.283 - - - 1

MDNet 85.4 90.9 0.60 0.69 0.378 0.54 0.34 0.257 - - - 1

C-COT 82.0 89.8 0.54 0.82 0.303 0.54 0.24 0.331 0.49 0.32 0.267 0.3

ECO 84.9 91.0 - - - 0.55 0.20 0.375 0.48 0.27 0.280 8

SiamRPN 81.9 85.0 0.58 1.13 0.349 0.56 0.26 0.344 0.49 0.46 0.244 200

Ours 86.5 88.0 0.63 0.66 0.446 0.61 0.22 0.411 0.56 0.34 0.326 160
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Fig. 6. Success and precision plots on UAV [22] dataset. First and second sub-figures
are results of UAV20L, third and last sub-figures are results of UAV123.

Results on UAV20L. UAV20L is a long-term tracking benchmark that con-
tains 20 sequences with average sequence length 2934 frames. Besides the chal-
lenging situations in short-term tracking, severe out-of-view and full occlusion
introduce extra challenges. In this experiment, the proposed method is compared
against recent trackers in [22]. Besides, ECO [3] (state-of-the-art short-term
tracker), PTAV [6] (state-of-the-art long-term tracker), SiamRPN [16] (the base-
line), SiamFC [2] and CFNet [33] (representative Siamese trackers) are added
for comparison.

The results including success plots and precision plots are illustrated in Fig. 6.
It clearly illustrates that our algorithm, denoted by DaSiamRPN, outperforms
the state-of-the-art trackers significantly in both measures. In the success plot,
our approach obtains an AUC score of 0.617, significantly outperforming state-
of-the-art short-term trackers SiamRPN [16] and ECO [3]. The improvement
ranges are relative 35.9% and 41.8%, respectively. Compared with PTAV [6],
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Fig. 7. Success plots with attributes on UAV20L. Best viewed on color display.

MUSTer [9] and TLD [10] which are qualified to perform long-term tracking,
the proposed DaSiamRPN outperforms these trackers by relative 45.8%, 87.5%
and 213.2%. In the precision plot, our approach obtains a score of 0.838, out-
performing state-of-the-art long-term tracker (PTAV [6]) and short-term tracker
(SiamRPN [16]) by relative 34.3% and 35.8%, respectively. The excellent perfor-
mance of DaSiamRPN in this long-term tracking dataset can be attributed to
the distractor-aware features and local-to-global search strategy.

For detailed performance analysis, we also report the results on various chal-
lenge attributes in UAV20L, i.e. full occlusion, out-of-view, background clutter
and partial occlusion. Figure 7 demonstrates that our tracker effectively handles
these challenging situations while other trackers obtain lower scores. Specially,
in full occlusion and background clutter attributes, the proposed DaSiamRPN
outperforms SiamRPN [16] by relative 153.1% and 393.2%.

Results on UAV123. UAV123 dataset includes 123 sequences with average
sequence length of 915 frames. Besides the recent trackers in [22], ECO [3],
PTAV [6], SiamRPN [16], SiamFC [2], CFNet [33] are added for comparison.
Figure 6 illustrates the precision and success plots of the compared trackers. The
proposed DaSiamRPN approach outperforms all the other trackers in terms of
success and precision scores. Specifically, our method achieves a success score of
0.586, which outperforms the SiamRPN (0.527) and ECO (0.525) method with
a large margin.

4.4 State-of-the-Art Comparisons on OTB Datasets

We evaluate the proposed algorithms with numerous fast and state-of-the-art
trackers including SiamFC [2], CFNet [33], Staple [1], CSRDCF [19], BACF [11],
ECO-HC [3], CREST [29], MDNet [23], CCOT [5], ECO [3], and the baseline
tracker SiamRPN [16]. All the trackers are initialized with the ground-truth
object state in the first frame. Mean overlap precision (OP) and mean distance
precision (DP) are reported in Table 1.

Among the real-time trackers, SiamFC and CFNet are latest Siamese network
based trackers while the accuracies is still left far behind the state-of-the-art
BACF and ECO-HC with HOG features. The proposed DaSiamRPN tracker
outperforms all these trackers by a large margin on both the accuracy and speed.
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Table 2. Ablation analyses of our algorithm on VOT2016 [14] and UAV20L [22]

Component SiamRPN DaSiamRPN

Positive pairs in detection data? � � � �
Semantic negative pairs? � � �
Distractor-aware updating? � �
Long-term tracking module? �
EAO in VOT2016 0.344 0.368 0.389 0.411 –

AUC in UAV20L(%) 45.4 47.2 48.6 49.8 61.7

For state-of-the-art comparisons on OTB, MDNet, trained on visual tracking
datasets, performs the best against the other trackers at a speed of 1 FPS. C-
COT and ECO achieve state-of-the-art performance, but their tracking speeds
are not fast enough for real-time applications. The baseline tracker SiamRPN
obtains an OP score of 81.9%, which is slightly less accurate than CCOT. The
bottleneck of SiamRPN is its inferior robust performance. Since the distractor-
aware mechanisms in both training and inference focus on improving the robust-
ness, the proposed DaSiamRPN tracker achieves 3.0% improvement on DP and
performs best OP score of 86.5% on OTB2015.

4.5 Ablation Analyses

To verify the contributions of each component in our algorithm, we implement
and evaluate four variations of our approach. Analyses results include EAO on
VOT2016 [14] and AUC on UAV20L [22].

As shown in Table 2, SiamRPN is our baseline algorithm. In VOT2016, the
EAO criterion increases to 0.368 from 0.344 when detection data is added
in training. Similarly, when negative pairs and distractor-aware learning are
adopted in training and inference, both the performance increases by near 2%. In
UAV20L, detection data, negative pairs in training and distractor-aware infer-
ence gain the performance by 1%–2%. The AUC criterion increases to 61.7%
from 49.8% when long-term tracking module is adopted.

5 Conclusions

In this paper, we propose a distractor-aware Siamese framework for accurate
and long-term tracking. During offline training, a distractor-aware feature learn-
ing scheme is proposed, which can significantly boost the discriminative power
of the networks. During inference, a novel distractor-aware module is designed,
effectively transferring the general embedding to the current video domain. In
addition, we extend the proposed approach for long-term tracking by introduc-
ing a simple yet effective local-to-global search strategy. The proposed tracker
obtains state-of-the-art accuracy in comprehensive experiments of short-term
and long-term visual tracking benchmarks, while the overall system speed is still
far from being real-time.
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