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Abstract. Humans recognize object structure from both their appear-
ance and motion; often, motion helps to resolve ambiguities in object
structure that arise when we observe object appearance only. There
are particular scenarios, however, where neither appearance nor spatial-
temporal motion signals are informative: occluding twigs may look con-
nected and have almost identical movements, though they belong to dif-
ferent, possibly disconnected branches. We propose to tackle this problem
through spectrum analysis of motion signals, because vibrations of dis-
connected branches, though visually similar, often have distinctive nat-
ural frequencies. We propose a novel formulation of tree structure based
on a physics-based link model, and validate its effectiveness by theo-
retical analysis, numerical simulation, and empirical experiments. With
this formulation, we use nonparametric Bayesian inference to reconstruct
tree structure from both spectral vibration signals and appearance cues.
Our model performs well in recognizing hierarchical tree structure from
real-world videos of trees and vessels.
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1 Introduction

In visual perception, motion information often helps to resolve appearance ambi-
guities. Animals may conceal themselves with camouflaged clothing, but they are
unlikely to match their motion with that in the background, such as foliage wav-
ing in the breeze [6]. In medical imaging, it might be hard to separate blood
vessels (or fibers) purely from their appearance, but the distinction becomes
clear once the vessels start to vibrate. Extensive studies in cognitive science
also suggest that humans, including young children, recognize objects from both
appearance and motion cues [37].
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Fig. 1. We want to infer the hierarchical structure of the tree in video (a). Inference
based on a single frame has inherent ambiguities: figure (b) shows an example, where it
is hard to tell from appearance whether point P1 is connected to P2 (orange curve) or
to P3 (blue curve). Time domain motion signals do not help much, as these branches
have almost identical movements (c). We observe that the difference is significant in
the frequency domain (d), from which we can see P1 is more likely to connect to P2 due
to their similar spectra. We therefore develop an algorithm that infers tree structure
based on both vibration spectra and appearance cues. The results are shown in (e).
(Color figure online)

Computer vision researchers have combined motion and appearance informa-
tion to solve a range of tasks [1,34]. Bouman et al . proposed to estimate physical
object properties based on their appearance and vibration [3]. Wang et al . pro-
posed a layered motion representation [42], which has been widely employed in
object segmentation and structural prediction [23,38].

In this paper, we focus on tree structure estimation. This problem is even
more challenging, as both motion and appearance cues can fail to discriminate
pixels of disjoint branches. We show an example in Fig. 1. The three points {Pi}
in Fig. 1 are on two occluding branches. There are two plausible explanations:
either P1 and P2, or P1 and P3 may be on the same branch. Due to self-occlusion,
it is hard to infer the underlying connection just from their appearance. It is also
challenging to resolve this ambiguity using only temporal motion information:
the movement of these three nodes are dominated by the vibration of the root
branch, so they share almost the same trajectories (Fig. 1c).

We propose to incorporate spectral analysis to deal with this problem. This
is inspired by our observation that pixels of different branches often have distinc-
tive modes in their spectra of frequency responses, despite their similar spatial
trajectories. As shown in Fig. 1d, P3 has distinct amplitude at certain frequencies
compared with P1 and P2; intuitively and theoretically (discussed in Sect. 3), P3

is more likely to be on a separate branch.
Our formulation of tree vibration builds upon and extends a physics-based

link model from the field of botany [33]. Here, we deduce a key property of tree
structure: each branch is a linear time-invariant (LTI) system with respect to
the vibration of root. With this property, we can infer the natural frequencies of
each sub-branch in a tree from its frequency response, and group nodes based on
the inferred natural frequencies. We also provide justifications of this property
through theoretical analysis, numerical simulation, and empirical experiments.

Based on our tree formulation, we develop a hierarchical grouping algorithm
to infer tree structure, using both spectral motion signals and appearance cues.
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As each node in a tree may connect to an indefinite number of children, our
inference algorithm employs nonparametric Bayesian methods.

For evaluation, we collect videos of both artificial and real-world tree-
structured objects. We demonstrate that our algorithm works well in recog-
nizing tree structure, using both appearance cues and spectra of vibration. We
compare our algorithm with baselines that use spatial motion signals; we also
conduct ablation studies to reveal how each component contributes to the algo-
rithm’s final performance. Our model has wide applications, as tree structure
exists extensively in real life. Here we show two of them: seeing shape from
shadow, and connecting blood vessels from retinal videos.

Our contributions are three-fold. Our main contribution is to show that tiny,
barely visible object motion can reveal object structure. Our model can resolve
the ambiguity in tree structure estimation using spectral information. Second, we
propose a novel, physics-based tree formulation, with which we may estimate the
natural frequencies of each sub-branch. Third, we design a hierarchical inference
algorithm, using nonparametric Bayesian methods to predict tree structure. Our
algorithm achieves good performance on real-world videos.

2 Related Work

Motion for Structured Prediction. Researchers in computer vision have
been using motion signals for various tasks [1,34,39,47]. For structured predic-
tion in particular, the layered motion representations [42] have been studied and
applied extensively [23,38]. These papers model motion signals in the temporal
domain; they are not for scenarios where objects may only have subtle motion
differences.

Regarding spectral analysis of motion, the pioneer work of Fleet and Jep-
son [10] discussed how phase signals could help to estimate object velocity. Gau-
tama and Van Hulle [14] extended the work, proposing a phase-based approach
for optical flow estimation. Zhou et al . [48] also discussed how phase informa-
tion helps recognizing object motion. Recently, there have also been a number
of works on visualizing and magnifying subtle motion signals from video [7,46],
and Rubinstein et al . did a thorough review in [35].

The problem of tree structure estimation has been widely studied in computer
vision, especially in medical imaging [11,40,41,43], mostly from a static image.
In this paper, we explore how motion signals in a video could help in structured
prediction, in addition to appearance cues. Though we currently employ a sim-
ple and intuitive appearance model, it is straightforward to incorporate more
sophisticated appearance models into our approach.

Modeling Tree Vibration. Tree vibration is an important research area in
the field of botany [20,31]. Moore and Maguire [31] reviewed the concepts and
dynamic studies by examining the natural frequencies and damping ratios of
trees in winds. Recently, James et al . [20] reviewed tree bio-mechanics studies
using dynamic methods of analysis.
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Our formulation of tree vibration is based on the lumped-mass procedure.
Related literature include spring-mass-damper models for trees as a single mass
point [30], or as a complex system of coupled masses that represent the trunk
and branches [21,33]. Our formulation also considers a tree as a system of cou-
pled masses, but different from Murphy et al . [33] which studied only one-layer
structure, we explore hierarchical tree structure of multiple layers.

Bayesian Theory of Perception. Researchers have developed Bayesian the-
ories for human visual perception in general [24,26,32], and for object motion
perception in particular [4,44]. Our inference algorithm draws inspirations from
the recent hierarchical Bayesian model for object motion from Gershman et al .
[16], which employs the nested Chinese restaurant process (nCRP) [2] as a prior
of object structure.

Fig. 2. (a) Hierarchical beam structure. (b) Force analysis for one of the branches (the
one marked by dashed rectangle in (a)).

3 Formulation

We here present our formulation that recovers tree structure from the tempo-
ral complex spectra of vertices. We start by introducing a physics-based, hier-
archical link model, representing a tree as a set of beams with certain mass
and stiffness (Fig. 2a). Using this model, we derive a set of ordinary differential
equations (ODEs) of node vibrations (Sect. 3.2) and prove an important prop-
erty (Sect. 3.3): each sub-branch of a tree is a linear time-invariant system under
certain assumptions. A Bayesian inference algorithm exploits the property for
structure estimation (Sects. 4.1 and 4.2).

3.1 A Physics-Based Link Model

We use a rigid link model to describe the vibration of a tree, as shown in Fig. 2a.
In this model, each branch i of the tree is modeled as a rigid beam with a certain
mass mi and length li. Under the uniform mass assumption, the center of mass
of a branch is at li

2 . Each branch connects to its parent through a torsional spring
with stiffness ki. Our model relates to the simpler, one-layer physical model from
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Murphy et al . [33], where they attempted to compute the mass and stiffness of
all the beams. We observe this to be impractical in real data given the presence
of noise and occlusion. Instead, we derive a set of non-linear ordinary derivative
equations (ODEs) that describe the relationship between the vibration of a tree
and its structure and physical properties.

We describe the vibration of a tree by the deviation angles {θi} of branches.
As shown in Fig. 2b, let θ̂i be the directional angle from vertical line to a branch
when the tree is static (no external forces except gravity), and let θi be the
deviation angle from its static location when the tree is vibrating (θi changes
over time). To derive the governing equations for θi, we start by applying the
Newton’s law to each branch i, which gives1

mai = −ri +
∑

c∈Ci

rc + mg, (1)

where rc ∈ R
2 is the force exerted by branch c on its parent, Ci is the set of

children of branch i, and g is the acceleration due to gravity. The negative sign
before ri is due to our definition and Newton’s third law. Branch i’s acceleration
ai ∈ R

2 is defined as the acceleration of the branch’s center of mass.
In addition, we have the rotation equation,

Iiω̇i = −kiθi +
∑

c∈Ci

kcθc + ri × xi +
∑

c∈Ci

rc × xi, (2)

where Ii is branch i’s moment of inertia when it rotates around its center, ω̇i

is its angular acceleration, θc is branch c’s deviation angle, xi is its movement,
and ki is the stiffness of the torsional spring it connects to. Also, the branch
acceleration ai relates to the acceleration of its endpoint aio via

ai = aio + ω̇i × xi + ωi × (ωi × xi), (3)

where aio ∈ R
2 is the acceleration of the junction point.

Therefore, the angular velocity and angular acceleration of branch i are

ωi = θ̇i +
∑

p∈Pi

θ̇p and ω̇i = θ̈i +
∑

p∈Pi

θ̈p, (4)

where Pi is the set of ancestors of branch i. These equations do not include
fictitious forces. All quantities are global values under the reference frame.

At last, replacing the branch acceleration (ai and aio) and angular accel-
eration ω̇i in Eqs. 1 and 2 using Eqs. 3 and 4, and eliminating forces between
branches ri, we get the ODE with respect to all deviation angles {θi},

Iifi(θ̈) = −kiθi +
∑

c∈Ci

kcθc + ri(θ, θ̇, θ̈) × xi +
∑

c∈Ci

rc(θ, θ̇, θ̈) × xi, (5)

where ri(θ, θ̇, θ̈) is a vector functions of θ, θ̇, and θ̈. Please see our supplementary
material for its definition in detail.
1 In this chapter, we use a lower-case letter a to denote a scalar, a bold lower-case

letter a to denote a vector, and a capital letter A to denote a matrix. We denote the
matrix product as Ab, where A ∈ R

n×m and b ∈ R
m.
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3.2 ODE of Node Vibration

The ODE (Eq. 5) is highly nonlinear due to sinusoidal and quadratic terms. To
solve it, we first linearize the equation around its stable solution. We assume
that the deviation angle θi of each branch i is small and ignore all O(θ2i ) terms.
Under this assumption, the quadratic term of angular velocity O(θ̇2) can also be
ignored, because according to the conservation of energy, the potential energy
1
2kθ2 of a branch is on the same scale of its kinetic energy 1

2Iiθ̇
2.

We can now derive a fully linear system under the above assumption as

M θ̈ + Kθ = 0, (6)

where M and K are two matrices depending on the structure of a tree and its
physical properties, including the moment of inertia (I), mass (m), and stiffness
(k) of all branches.

In practice, from an input video, it is easier to measure the 2D shift of each
node, rather than the rotation of each branch. To derive the ODE of 2D shifts
of all nodes from Eq. 6, we denote node i’s 2D location in a stable tree as ŷi,
and the 2D shifts from its stable location as yi. We have

yi + ŷi =
∑

j∈Pi

ljn(θj + θ̂j), (7)

where n(θ) = (cos θ, sin θ) and lj is the length of branch j (recall that Pi is the
set of ancestors of branch i). Let y be the concatenation of 2D shifts of all the
nodes. Plugging Eqs. 7 to 6, we have

N ÿ + Ly = 0, (8)

where N and L are matrices depending on M , K, lj , and θj . The constant term
must be zero, as y = ÿ = 0 when the tree is stable. Please see our supplementary
material for a detailed derivation.

3.3 Inferring Modes of Each Sub-branch

Based on the second order ODE, we can infer the modes of each sub-branch and
use them to group nodes into branches using the following property.

Property 1 (Each sub-branch is a LTI-system). Imagine a branch under-
goes a forced vibration. Let yi

root(t) and yi
leaf (t) be the displacements of the root

and one of its leaf node respectively at time t (i = 1, 2). Then, if the displacement
of the root is α1 · y1

root(t) + α2 · y2
root(t), where α1, α2 ∈ R, the vibration of the

leaf is α1 · y1
leaf (t) + α2 · y2

leaf (t).

This is a corollary of Eq. 8, which shows that the displacement of a node
satisfies a linear, second order ODE. The system is also time-invariant, as all
matrices in Eq. 8 do not change in time.
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Fig. 3. Spectrum analysis on a synthetic tree. Directly calculating the power spectrum
of the vibration of each nodes does not help to infer the tree structure, as all the
nodes have similar power spectrum (a). By dividing the spectrum of each node by the
spectrum of the root node, we obtain the frequency response of each node. We now
clearly see the difference between the two subtrees (b). The modes of each frequency
response also match the modes of the free vibration of each subtree (c) and (d).

The key observation of our work is that we can infer the mode of free vibration
of each sub-branch as if that sub-branch is disconnected from the rest of the tree,
as suggested by Property 1. Let S be a set of nodes in a sub-branch; let Yi(η)
be the temporal spectrum of the displacement of the i-th node in that branch
(i ∈ S), where η is the frequency index; let Yroot be the temporal spectrum of
the root displacement. Because each sub-branch is a LTI-system, the frequency
response of the sub-branch is

Y i(η) =
Yi(η)

Yroot(η)
, ∀η. (9)

It is well known that when there is no damping, the natural frequencies of an
oscillating system coincide with its resonance frequency [12, Chap. 4]. In our
case, this suggests that the natural frequencies of a sub-branch are the same as
the modes of the frequency response of that branch2.

As an illustration, Fig. 3a shows a tree with two sub-branches (Y2−4 and
Y5−7). All nodes have similar power spectra as their vibrations are dominated by
the vibration of the root (Y1). To distinguish the spectra of the two sub-branches,
we calculate the frequency response of each node, i.e., the ratio between the
2 In the presence of small damping, the difference between the modes of frequency

response and the modes of free vibration is also small.
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spectrum of the root and the spectrum of each branch. As shown in Fig. 3b,
there is a clear difference between the frequency responses of two branches. The
modes of each frequency response also match the modes of free vibrations of
each sub-branch, as if they are detached from the root (see Fig. 3c and d).

We can then group nodes into different sub-branches based on their spec-
trum response, because the natural frequencies of each sub-branch depend on
its inherent physical properties like mass and stiffness. In practice, the modes
of frequency responses are not a robust measure in the presence of noise and
damping. Therefore, we group nodes based on their the normalized power spec-
tra and phases instead, with the help of the appearance information described
in Sect. 4.1.

4 Algorithm

We now introduce our structure estimation algorithm based on the tree for-
mulation. Our algorithm has two major components: a recognition module that
extracts motion and appearance cues from visual input, and an inference module
that predicts tree structure.

4.1 Extracting Motion and Appearance Cues

We use an bottom-up recognition algorithm to obtain motion and appearance
cues from input videos (Fig. 4a) with a given set of interest points (Fig. 4b).

Fig. 4. Overview of our framework. We take a video (a) and a set of keypoints (b)
as input (I). We use normalized amplitudes (c) and phases (d) of keypoints as our
vibration signals (II); we also obtain appearance cues (III) through several intermediate
steps (Sect. 4.1). Finally, we apply our inference algorithm (Sect. 4.2) for tree structure
estimation.
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Motion. Given an input video, we first manually label all nodes in the first
frame and then track them over time using optical flow. There are many tracking
algorithms that can extract trajectories of sparse keypoints [18,19,28,36], but
we choose to calculate the dense motion field for two reasons. First, most of
vibrations are small, and optical flow is known to perform well on capturing the
small motion with subpixel accuracy. Second, sparse tracking algorithms, like
the KLT tracker [28], might suffer the aperture problem, as most of branches
only contain one-dimensional local structure. On the other hand, dense optical
flow algorithms aggregate the information from other locations, so it would be
more robust to the aperture problem.

Specifically, we first compute a dense flow field from the first frame to one
of the frame t in the sequence [27]. We then get trajectory of each node in
the sequences from dense motion fields through interpolation. We further apply
Fourier transform to the trajectory of each node independently to get its com-
plex spectrum Y (Fig. 4-II), and extract its modes from the fifth order spectral
envelope [13]. We use the normalized amplitude (Fig. 4c) and phase (Fig. 4d) of
these modes for inference, as discussed in Sect. 4.2.

Appearance. We use an over-complete connectivity matrix as our appearance
cues. As shown in Fig. 4-III, we compute the matrix via the following steps:
obtaining a contour map, computing the closure of each interest point, flood-
filling the contour map from all closures, and adding edges to junctions.

Given the first frame from an input video, we first use Canny edge detector [5]
with threshold 0.5 to obtain an initial contour map (Fig. 4e). Then, for each
interest point i, we consider all contour pixels Si whose distance to i is no larger
than ri. We search for the minimum ri, such that if we connect i to all pixels in
Si, the angle between each two adjacent lines is no larger than 30◦. We call Si

the closure for point i (Fig. 4f).
We then apply a shortest-path algorithm to obtain the connectivity map of

all interest points. Our algorithm is a variant of the Dijkstra’s algorithm [8],
where there is a hypothetical starting point connecting to pixels in the union
of all closures with cost 0. The cost between two 8-way adjacent pixels is 0, if
they are both on the contour map, or 1 otherwise. The algorithm is then in
essence expanding all closures simultaneously. When it finishes, we connect two
keypoints if their corresponding closures are adjacent after expansion (Fig. 4g).
To balance the expansion rate of each closure, we use a tuple (ci, di) as the entry
for any pixel i in the priority queue, where the primary key ci is the traditional
term for the distance on the graph from i to the origin, and the secondary key
di is the Chebyshev (L∞) distance between i to the center of its closure.

Finally, an observed junction in a 2D image may be an actual tree fork, or
may be just two disconnected, overlapping branches. To deal with the case, for
all points that have 4 or more neighbors, we add an edge between each pair of its
neighbors whose angle is no smaller than 135◦. This leads to an over-complete
connectivity matrix E (Fig. 4h), which we use as our appearance cues.
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Algorithm cluster(Y , r)
Data: Nodes with complex spectra Y = {Yi} and the root’s index r

1 Calculate the free vibration of each node in this tree
2 for each node i do
3 Yi ← Yi ./ Yr

4 end
5 Cluster nodes based on their appearance and frequency
6 Let {Sj}j=1,··· ,k be all k clusters
7 for j = 1, · · · , k do
8 Select subroot rj
9 Call cluster(Y Sj , rj) recursively

10 end
Algorithm 1. Our hierarchical clustering algorithm

Fig. 5. Illustration of our hierarchical clustering algorithm. See Sect. 4.2 for details.

4.2 Inference

Overview with a Toy Example. We start with a high-level overview of our
hierarchical inference algorithm along with a toy tree with three levels of hier-
archy (Fig. 5). As shown in Algorithm 1, given the root, our algorithm first
computes the free vibration of the rest of nodes (Step I), groups them into sev-
eral clusters (Step II), and then recursively finds tree structure for each cluster
(Step III).

In this toy tree with v1 as the root, the algorithm groups the other nodes
into two clusters: (v2, v4, v5) and (v3, v6, v7, . . . , v11), as shown in Fig. 5b. For each
subtree, the algorithm recursively applies itself for finer-level tree structure. Here
in the right branch, we get two level-2 subtrees (v6, v8, v9) and (v7, v10, v11).

Step I: Computing Free Vibration. We first compute the vibration of each
node given the root. Based on Eq. 9, we divide the complex spectrum of each leaf
node by the complex spectrum of the root. Note that under certain frequency,
the complex spectrum of the root might be close to zero. Therefore, a direct
division might magnify the noise. To deal with this, we calculate the spectrum
of each node i after removing the root r via Yi · Y ∗

r /
(|Yr|2 + ε2

)
, where Y ∗

r is
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the complex conjugate of Yr, and ε controls the noise level. This is similar to the
Weinner filter [45]. When ε = 0, We have the normal division as

Yi · Y ∗
r

|Yr|2 =
Yi · Y ∗

r

Yr · Y ∗
r

=
Yi

Yr
. (10)

Step II: Grouping Nodes. We group nodes into clusters {Sj} under the
assumption that nodes in each cluster share similar vibration patterns (com-
plex frequencies) and appearance cues. Each node has an unknown number of
children, we use a Chinese Restaurant Process (CRP) prior [2] over the tree
structure. Let zi be the index of cluster that node i is assigned to, and let
Z = {zi} be the assignment of all nodes. The joint probability of assignment is

P (Z|E, Y ) ∝ PCRP(Z) · Pm(Y |Z) · Pa(E|Z), (11)

where PCRP(·) is the CRP prior, Pm(·) is the likelihood based on motion, and
Pa(·) is the likelihood based on appearance.

Motion Term: we use two statistics of the spectrum: the normalized amplitude
Y n
i = |Yi|/‖Yi‖2 and the phase Y p

i = angle(Yi). Our motion term is

log Pm(Y |Z) =
∑

i

−σ−2
n ‖Y n

i − Cn
zi‖2

2 − σ−2
p ‖Y p

i − Cp
zi‖2

2. (12)

Cn
k and Cp

k are the mean normalized amplitudes and phases of nodes in cluster
k.

Appearance Term: nodes in the same sub-branch are expected to be connected
to each other and to the root. To this end, we define the appearance term as

log Pa(E|Z) =
∑

zi=zj

α · 1(i, j|Z,E) +
∑

i

β · 1(i, r|Z,E), (13)

where 1(i, j) is the indicator function of whether there exists a path between
nodes i and j given the current assignment Z and the estimated connectivity
matrix E (see Sect. 4.1). Given the joint probability in Eq. 11, we run Gibbs
sampling [15] for 20 iterations over each assignment zi.

Step III: Recursion. As shown in the toy example (Fig. 5), for each cluster
Sj , our algorithm selects the node closest to the root r in the Euclidean space
as the subroot rj . It then infers subtree structure for Sj recursively. The whole
inference algorithm takes 3–5 s for a tree of 50 vertices on a Desktop CPU.

5 Evaluations

We now present how we use simulation to verify our formulation (Sect. 3), and
show qualitative and quantitative results on videos of artificial and real trees.
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5.1 Simulation

Based on formulation described in Sect. 3.1, we implemented a tree simulator by
solving Eq. 5 using the Euler Method [9]. As shown in Sect. 4.1, the analytic form
of ODE is very complicated. Therefore, we do not eliminate all the redundant
variables, including the acceleration of the branch (ai and aio), forces between
branches (ri), and angular velocity of each branch (ωi). Instead, we directly
solve Eqs. 1 and 2 numerically. Also, to increase the stability of Euler method in
presence of numerical error, we force the system to have constant total energy for
every time-stepping update. If the system’s energy increases during an update,
we rescale the kinetic and potential energy of each branch to ensure that the
total energy of the system is constant. This makes our simulation robust and
stable. See the supplementary material for the detailed derivation.

Figure 6 shows the vibration modes of a simulated tree (left) with three mode
shapes (right). Here we manually specify the structure of the tree and physical
property of each branch, including mass, stiffness, and length, and numerically
solve for the rotation angle of each branch. The mode of power spectra (the
natural frequencies) of the trunk and two branches matches the three mode
shapes of the tree, which is consistent with the theory in Sect. 3.

Fig. 6. Mode shapes. The left three curves show the power spectra of the trunk and
the two branches. The three mode shapes extracted from vibration are shown on the
right.

5.2 Real, Normal Speed Videos

Data. We record videos of both artificial and real trees. For artificial trees, we
take 3 videos in an indoor lab environment, where wind is generated by a fan.
We take 8 videos of outdoor real trees. All videos are taken at 24 frames per
second by a Canon EOS 6D DSLR camera, with a resolution of 1920 × 1080.

Methods. We compare our full model, which makes use of appearance and
vibration cues jointly (appearance + motion), with a simplified variant, which
uses only appearance information, but ignores all motion signals during inference.
We also compare with three alternative approaches for hierarchical structure
recovery from spatial-temporal motion signals.
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– Appearance + Flow/Tracking: We replace the spatial-temporal feature
in our algorithm by motion recovered by either optical flow or a KLT tracker.

– Hierarchical motion segmentation: We use the popular hierarchical video
segmentation algorithm [17] to obtain image segments and their structure. We
then derive the tree structure from the segment hierarchy.

Fig. 7. Estimated tree structure on real videos. A1–A2: on artificial trees; R1–R8: on
real trees. At bottom, we show cases where appearance is insufficient for inferring the
correct structure. Using vibration signals, our algorithm works well in these cases.

Results. Figure 7 shows that our algorithm works well on real videos. Results
in the bottom row suggest that our algorithm can deal with challenging cases.
Using motion signals, it correctly recovers the structure of occluded twigs, which
is indistinguishable from pure visual appearance.

For quantitative evaluations, we manually label the parents of each node and
use it as ground truth. We use two metrics. In Table 1, we evaluate different
methods in (a) the percentage of nodes whose parents are correctly recovered
and (b) minimum edit distance—the minimum edges that need to be displaced to
make the predicted tree and the ground truth identical. Our algorithm achieves
good performance in general. Including motion cues consistently improves the
accuracy of the inference on videos of all types, and spatial feature significantly
out-performs the raw motion signal.
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Table 1. Results evaluated by the percentage of nodes whose parents are correctly
recovered (top) and the edit distance between reconstruction and ground truth (bot-
tom). Our method outperforms the alternatives in most cases.

Metrics Methods Artificial Real trees High-speed videos Avg.

A1 A2 A3 R1 R2 R3 R4 R5 R6 R7 R8 H1 H2 H3 H4 H5 H6

Acc. (%) MoSeg 33 37 73 50 65 84 56 56 68 70 74 47 57 46 47 43 51 56.3

Appear. 40 31 90 67 59 83 70 66 71 89 85 55 56 62 66 61 69 65.7

A+Flow 43 32 92 79 69 83 85 75 84 95 94 64 58 69 69 72 76 73.5

A+Track 38 46 88 79 63 83 84 83 88 89 93 67 64 66 76 71 76 73.8

Ours 54 45 100 81 76 94 95 83 88 97 94 69 69 72 77 74 70 79.3

Edit Dis. MoSeg 26 16 7 25 22 8 16 20 13 8 15 20 21 24 22 17 15 17.4

Appear. 20 21 3 12 19 5 5 30 9 4 8 16 16 16 16 16 16 13.7

A+Flow 19 13 2 7 13 5 3 12 11 1 6 13 18 11 12 8 8 9.5

A+Track 24 10 2 10 16 6 4 12 8 4 7 13 15 12 10 10 8 10.1

Ours 14 12 0 8 12 2 0 6 4 1 6 10 12 9 6 9 8 7.0

5.3 Real, High-Speed Videos

Experimental Setup. To understand and analyze motion, we take high-speed
videos of trees using an Edgertronic high-speed camera. We captured 1 normal-
speed video (30 FPS) and 5 high-speed videos with a frame rate varying from
60 to 500 FPS, each of which contains 1,000 frames. For each video, we manu-
ally label around 100 interest points and their connections. Intuitively, the root
branches should have higher stiffness and lower natural frequencies. Therefore,
low-frame-rate videos should provide more information about the tree’s main
structure, whose natural frequency is low, and high-frame-rate videos should
provide more information of fast vibrating thin structure.

Evaluation. For evaluation, we first pick two points (P1 and P2 in Fig. 8c) on
two major branches of the tree and compare their power spectra as shown in

Fig. 8. Evaluation of the algorithm on videos with different frame rates. (a) and (b)
shows the power spectra of selected nodes in the input videos captured at different
frame rates, and (c) shows the estimated tree structures. See Sect. 5.2 for more details.



776 T. Xue et al.

Fig. 8a. At 60 FPS, the power spectra of these two nodes are different for a wide
range of frequencies; at 500 FPS, they are only different at lower frequencies, as
the natural frequencies of the main branches are low. We then pick two points
(P3 and P4 in Fig. 8c) on two small branches of the tree and compare their power
spectra (see Fig. 8b). Now in both 60 FPS and 200 FPS videos, their spectra
are similar, and the difference in modes only become significant at 500 FPS.
Figure 8c shows that the estimation errors from low-frame videos (60 or 100 FPS)
on the top-right corner no longer exist when the input is at 500 FPS, indicating
high-speed videos are better for estimating fine structure. All these results are
consistent with our theory. H1 to H6 in Tables 1 refer to videos captured at 30,
60, 100, 200, 400, 500 FPS, respectively.

6 Applications

Our model has wide applications in inferring tree-shaped structure in real-life
scenarios. To demonstrate this, we show two applications: seeing object structure
from shadows, and inferring blood vessels from retinal videos.

Shapes from Shadows. In circumstances like video surveillance, often the
only available data is videos of projections of an object, but not the object
itself. For example, we can see the shadows of trees in the video, but not the
trees themselves. In these cases, it would be of strong interests to reconstruct the
actual shape of the object. Our algorithm deals with these cases well. Among the
eight real videos in Fig. 7, R2 and R3 are videos of tree shadows. Our algorithm
successfully reconstructs the underlying tree structure, as shown in Fig. 7 and
Table 1.

Vessels from Retinal Videos. Our model can contribute to biomedical
research. We apply our model on a retinal video from OcuScience LLC. As
shown in Fig. 9a–b, our algorithm performs well, reconstructing the connection
among retinal vessels despite limited video quality. It achieves a smaller edit
distance (4) compared with A+Flow (7) and A+Track (6).

Fully Automatic Recovery. While we choose to take keypoints as input to
provide users with extra flexibility and to increase prediction accuracy, following

Fig. 9. Our result on a retinal video. (a) A frame from the input video. (b) Our model
reconstructs the structure of blood vessels despite low video quality. (c–d) Results on
fully automatic structure inference, where (c) shows the estimated object skeleton and
(d) shows the object structure inferred by our model.
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the convention in the literature [40], our system can be easily extended to become
fully automatic. Here we provide an additional experiment on the retinal video.
We first apply the segmentation method from Maninis et al . [29] on the first
frame to obtain a segmentation of vessels. We then employ the classical skele-
tonization algorithm from Lee et al . [25] (Fig. 9c), and use the endpoints and
junctions of the obtained skeleton as input keypoints to our model. As shown in
Fig. 9d, our system works well without manual labels.

7 Discussion

In this paper, we have demonstrated that vibration signals in the spectral
domain, in addition to appearance cues, can help to resolve the ambiguity in
tree structure estimation. We designed a novel formulation of trees from physics-
based link models, from which we distilled physical properties of vibration sig-
nals, and verified them both theoretically and experimentally. We also proposed
a hierarchical inference algorithm, using nonparametric Bayesian methods to
infer tree structure. The algorithm works well on real-world videos.

Our derivation makes four assumptions: passive motion, small vibration, no
damping, and a known root. While real trees often satisfy the first two, they
do not have zero damping (damping ratio ranging from 1.2% to 15.4% [22]). In
these cases, our algorithm still successfully recovers their geometry from vibra-
tion. When the root is unknown, our method can discover multiple subtrees
from a virtual root with a uniform motion spectrum. On the other hand, our
model performs less well when assumptions are significantly violated (e.g., large
vibration or an incorrect root).

We see our work as an initial exploration on how spectral knowledge may
help structured inference, and look forward to its potential applications in fields
even outside computer science, e.g., fiber structure estimation.
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