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Abstract. Deep learning based image-to-image translation methods
aim at learning the joint distribution of the two domains and finding
transformations between them. Despite recent GAN (Generative Adver-
sarial Network) based methods have shown compelling results, they are
prone to fail at preserving image-objects and maintaining translation
consistency, which reduces their practicality on tasks such as generating
large-scale training data for different domains. To address this problem,
we purpose a structure-aware image-to-image translation network, which
is composed of encoders, generators, discriminators and parsing nets for
the two domains, respectively, in a unified framework. The purposed net-
work generates more visually plausible images compared to competing
methods on different image-translation tasks. In addition, we quantita-
tively evaluate different methods by training Faster-RCNN and YOLO
with datasets generated from the image-translation results and demon-
strate significant improvement on the detection accuracies by using the
proposed image-object preserving network.
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Object detection - Domain adaptation

1 Introduction

Deep learning pipelines have stimulated substantial progress for general object
detection. Detectors kept pushing the boundaries on several detection datasets.
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However, despite being able to efficiently detect objects seen by arbitrary view-
ing angles, CNN-based detectors are still limited in a way that they could not
function properly when faced with domains significantly different from those
in the original training dataset. The most common way to obtain performance
gain is to go through the troublesome data collection/annotation process. Nev-
ertheless, the recent successes of Generative Adversarial Networks (GANs) on
image-to-image translation have opened up possibilities in generating large-scale
detection training data without the need for object annotation.

Generative adversarial networks [1], which put two networks (i.e., a generator
and a discriminator) competing against each other, have emerged as a powerful
framework for learning generative models of random data distributions. While
expecting GANs to produce an RGB image and its associated bounding boxes
from a random noise vector still sounds like a fantasy, training GANs to translate
images from one scenario to another could help skip the tedious data annotation
process. In the past, GAN-based image-to-image translation methods, such as
Pix2Pix [2], were considered to have limited applications due to the requirement
for pairwise training data. Although these methods yielded impressive results,
the fact that they require pairwise training images largely reduces their practi-
cality for the problem that we aim to solve.

Recently, unpaired image-to-image translation methods have achieved aston-
ishing results on various domain adaptation challenges. Having almost identical
architectures, CycleGAN [3], DiscoGAN [4], and DualGAN [5] made unpaired
image-to-image translation possible through introducing the cycle consistency
constraint. CoGAN [6] is a model which also works on unpaired images, using
two shared-weight generators to generate images of two domains with one ran-
dom noise. UNIT [7] is an extension of CoGAN. Aside from having similar hard
weight-sharing constraints as CoGAN, Liu et al. further implemented the latent
space assumption by encouraging two encoders to map images from two domains
into the same latent space, which largely increases the translation consistency.
These methods all demonstrate compelling visual results on several image-to-
image translation tasks; however, what hinders the capability of these methods
for providing large-scale detection training data, specifically when faced with
translation tasks with a large domain shift, is the fact that these networks often
arrive at solutions where the translation results are indistinguishable from the
the target domain in terms of style, and usually contain corrupted image-objects.

In this paper we propose a structure-aware image-to-image translation net-
work, which allows us to directly benefit object detection by translating existing
detection RGB data from its original domain other scenarios. The contribution of
this work is three-fold: (1) We train the encoder networks to extract structure-
aware information through the supervision of a segmentation subtask, (2) we
experiment on different weight sharing strategy to ensure the preservation of
image-objects during image-translations, and (3) our object-preserving network
provides significant performance gain on the night-time vehicle detection.

We stress particularly on day-to-night image translation not only for the
importance of night-time detection, but also for the fact that day/night image
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translation is one of the most difficult domain transformations. However, our
method is also capable of handling various domain pairs. We train our network
on synthetic (i.e., SYNTHIA [8], GTA dataset [9]) Compared to the competing
methods, the domain translation results of our network significantly enhance
the capability of the object detector for application on both synthetic (i.e.,
SYNTHIA, GTA) and real-world (i.e., KITTI [10], ITRI) data. In addition, we
welcome those who are interested in the ITRI dataset to email us for provision.
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Fig. 1. Overall structure of the proposed image-to-image translation network. X, Y:
image domain X and Y; Z: feature domain; X, preds Ypred predicted segmentation masks;
X, Y: translated results; dotted line implicates soft-sharing, solid line implicates hard-
sharing.

2 Proposed Framework

In unsupervised image-to-image translation, models learn joint distribution
where the network encodes images from the two domains into a shared fea-
ture space. We assume that, for an image to be properly translated to the other
domain, the encoded information is required to contain (1) mutual style informa-
tion between domain A and B, and (2) structural information of the given input
image, as illustrated in Fig. 1. Based on the assumption we design our network
to jointly optimize image-translation and semantic segmentation. Through our
weight-sharing strategy, the segmentation subtask serves as an auxiliary regu-
larization for image-translation.

Let X and Y denote the two image domains, X and Y denote the correspond-
ing segmentation masks, and Z represent the encoded feature space. Our network,
as depicted in Fig. 1, consists of two encoders £, : X — Z and E, : Y — Z,
two generators, G : Z — Y and G, : Z — X, two segmentation generators,
P,:7— Xpred, and P, : Z — ?pred, and two discriminators D, and D, for the
two image domains, respectively. Our network learns image domain translation
in both directions and the segmentation sub-tasks simultaneously. For an input



734 S.-W. Huang et al.

r € X , E, first encodes x into the latent space, and the 256-channel feature
vector is then processed to produce (1) the translated output § via G, and (2)
the semantic representation Zpreq via P,. The translated output ¥ is then fed
through the inverse encoder-generator pair {E,, Gy} to yield the reconstructed
image ... Detailed architecture of our network is given in Table 1.

Table 1. Network architecture for the image-to-image translation experiments. N, K,
and S denote the number of convolution filters, kernel size, and stride, respectively

Layer Encoders Layer info

1 CONV N64, K7, S1

2 CONV, ReLU N128, K3, S2

3 CONV, ReLlU N256, K3, S2

4 RESBLK, ELU N512, K3, S1

5 RESBLK, ELU N512, K3, S1

5 RESBLK, ELU N512, K3, S1

Layer Generators/parsing networks | Layer info

1 RESBLK, ELU N512, K3, S1, hard shared
2 RESBLK, ELU N512, K3, S1, hard shared
3 RESBLK, ELU N512, K3, S1, hard shared
4 RESBLK, ELU N512, K3, S1, hard shared
5 RESBLK, ELU N512, K3, S1, hard shared
6 RESBLK, ELU N512, K3, S1, hard shared
7 DCONV, ReLLU N128, K3, S2, soft shared
8 DCONV, ReLLU N64, K3, S2, soft shared

9 (generator) CONV, Tanh N3, K7, S1

9 (parsing net) | CONV, ReLU N (task specific), K7, S1
10 (parsing net) | CONV, Softmax N6 (task specific), K1, SO
Layer Discriminator Layer info

1 CONV, LeakyReLU N64, K4, S2

2 CONV, LeakyReLU N128, K4, S2

3 CONYV, LeakyReLU N256, K4, S2

3 CONV, LeakyReLU N512, K4, S2

3 CONV, LeakyReLU N512, K4, S1

3 CONYV, Sigmoid N1, K4, S1

2.1 Structure-Aware Encoding and Segmentation Subtask

We actively guide the encoder networks to extract context-aware features by
regularizing them via segmentation subtask so that the extracted 256-channel
feature vector contains not only mutual style information between X and Y
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domains, but also the intricate low-level semantic features of the input image
that are valuable in the preservation of image-objects during translation. The
segmentation loss is formulated as:

Eseg—w(vaEva»X) = Aseg—L1Eanpiataca [l Po (B (x)) — &]1] (1)
+ Aseg—crossentropyBenpaaras [1108(Pr (Ee (€)) = £)]1]

Eseg—y(Pyv E,.Y, f/> = Asey—LlEy~pdam(y) [HPV(EU(Q)) = 9lli] 2)
+ Aseg—crossentropyBympaaracy [1108(Py (Ey (y)) = ) |1]

2.2 Weight Sharing for Multi-task Network

Sharing weights between the generator and parsing network allows the generator
to fully take advantage of the context-aware feature vector. We hard-share the
first 6 residual blocks and soft-share the subsequent two deconvolution blocks
for generators and parsing networks. We experiment on different weight-sharing
strategies, as illustrated in Sect. 3.2, such as hard-share, not sharing the deconvo-
lution blocks, and not sharing the residual blocks, and come to the best sharing
strategy. We calculate the weight difference between deconvolution layers of the
two networks and model the difference as a loss function through mean square
error with target as a zero matrix. The mathematical expression for the soft
weight sharing loss function is given by

L,(we,wp) = —log((we, -wr,/lwe., ll2llwp, [[2)*) 3)

where wg and wp denote the weight vectors formed by the deconvolution layers
of the generator and parsing networks, respectively.

2.3 Cycle Consistency

The cycle consistency loss has been proven quite effective in preventing network
from generating random images in the target domain. We also enforce the cycle-
consistency constraint in the proposed framework to further regularize the ill-
posed unsupervised image-to-image translation problem. The loss function is
given by

Leye(Ery Goy By, Gy, X, Y) = Barpyyo ) [[|Gy (By (G (Bx (2)))) = x[1]

(4)
F Eypiarac UG (Ba(Gy (Ey(y)))) — yll1].

2.4 Adversarial Learning

Our network contains two Generative Adversarial Networks: GAN;:
{Es, Gy, D, }, and GANy: {Ey, Gy, D,}. We apply adversarial losses to both
GANSs, and formulate the objective loss functions as:

Loan, Bz, Ggy Dy, X,Y) = EyNPdam<y) [log D, (y)]

+ Eonpiara 108(1 = Da(Ga(Ex(2))))]
Laan, (Ey, Gy, Dy, Y, X) = Eonpiara [log Dy ()]

F Eynpiaracy 108(1 = Dy(Gy(Ey(y))))]

(5)

(6)
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2.5 Network Learning

We jointly solve the learning problems for the image-translation streams:
{E1,G1} and {E3, G2}, the image-parsing streams: {Ey, P1} and {Es, P2}, and
two GAN networks: GAN; and GANa, for training the proposed network. The
integrated objective function is given as follows:

Liut =Lean(Ey, Gy Dy, X,Y) + Laan(Ey, Gy, Dy, Y, X)
+ )\cyc * Ecyc(Ez7 G:r7 Ey7 Gy7X7 Y)
+ Aseg * (Lseg(Bay P, X, X) + Loeg(Ey, Py, YY)
+ Ao * (Lo, (wa, wp,) + Lo, (wa,,wp,))

(7)

3 Experimental Results

Though many works were dedicated on providing large-scale vehicle datasets
for the research community [11-15], most public are collected in daytime. Con-
sidering that CNN-based detectors highly rely data augmentation techniques to
stimulate performance, training detectors with both day and night images is nec-
essary so as to make them more general. Synthetic dataset, such as SYNTHIA
or GTA dataset, provides diverse on-road synthetic sequences as well as segmen-
tation masks in scenarios such as day, night, snow, etc. As our network requires
both segmentation mask and nighttime image, we conducted the training of our
network with SYNTHIA and GTA datasets. For evaluation purpose, however,
we utilize real-world data such as KITTI and our ITRI datasets.

The performance of the network was further analyzed through training
YOLO [16] and Faster R-CNN (VGG 16-based) [17] detectors with generated
image sets. Aside from revising both detectors to perform 1-class vehicle detec-
tion, all hyper-parameters were the same as those used for training on PASCAL
VOC challenge. The IOU threshold for objects to be considered true-positives is
0.5, where we follow the standard for common object detection datasets. In the
transformation of segmentation Ground-Truth to its counterpart in detection,
we exclude the bounding boxes whose heights lower than 40 pixels or occluded
for more than 75% in the subsequent AP estimation.

3.1 Synthetic Datasets

We first assess the effectiveness of training detectors with transformed images
in both day and night scenarios. We evaluated our network, which is trained
with SYNTHIA, by training detectors with transformed images produced by
our network. As shown in Table2, AugGAN outperforms competing methods
in both day and night scenarios. AugGAN also surpasses its competitors when
trained with GTA dataset, see Table 3. Visually, the transformation results of
AugGAN is clearly better in terms of image-object preservation and preventing
the appearance of artifacts as shown in Figs. 2 and 3.
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Fig. 2. SYNTHIA day-to-night transformation results - GANs trained with
SYNTHIA: first row: SYNTHIA daytime testing images; second row: results of Cycle-
GAN; 3rd row: results of UNIT; 4th row: results of AugGAN

Fig. 3. GTA day-to-night transformation results - GANs trained with GTA:
first row: GTA daytime testing images; second row: outputs of CycleGAN; 3rd row:
outputs of UNIT; 4th row: outputs of AugGAN.
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Table 2. Detection accuracy comparison (AP) - GANs trained with SYNTHIA.
SDTrain/SNTrain: SYNTHIA daytime/nightime training set; SDTest/SNTest: SYN-
THIA daytime/nighttime testing set.

Training | Testing | CycleGAN | UNIT | AugGAN | Detector
SDTrain | SNTest | 36.1 35.2 [39.0 YOLO
SNTrain | SDTest | 33.8 32.6 |38.0 YOLO
SDTrain | SNTest | 65.9 57.2 |72.2 Faster RCNN
SNTrain | SDTest | 65.7 62.7 |70.1 Faster RCNN

Table 3. Detection accuracy comparison (AP) - detectors trained with transformed
images produced by GANs (trained with GTA dataset), and tested with real images.
GTA-D-Train: transformed data with GTA training daytime images as input; GTA-N-
Test: GTA testing nighttime data.

Training Testing CycleGAN | UNIT | AugGAN | Detector
GTA-D-Train | GTA-N-Test | 20.5 23.6 |25.3 YOLO
GTA-D-Train | GTA-N-Test | 54.4 62.5 674 Faster-RCNN

3.2 KITTI and ITRI-Night Datasets

Aside from testing on SYNTHIA and GTA datasets, we also assess the capability
of our network on real world data, such as KITTI, which has been widely used in
assessing the performance of on-road object detectors used in autonomous driv-
ing systems. With the previously trained AugGAN, be it trained with SYNTHIA
or GTA dataset, we transformed the KITTI dataset (7481 images with 6686 of
which contains vehicle instances) [18] to its nighttime version and evaluate the
translation results via detector training. We trained vehicle detectors with the
translated KITTI dataset and tested on our ITRI-Night testing set (9366 images
with 20833 vehicle instances). As experimental result indicates, real-world data
transformed by AugGAN quantitatively and visually achieves better result even
though AugGAN was trained with synthetic dataset, see Table4, Figs.4 and 5.

Table 4. Detection accuracy comparison (AP) - detectors trained with transformed
images produced by GANs (trained with GTA dataset and SYNTHIA), and tested with
real images. KITTI-D2N-S/KITTI-D2N-G: KITTI day-to-night training data gener-
ated by GANs; ITRIN: ITRI-Night dataset.

Training Testing | CycleGAN | UNIT | AugGAN | Detector
KITTI-D2N-S | ITRIN |20.2 19.0 |31.5 YOLO
KITTI-D2N-G | ITRIN | 28.5 20.5 |46.0 YOLO
KITTI-D2N-S | ITRIN |59.6 49.2 |65.6 Faster RCNN
KITTI-D2N-G | ITRIN | 72.0 64.0 |79.3 Faster RCNN
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3.3 ITRI Daytime and Nighttime Datasets

We collected a set of real-driving daytime (25104 images/87374 vehicle instances)
dataset, captured mostly in the same scenario as its our nighttime dataset (9366
images with 20833 vehicle instances). In Table 5, the experiments demonstrate
similar results as in other datasets. The transformed day-to-night training images

Table 5. Detection accuracy comparison (AP) - detectors trained with transformed
images produced by GANs (trained with SYNTHIA/GTA dataset). ITRID-D2N-
S/ITRID-D2N-G: ITRI-day day-to-night training data generated by GANs trained
with SYNTHIA/GTA datasets; ITRIN: ITRI-Night dataset.

Training Testing | CycleGAN | UNIT | AugGAN | Detector
ITRID-D2N-S | ITRIN |35.5 41.3 | 45.3 YOLO
ITRID-D2N-G | ITRIN |37.9 42.6 |44.1 YOLO
ITRID-D2N-S | ITRIN |72.4 74.5 |81.2 Faster RCNN
ITRID-D2N-G | ITRIN | 86.2 85.9 |86.1 Faster RCNN

Fig. 4. KITTI day-to-night transformation results - GANs trained with

SYNTHIA: first row: KITTI images; second row: result of CycleGAN; 3rd row: result
of UNIT}; 4th row: result of AugGAN.

= .

Fig.5. KITTI dataset day-to-night transformation results - GANs trained
with GTA dataset: first row: input images from KITTI dataset; second row: outputs
of CycleGAN; 3rd row: outputs of UNIT; 4th row: outputs of AugGAN
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Fig. 6. ITRI-Day dataset day-to-night transformation results - GANs
trained with SYNTHIA: First row: input images from ITRI-Day dataset; Second
row: outputs of cycleGAN; 3rd row: outputs of UNIT; 4th row: outputs of AugGAN

Fig.7. ITRI-Day dataset day-to-night transformation results - GANs
trained with GTA dataset: first row: input images from ITRI-Day dataset; second
row: outputs of cycleGAN; 3rd row: outputs of UNIT; 4th row: outputs of AugGAN

are proved to be helpful in vehicle detector training. Training images generated
by AugGAN outperforms those by competing methods due to its preservation
in image-objects, with some examples shown in Figs. 6 and 7.
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3.4 Transformations Other Than Daytime and Nighttime

AugGAN is capable of learning transformation across unpaired synthetic and
real domains and only segmentation supervision in domain-A is required. This
increases the flexibility of learning cross-domain adaptation for subsequent detec-
tor training. As shown in Fig.8: 2nd row, our method could learn image trans-
lation from not only synthetic-synthetic, but also synthetic-real domain pairs.

Fig. 8. More image translation cases: 1st column: GTA-day to SYNTHIA; 2nd
column: GTA-day to GTA-sunset; 3rd column: GTA-day to GTA-rain; 4th column:
SYNTHIA-day to ITRI-night

4 Model Analysis

4.1 Segmentation Subtask

In our initial experiment on introducing the segmentation subtask, the pars-
ing network was only utilized in the forward cycle (e.g., only day-to-night). We
later on discovered that our results are improved by utilizing the parsing net-
work to regularize both forward and inverse cycles. As can be seen in Table6,
it is quite obvious that adding regularization to the inverse cycle leads to bet-
ter transformation results which make detectors more accurate. Although using
only single-sided segmentation has already outperformed the previous works,
introducing segmentation in both forward and backward cycles brings further
accuracy improvement for object detection.

Table 6. Detection accuracy comparison (AP) - detectors trained with transformed
data produced by GANSs (trained with SYNTHIA). SDTrain: SYNTHIA daytime train-
ing set, transformed into nighttime; SNTest: SYNTHIA nighttime testing set.

Training | Testing | CycleGAN | UNIT | AugGAN-1 | AugGAN-2 | Detector
SDTrain | SNTest | 36.1 35.2 38.1 39.0 YOLO
SDTrain | SNTest | 65.9 57.2 | 68.7 72.2 Faster RCNN
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4.2 Weight-Sharing Strategy

Our network design is based on the assumption that extracted semantic seg-
mentation features of individual layers, through proper weight sharing, can
serve as auxiliary regularization for image-to-image translation. Thus finding
the proper weight sharing policy came to be the most important factor in our
design. Weighting sharing mechanism in neural networks can be roughly cat-
egorized into soft weight-sharing and hard weight-sharing. Soft weight-sharing
[19] was originally proposed for regularization and could be applied to network

Table 7. Weight-sharing strategy comparison: A, denotes the cosine similarity loss
multiplier, with A, = 0.02 yielded best result. The matrix in this table is the average
precision of Faster RCNN

Training | Testing | Weight-sharing strategy AP - AugGAN
SDTrain | SNTest | Encoder: hard 39.9
SDTrain | SNTest | Encoder: hard; Decoder: hard 57.2
SDTrain | SNTest | Encoder: hard; Decoder: soft (A, = 0.02) | 68.7

Fig. 9. Style transfer and segmentation results for different weight-sharing
strategies: 1st row: input images; 2nd row: style transfer and segmentation results
of hard weight sharing, hard-weighting on encoder only (A, = 0), and hard weighting
sharing in encoder with soft-weight sharing (A, = 0.02) in decoder.
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compression [20]. Recently, hard weight-sharing has been proven useful in gener-
ating images with similar high-level semantics [6]. The policy that we currently
adopt is two-folded: (1) hard-share encoders and residual blocks of the generator-
parsing net pairs, (2) soft-share deconvolution layers of the generator-parsing net
pairs. We came to this setting based on extensive trial and error, and during the
process we realized that both policies are integral for the optimization of our
network. Without hard-sharing the said layers in (1), image-objects tends to be
distorted; Without (2), the network tends to only optimize one of the tasks, see
Table 7 and Fig. 9. In short, our network surpasses competing methods because
our multi-task network can maintain realistic transformation style as well as
preserving image-objects with the help of segmentation subtask.

5 Conclusion and Future Work

In this work, we proposed an image-to-image translation network for generat-
ing large-scale trainable data for vehicle detection algorithms. Our network is
especially adept in preserving image-objects, thanks to the extra guidance of
the segmentation subtask. Our method, though far from perfect, quantitatively
surpasses competing methods for stimulating vehicle detection accuracy. In the
future, we will continue to experiment on different tasks based on this framework,
and our pursuit for creating innovative solutions for the world will continue to
stride.
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