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Abstract. Illumination is a critical element of photography and is essen-
tial for many computer vision tasks. Flash light is unique in the sense
that it is a widely available tool for easily manipulating the scene illumi-
nation. We present a dataset of thousands of ambient and flash illumina-
tion pairs to enable studying flash photography and other applications
that can benefit from having separate illuminations. Different than the
typical use of crowdsourcing in generating computer vision datasets, we
make use of the crowd to directly take the photographs that make up our
dataset. As a result, our dataset covers a wide variety of scenes captured
by many casual photographers. We detail the advantages and challenges
of our approach to crowdsourcing as well as the computational effort to
generate completely separate flash illuminations from the ambient light
in an uncontrolled setup. We present a brief examination of illumina-
tion decomposition, a challenging and underconstrained problem in flash
photography, to demonstrate the use of our dataset in a data-driven
approach.

Keywords: Flash photography · Dataset collection
Crowdsourcing · Illumination decomposition

1 Introduction

Crowdsourcing has been a driving force for computer vision datasets especially
with the rise of data-driven approaches. The typical use of crowdsourcing in this
field has been obtaining answers to high-level questions about photographs [7] or
obtaining ground truth annotations [21] for simple tasks such as segmentation in
a scalable and economical manner. However, commonplace strategies that rely on
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user interaction do not apply to scenarios where complex physical processes are
involved, such as flash/no-flash, short/long exposure, high/low dynamic range, or
shallow/deep depth of field. With the wide availability and high quality of current
mobile cameras, crowdsourcing has a larger potential that includes the collection
of photographs directly. With the motivation of scalability and diversity, we
tackle the challenge of crowdsourcing a computational photography dataset. We
introduce a new approach where the crowd captures the images that make up
the dataset directly, and illustrate our strategy on the flash/no-flash task.

Fig. 1. We introduce a diverse dataset of thousands of photograph pairs with flash-only
and ambient-only illuminations, collected via crowdsourcing.

Illumination is one of the most critical aspects of photography. The scene
illumination determines the dominant aesthetic aspect of a photograph, as well
as control of the visibility of and attention drawn to the objects in the scene.
Furthermore, it is an important subject in visual computing and the availabil-
ity of different illuminations of the same scene allows studying many different
aspects of the photograph such as relighting, white balancing and illumination
separation. However, capturing the same scenes under different illuminations is
challenging, as the illumination is not easily controllable without photographic
studio conditions. With its wide availability, flash is the easiest way for a casual
photographer to alter the scene illumination. Thus, we focus on collecting a
flash/no-flash dataset for demonstrating our crowdsourcing strategy. Similar to
the Frankencamera [1], we use burst photography to capture several images in
quick succession. This allows us to obtain pairs of nearly aligned images under
different conditions; in our case, one is a flash photograph and the other is one
only lit by the ambient light sources existing in the scene.

We present a dataset of thousands of images under ambient illumination
and matching pairs that capture the same scene under only flash illumination.
Figure 1 shows several examples of illumination pairs from our dataset. We have
crowdsourced the collection of photograph pairs that result in a wide variety
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of scenes. This would not have been possible under fully controlled studios. We
detail our approach, the challenges of crowdsourcing the photograph collection,
and the processing pipeline to provide flash and ambient illumination pairs.

We envision that having two separate illuminations can aid in high-level tasks
such as semantic segmentation or single-image depth estimation, as such high-
level information is illumination-invariant. The dataset with image pairs identi-
cal up to illumination can also help with illumination analysis [13] or intrinsic
image decomposition. Additionally, as one of the images in each pair is flash
illumination, we hope that our dataset will encourage development of automatic
image enhancement and lighting manipulation methods for mobile devices such
as [8,27] or support computer vision applications similar to [31].

Illumination analysis has been an important problem in visual computing,
e.g. the classical research problem of intrinsic image decomposition [4,5,20,23]
where an image is decomposed into albedo and shading layers. Our dataset with
two separate illuminations enables a new and related problem, single-image illu-
mination decomposition. We present a brief study of illumination decomposition
to see our dataset in action, where we train a network to decompose a flash
photograph into corresponding ambient and flash illuminations and list the chal-
lenges that arise with this underconstrained problem. We show that although it
is still an unsolved problem, a network trained with our dataset can generalize
to substantially different images.

2 Related Work

Datasets of Separate Illuminations. Capturing the same scene under different
illuminations is a challenging task that typically requires specialized setups and
controlled environments. He and Lau [11] provide a dataset of 120 flash/no-flash
photograph pairs captured with a DSLR camera and a tripod for the applica-
tion of saliency detection. The dataset includes several objects, which define the
salient regions in the image. Hui et al. [12] also provide a small set of 5 flash/no-
flash photograph pairs. Murmann et al. [24] present 14 image sets captured using
their specialized setup, each set consisting of 4 photographs taken under different
flash directions. Krishnan and Fergus [18] also provide flash images taken with
their hardware setup for 5 scenes. Our new dataset is significantly larger than
the previously available examples, which allows its use for more data-demanding
machine learning methods.

Another major difference is that we provide the ambient and flash illumi-
nations separately, while flash photos in most of the previous work are indeed
flash-dominant photos including ambient illumination as well. Weyrich et al. [33]
provided a large dataset of facial images under different illuminations that were
collected using a lighting dome in studio conditions. Separate illuminations have
been provided for outdoor scenes with changing daylight and weather condi-
tions [25]. Vonikakis et al. [32] captured 15 scenes under two separate illumina-
tions in studio conditions. In contrast, we have collected our photographs via
crowdsourcing in the wild, which allows for a larger dataset with a high variety
of scenes.
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Crowdsourced Datasets. Crowdsourcing has been an important tool for gener-
ating large-scale computer vision datasets. The crowd is typically utilized for
tasks like labeling images [7], annotating images for interactive tasks [4,15,17],
or drawing detailed object segmentations [21]. These datasets and many oth-
ers use the crowd to conduct higher-level tasks for a given set of images. In our
data collection setup, however, the crowd takes the photographs themselves. The
main advantage of this approach is the wide variety of the input images that can
be collected. We discuss the challenges that arise with direct data collection via
crowdsourcing further in this paper.

Flash Photography. Previous work processing flash photographs mainly focuses
on the joint processing of flash and no-flash pairs. Petschnigg et al. [27] and
Eisemann and Durand [8] independently proposed the use of a flash photograph
to denoise and improve the corresponding no-flash photograph taken in low-light
conditions. Agrawal et al. [2] similarly use a flash/no-flash pair to remove the
highlights from the flash photograph. In addition to image processing, flash/no-
flash pairs have been used to improve image matting [31], automatic object seg-
mentation [30], image deblurring [35], saliency detection [11], and stereo match-
ing [34]. Recently, such pairs have been shown to be useful for white-balancing
scenes with multiple ambient illuminations [12], and separation of such distinct
light sources [13]. These works point to a wide set of use cases of flash/no-flash
image pairs. By providing a large set of flash/ambient illumination pairs, the
presented dataset enables further studies in these and other areas, as well as
enabling data-driven approaches.

3 A Dataset of Flash and Ambient Illumination Pairs

We introduce a dataset of flash and ambient illumination pairs. Specifically, each
pair consists of a photograph with only ambient illumination in a well-lit indoor
environment, accompanied by the same scene illuminated only with the flash
light.

The illuminations are provided as linear images at 1440 × 1080 resolution
and 12-bit depth. Utilizing the superposition of light when there are multiple
light sources in the scene, the pairs can be used to generate multiple versions of
the same scene with varying lighting. For instance, to simulate a regular flash
photograph taken in a dark environment, the typical use case of flash, a portion
of the ambient illumination can be added to the flash illumination. Figure 3
shows several such variations. The white balance of the two illuminations can
also be altered separately to create more alternatives.

Our dataset consists of more than 2700 illumination pairs of a wide variety of
scenes. We have divided the dataset into 6 loosely defined categories, and several
examples of each category are shown in Fig. 2. Roughly, 12% of the image pairs
are in the category People, 15% in Shelves and Toys categories each, 10% in
Plants, 30% in Rooms and the rest in the generic Objects category.

Previous work in flash photography presents flash/no-flash photograph pairs
taken in dark environments [8,27], and hence the flash photograph contains a
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People Shelves Toys Plants Rooms Objects

Fig. 2. We present a dataset of flash-only illumination with corresponding ambient
illumination. The dataset consists of thousands photograph pairs collected via crowd-
sourcing. The wide variety of images cover loosely-defined categories as listed at the
top of the figure.
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Fig. 3. The flash and ambient illumination pairs can be linearly combined with varying
contributions (α) to simulate a flash photograph taken in darker environments.

portion of the ambient light. One important advantage of our dataset is that the
flash pair does not contain any ambient illumination, making the two illumina-
tions completely separate.

Ideally, obtaining such separate illumination pairs requires a controlled setup
where the ambient illumination can be turned on and off. However, such a con-
trolled setting makes it very challenging to scale the dataset size and limits
the variety of the photographs that can be captured. Instead of a controlled
setup, we use a dedicated mobile application to capture flash/no-flash photo-
graph pairs and then computationally generate the flash-only illumination. Our
setup also enables crowdsourcing of the collection process which in turn increases
the variety of the scenes that are included in our dataset. We detail our collection
procedure in Sect. 4.

We will open our dataset to the public to facilitate further research. Previous
literature in flash photography shows that our dataset can be utilized for study-
ing white balance, enhancement of flash photographs, saliency and more. The
availability of such a dataset enables studying these problems in a data-driven
manner. In addition, the availability of separate illuminations can be utilized for
studying illumination-invariance in a variety of scenarios, as well as opening up
the study of new problems such as illumination decomposition. We provide a
brief examination of illumination decomposition, i.e. estimating the flash illumi-
nation from a single flash photograph, as an example use case of our dataset in
Sect. 5.

4 Dataset Collection

We compute flash-only illumination from a pair of photographs, one taken with
flash and one without. Using the superposition of different illuminants as seen
by the camera, the difference between the flash photograph and the no-flash one
contains the information for the flash illuminant under certain conditions. First
of all, the raw values from the camera are required to correctly estimate the
flash light. The camera parameters such as exposure and white balance must
also match for the two photographs. In addition, the photographs, especially
the no-flash photograph, should not contain saturated pixels. Finally, the two
photographs must be well-aligned.
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In order to allow for crowdsourcing, we needed to devise an easy and uncon-
trolled capture setup. We achieved this with a dedicated mobile application that
takes the photograph pair with a single click. The application saves the raw
image files and allows the user to upload them to a server. We match the image
camera parameters using the photo metadata before computing the flash illumi-
nation. Handheld capture of two consecutive photographs inevitably results in
small misalignments. We computationally align the two photographs before sub-
tracting the no-flash photograph from the flash one. We detail these procedures
and our crowdsourcing framework in the rest of this section.

Illumination Conditions. Unlike the previous work on flash photography
where the photographs were typically taken in dark environments, we would like
to have sufficient ambient lighting in the environment to generate varying illumi-
nation conditions as shown in Fig. 3 as well as to enable a larger set of possible
uses for our dataset. In addition, we would like to reliably estimate the flash
illumination and hence the flash light should be bright enough relative to the
ambient light. This prevents us from taking photographs under daylight, where
the flash light is much weaker compared to the sunlight. Hence, we restrict the
scenes we capture to be indoor environments with sufficient ambient illumina-
tion, and free of directly visible light sources to avoid saturation.

Alignment. The flash and no-flash photographs are sequentially captured by
our mobile app with a half to one second delay between the two exposures.
This results in a small misalignment that must be corrected. However, accurate
and reliable alignment of two images with different illuminations is a challenging
task, as the image features that alignment methods rely on can be quite different
in the presence of the flash light. One particular challenge is the hard shadows
cast by the flash light, which results in strong gradients in one of the images.
Hence, we limit our alignment to be rigid and estimate a homography between
the two images using two different methods. We then review the two alignments
and select the successful one by visual inspection, or remove the pair from the
dataset if both methods fail.

The first method we utilize is the dual inverse compositional alignment algo-
rithm (DIC) [3] from the image alignment toolbox [9]. DIC estimates geometric
and photometric transformations simultaneously and is known for its robustness
against illumination changes. DIC is effective when the ambient illumination is
strong but fails in the presence of hard shadows.

We complement DIC by generating a shadow-free gradient map for both
photographs and using Lucas-Kanade image registration [22] between these rep-
resentations. We observed that the edges of the shadows cast by the flash light
appear colorless when the white balance matches the flash color. We take advan-
tage of this fact to remove the shadow edges, as shown in Fig. 4. We generate
RGB gradient images for the two photographs and convert them to the HSV
color space. We then multiply the saturation and value channels in this rep-
resentation, which effectively diminishes the colorless edges including those of
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Flash / no-flash pair RGB edges Shadow-free Only flash

Fig. 4. For an unaligned flash and no-flash photograph pair (a), we compute the
shadow-free edge representations (c) from the RGB image gradients (b). Inset shows
the edge of the shadow in the flash image (b) disappearing in our representation (c). We
estimate the alignment using the shadow-free representations and subtract the no-flash
image from flash image after alignment to get the flash-only illumination (d).

flash shadows. Although some naturally colorless edges are lost, we are able to
properly align the two photographs using this representation.

Collecting Photograph Pairs via Crowdsourcing. Diversifying images is
important to generate a representative and generalizable dataset. This was a
major advantage that drove us to crowdsource our dataset collection. We used
Amazon’s Mechanical Turk platform to recruit a large and diverse group of
casual photographers. Using the crowdsourcing terminology, we will refer to the
assignments as human intelligence tasks (HITs) and the photographers as work-
ers. We list the major considerations we had to devise to enable the collection
of our dataset in this part.

Framework. One essential component of our crowdsourcing effort was the mobile
application we use to capture the dataset. The mobile application, developed for
iOS devices, enables many casual photographers to participate in our collection
effort from their home. Our HIT definition details our previously listed illu-
mination expectations, provides a link and instructions for our application, and
assigns a unique identifier per HIT. The worker is asked to install the application
and enter the HIT identifier in the application. After taking the photographs,
the worker uploads them to our server via the application. We then match the
identifiers from Mechanical Turk and our servers to confirm the uploads. An
example HIT definition is provided in the supplementary material.

Scene Categories. After initial trials, we observed that specifying scene cate-
gories guides the workers to find suitable scenes and increases the participation
and the quality of the photographs. This lead us to define the first five cate-
gories shown in Fig. 2. These categories are loosely defined to allow the workers
to easily find matching scenes around them, typically in their homes or work-
places. For most categories, we request the workers to take ten pictures per HIT.
We give more details for the people category below. Not all workers strictly fol-
lowed the category definitions, hence, we added the last category objects for the
photographs that do not fit elsewhere.
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People Category. The workers in Mechanical Turk typically work alone. This
makes the HITs that require photographing other people much more challenging.
In addition, the movement of subjects between the two photographs makes the
alignment procedure even harder. Nevertheless, as one of the main use-cases of
flash is portrait photography and facial image editing is an important topic in
research, it is an important category to cover and, therefore, we defined the
respective HITs more carefully.

A unique instruction is that instead of asking for ten photographs of different
people, we ask the workers to take five photographs of the same person from
different angles. This makes the worker complete each HIT much more quickly
and makes the HIT more attractive. We ask the worker to instruct their subject
to be still during capture, but subjects often fail to do so especially due to the
flash light. This makes the percentage of portrait photographs we have to discard
higher than average. Having five pictures of the same person increases the chance
of using at least one of the poses and hence does not waste the worker’s effort to
recruit subjects. We also ask the worker to explain our dataset collection effort
and get an explicit confirmation from the subject to participate in the study, as
well as to avoid photographing minors.

Compensation and Noise. Not all the photographs we received were included in
our dataset. Some common issues were photographs in very dark or very bright
environments, non-static scenes and motion-blurred images. Other than such
issues, there were cases of workers not uploading any photographs or uploading
the same scenes many times. In such cases, we contacted the workers directly
and usually got a positive response. We retained about a third of the images we
received from the workers. We set the compensation as one U.S. dollar per HIT.

5 The Dataset in Action: Illumination Decomposition

Previous work in flash photography focuses on improving the low ambient light-
ing using a matching flash pair [8,27] or combining multiple flash images [24].
While these methods focus on estimating one high-quality image by combining
multiple images, data-driven approaches allow tackling more difficult, but also
more general problems.

To test our dataset, we present a data-driven approach to illumination decom-
position as a baseline for future work. The goal of illumination decomposition
is to estimate and separate the ambient and flash illuminations from a single
flash photograph. We define the application scenario to include typical flash
photographs that are taken in dark environments. We generate the input images
by combining the illumination pairs in our dataset to simulate such dark envi-
ronments as shown in Fig. 3. The ambient and flash illuminations then serve as
the ground truth.

Illumination decomposition is an underconstrained problem, even when one
of the illuminations is coming from the flash. We present several strategies we
found to be useful in tackling this problem and present the challenges that arise.
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We use a standard architecture to test our dataset and show that although the
decomposition problem is far from being solved, a network trained with our
dataset can be helpful in editing legacy photographs.
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Fig. 5. The network structure with the losses
shown in orange. (Color figure online)

Network Structure and Imple-
mentation Details. We adopt
the architecture proposed by
Isola et al. [14] for generic
image-to-image translation and
experiment with several alterna-
tives for the loss function and
the estimation on ratio images
as detailed in the rest of this
section. The generator part of
the network utilizes the U-net
256 network scheme [28] with
eight convolution-deconvolution
layer pairs and skip connections
to pass full-resolution informa-
tion to the next stage. It predicts
the ratio image r̂a, which is used to reconstruct the estimated ambient illumi-
nation Îa. We use Adam solver [16] with an initial learning rate of 2 · 10−4 to
train the main network and a lower rate of 2 · 10−6 to train the discriminator.
We decrease the learning rate by a factor of 10 every 30 epochs and we termi-
nate the training after 150 epochs which takes approximately 2 h on our setup.
The forward pass including all other processing is fast enough for interactive
applications (Fig. 5).

Ratio Images. We observed that directly estimating the ambient or flash
illuminations results in loss of high-frequency details and periodic noise struc-
tures. Trying to correct such artifacts via joint filtering such as the domain
transform [10] either does not remove such artifacts, or oversmooths the image.
Instead of a direct estimation of the illuminations, we chose to first estimate the
ratio image an intermediate representation. Inspired by the use of ratio images
in facial relighting literature [6,26], we define the output of our network as the
ratio between the input image Im and the ambient illumination Ia. Although
the exact definition of how this ratio is computed does not have a substantial
effect on the network, we define the ratio to be in range [0, 1] and compute the
estimated ambient illumination accordingly:

ra =
2 · (Ia + 1)
3 · (Im + 1)

− 1
3

Ia =
3 · (ra + Im ra) + Im − 1

2
(1)

The artifacts mentioned above also appear in the ratio images, but when the
domain transform is applied, we are able to remove them without the loss of



654 Y. Aksoy et al.

a) Input (HD) b) Raw output c) Raw ratio d) Filtered ratio e) Filtered output f ) HD output

Fig. 6. High resolution input image (a) is downsampled and fed into the network. The
ambient illumination image output may contain a residual noise (b) which would stand
out in an otherwise smooth ratio image (c). We filter the ratio image while preserving
its edges using the input image as a guide (d). The reconstructed image is free of noise
(e). Same approach is used to upsample the output to the original high resolution (f).

high-frequency details in the output ambient illumination. Another advantage
of using ratio images is the ease of upscaling. The network works on a downscaled
version of the image and we upscale the ratio image before the domain filtering.
This way, we are able to generate high-resolution outputs without the need of
feeding the image at full resolution to the network. Figure 6 shows our workflow.

Dataset Augmentation. At each epoch, we generate the input images by
randomly sampling α (Fig. 3) to determine how dark the ambient illumination is
compared to the flash light. This makes the learning process more robust against
different illumination conditions. We also randomly crop, rotate, flip and scale
the images at each epoch before feeding them into the network.

Loss Functions. The original Pix2Pix [14] combines an adversarial loss A and
an L1 loss R:

R = ‖r̂a − ra‖1, (2)

which we refer to as the ratio loss, as the output of the network is the ratio image
in our approach. In addition to these, we also define an L2 loss that applies to
both the estimated ambient illumination and the flash illumination Îf = Im− Îa:

E = ‖Îa − Ia‖22 + ‖Îf − If‖22. (3)

We observed that, while the two terms of Eq. 3 are correlated, including the
losses on both flash and ambient illuminations leads to better performance.

We have also tested a perceptual loss P proposed by Sajjadi et al. [29] that
preserves the perceived image quality:

P = ‖P(Îa, Ia)‖22 + ‖P(Îf , If )‖22 (4)

where P extracts the features from a pre-trained network [19].
We combine a subset of these losses in our experiments with empirically

determined weights 100 · R + 1000 · E + 1000 · P + A. We have tested the quan-
titative results for several combinations of these loss functions and the results
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are summarized in Table 1. We observed that the use of adversarial loss A leads
to a strong high-frequency noise. Using the perceptual loss P, on the other hand,
results in a color shift for some image regions. Removing loss R or E generally
led to a result similar to the baseline RE as they are correlated metrics. However,
we got best visual as well as quantitative results using both losses.

Table 1. Test errors for the estimated ambient illuminations

α PSNR (dB) SSIM

RE R E REP REA RE R E REP REA

0.1 15.220 14.801 14.708 15.163 14.099 0.583 0.516 0.505 0.567 0.334

0.3 18.046 17.338 17.288 17.676 16.431 0.720 0.638 0.634 0.694 0.427

0.5 20.261 19.199 19.333 19.568 18.116 0.804 0.707 0.716 0.773 0.495

Qualitative Evaluation. Figure 7 shows several examples that demonstrate
the strengths and shortcomings of the presented illumination decomposition
method. For instance, the network estimates a uniform illumination for the ambi-
ent illumination, and a dark background and bright foreground for the flash illu-
mination (green highlights in the figure). Even when the ambient illumination
in the input image is very dim, such as in (1, 2, 5), the estimated ambient illu-
mination is uniform and bright. The highlights from the flash light are typically
well-detected by the network, as seen in examples (3, 4).

However, there are several limitations. The flash highlights may bleed into
the estimated ambient illumination (2, 5) or the flash (1) and ambient (4) shad-
ows cannot be reliably separated. After analyzing our results, we believe that a
more dedicated approach to facial images would be useful. In some images, our
network is better at identifying the highlights on the face but misses more sub-
tle ambient lighting details (3). In others, it may fail to generate a satisfactory
ambient light, especially if the environment is dark (5). With the wide variety of
images, some unusual examples also arise. For example, our network works well
in decomposition in (6) but gets confused around the mirror image of the flower.

These examples demonstrate the difficulty of illumination decomposition.
We argue that its underconstrained nature underscores the need for data-driven
approaches, as they can potentially learn the strong priors for the flash illumi-
nation from many examples to better constrain the problem.

Generalization. We present illumination decomposition examples in old pho-
tographs that were scanned from film to test if our dataset can train the net-
work for a generalizable decomposition. We apply inverse gamma mapping to
linearize the input images before feeding them into the network. In Fig. 8, from
a single image, we recreate the photographs with varying ambient illumination
we showed in Fig. 3 using the actual flash and ambient illuminations. This way,
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Input image Flash illum. Estimated flash Ambient illum. Est. ambient

Fig. 7. Several illumination decomposition examples using our dataset. The highlighted
areas, red squares demonstrating the limitations, are discussed further in the text.
(Color figure online)
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Fig. 8. The estimated ambient and flash illuminations can be used to generate a wide
range of possible combination of two illuminations.

Fig. 9. Input images that were originally taken on film (a) are decomposed into ambient
(c) and flash (d) illuminations. The decomposed illuminations can be edited separately
and then combined for a more pleasant look (b).

using illumination decomposition, an artist can change the ambient illumina-
tion as desired. The decomposed illuminations can also be used to create more
pleasant photographs by softening the flash light. Figure 9 shows such examples,
where the decomposed flash illuminations are edited to match the color of the
ambient illumination, and the ambient illuminations are made stronger to give
the photographs a more natural look.

These examples demonstrate that, even with a modest size of several thou-
sands of pairs, by allowing a wide range of augmentations such as varying ambi-
ent contribution to the image, our dataset can be used to train a network that
can generalize to previously unseen images.

6 Conclusion

We presented a large-scale collection of crowdsourced flash and ambient illumina-
tion pairs using smartphone cameras. Our dataset is unique in that it provides
complete separation of flash and ambient illuminations in its photo collection
unlike previous datasets, and consists of a significantly larger number of pho-
tographs. We provide the details of our data collection pipeline, which leverages
crowdsourcing and the increasing capabilities of current smartphones, that is
designed to be used in unconstrained environments. We demonstrate the use
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of our dataset in the problem of single-image illumination decomposition and
provide considerations for further research in this avenue.

Acknowledgements. We would like to thank Alexandre Kaspar for his support on
crowdsourcing, James Minor and Valentin Deschaintre for their feedback on the text,
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