
Joint Representation and Truncated
Inference Learning for Correlation Filter

Based Tracking

Yingjie Yao1 , Xiaohe Wu1 , Lei Zhang2 , Shiguang Shan3 ,
and Wangmeng Zuo1(B)

1 Harbin Institute of Technology, Harbin 150001, China
yaoyoyogurt@gmail.com, xhwu.cpsl.hit@gmail.com, wmzuo@hit.edu.cn

2 University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, PA 15213, USA
cszhanglei@gmail.com

3 Institute of Computing Technology, CAS, Beijing 100049, China
sgshan@ict.ac.cn

Abstract. Correlation filter (CF) based trackers generally include two
modules, i.e., feature representation and on-line model adaptation. In
existing off-line deep learning models for CF trackers, the model adap-
tation usually is either abandoned or has closed-form solution to make it
feasible to learn deep representation in an end-to-end manner. However,
such solutions fail to exploit the advances in CF models, and cannot
achieve competitive accuracy in comparison with the state-of-the-art CF
trackers. In this paper, we investigate the joint learning of deep represen-
tation and model adaptation, where an updater network is introduced for
better tracking on future frame by taking current frame representation,
tracking result, and last CF tracker as input. By modeling the represen-
tor as convolutional neural network (CNN), we truncate the alternat-
ing direction method of multipliers (ADMM) and interpret it as a deep
network of updater, resulting in our model for learning representation
and truncated inference (RTINet). Experiments demonstrate that our
RTINet tracker achieves favorable tracking accuracy against the state-
of-the-art trackers and its rapid version can run at a real-time speed
of 24 fps. The code and pre-trained models will be publicly available at
https://github.com/tourmaline612/RTINet.

Keywords: Visual tracking · Correlation filters
Convolutional neural networks · Unrolled optimization

1 Introduction

In recent years, correlation filters (CFs) have achieved noteworthy advances as
well as state-of-the-art performance in visual tracking. Generally, the CF-based

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01240-3 34) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11213, pp. 560–575, 2018.
https://doi.org/10.1007/978-3-030-01240-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01240-3_34&domain=pdf
http://orcid.org/0000-0002-3533-1569
http://orcid.org/0000-0001-6884-9121
http://orcid.org/0000-0002-4424-4942
http://orcid.org/0000-0002-8348-392X
http://orcid.org/0000-0002-3330-783X
https://github.com/tourmaline612/RTINet
https://doi.org/10.1007/978-3-030-01240-3_34
https://doi.org/10.1007/978-3-030-01240-3_34


Joint Representation and Truncated Inference Learning 561

approaches learn CFs on feature representation for model adaptation along with
an image sequence. Therefore, the advancement of CF-based tracking perfor-
mance is mainly driven by the improvement on both feature representation and
CF learning model. The development of feature representation has witnessed the
evolution from handcrafted HOG [16] and ColorNames (CN) [11] to deep con-
volutional neural network (CNN) features [7,22,26]. And their combination has
also been adopted [6,10]. Meanwhile, the learning models have also been contin-
uously improved with the introduction of spatial regularization [7–9], continuous
convolution [10], target response adaptation [2], context regularization [23], tem-
poral regularization [20], and other sophisticated learning models [6,17,34].

Motivated by the unprecedented success of CNNs [14,19,27,28] in computer
vision, it is encouraging to study the off-line training of deep CNNs for feature
representation and model adaptation in CF trackers. Unfortunately, model adap-
tation in CF tracking usually requires to solve a complex optimization problem,
and is not trivial to be off-line trained together with deep representation. To
enable off-line training of deep representation specified for visual tracking, the
Siamese network solutions [1,4,29] are suggested to bypass the model adapta-
tion by learning a matcher to discriminate whether a patch is matched with the
exemplar image annotated in the first frame. In [1,4,29], the tracker is fixed
since the first frame, and cannot adapt to the appearance temporal variation
of target. For joint off-training of deep representation and model adaptation,
Valmadre et al. [30] adopt the original CF form due to its model adaptation has
the closed-form solution and can be interpreted as a differentiable CNN layer.
Instead of directly taking model adaptation into account, Guo et al. [13] suggest
a dynamic Siamese network for modeling temporal variation, while Choi et al.
[5] exploit the forward-pass of meta-learner network to provide new appearance
information to Siamese network. These approaches, however, fail to exploit the
continuous improvement on CF models [7,8,10,17], and even may not achieve
comparable tracking accuracy with the deployment of advanced CF models on
deep features pre-trained for classification and detection tasks.

In response to the aforementioned issues, this paper presents a bi-level opti-
mization formulation as well as a RTINet architecture for joint off-line learning
of deep representation and model adaptation in CF-based tracking. To exploit
the advances in CF tracking, the lower-level task adopts a more sophisticated
CF model [17] by incorporating background-aware modeling, which can learn
CFs with limited boundary effect from large spatial supports. And we define
the upper-level objective on future frame for task-driven learning and improving
the tracking accuracy. With unrolled optimization, we truncate the alternating
direction method of multipliers (ADMM) for solving the lower-level task to form
our RTINet, which can be interpreted as an updater network based on the deep
representation provided by another representor network. Therefore, our RTINet
model enables the end-to-end off-line training of both deep representation and
truncated inference. Furthermore, task-driven learning of truncated inference
is also helpful in improving the effectiveness of the baseline CF tracker [30].
Experiments show that combining CNN with advanced CF tracker can benefit



562 Y. Yao et al.

tracking performance, and the joint learning of deep representation and trun-
cated inference also improves tracking accuracy. In comparison with state-of-
the-art trackers, our RTINet tracker achieves favorable tracking accuracy, and
its rapid version can achieve a real time speed of 24 fps.

To sum up, the contribution of this work is three-fold:

1. We present a framework, i.e., RTINet, for off-line training of deep represen-
tation and model adaptation. Instead of combining CNN with the standard
CF tracker [30], we show that the combination with the advanced CF tracker
(i.e., BACF [17]) can improve the tracking performance with a large margin.

2. The model adaptation of the advanced CFs generally requires to solve a com-
plex optimization problem, making it difficult to jointly train the representor
and updater networks. To tackle this issue, we design the updater network by
unrolling the ADMM algorithm, and define the loss on future frame to guide
the model learning.

3. Experiments show that our RTINet achieves favorable accuracy against state-
of-the-art trackers, while its rapid version can perform at real time speed.

2 Related Work

Deep CNNs have demonstrated excellent performance in many challenging vision
tasks [12,27], and inspire numerous works to adopt deep features in CF based
trackers [6,7,22]. These methods simply use the feature representation generated
by CNNs pre-trained for image classification, which, however, are not tailored
to visual tracking. Several Siamese networks, e.g., SINT [29], GOTURN [15],
and SiameseFC [1], have been exploited for the off-line learning of CNN feature
extractor for tracking, but both the feature extractor and tracker are fixed for
the first frame, making them generally perform inferior to state-of-the-arts.

As a remedy, Guo et al. [13] and Choi et al. [5] learn to on-line update the
feature extractor for adapting to appearance variation during tracking. Instead
of learning to update the feature extractor, Valmadre et al. [30] adopt the simple
CF model to off-line learn deep representation. Due to that the original CF has
the closed-form solution, it can be interpreted as a differentiable CNN layer and
enables the joint learning of deep representation and model adaptation. These
aforementioned approaches fail to exploit the continuous improvement on CF
models [7,8,10,17], and cannot compete with the advanced CF models based on
deep features.

Another related work is the meta-tracker by Park et al. [25] which automat-
ically learns fast gradient directions for online model adaptation of an existing
tracker (e.g., MDNet [24]). In contrast, our RTINet focuses on the joint off-
line learning of deep representation and model adaptation in CF-based tracking.
Moreover, most advanced CF trackers are formulated as constrained optimiza-
tion, which cannot be readily solved by gradient descent as meta-tracker [25]
does. Therefore, we truncate the ADMM algorithm for solving BACF [10,17]
to design the updater network, and then present our RTINet that enables the
end-to-end off-line training of both deep representation and truncated inference.



Joint Representation and Truncated Inference Learning 563

Furthermore, off-line learning of truncated inference also benefits the improve-
ment on effectiveness of the baseline optimization algorithm [32,33].

3 Proposed Method

In this section, we present our RTINet approach for joint off-line training of deep
representation and model adaptation in CF trackers. To this end, we first briefly
revisit a recent CF tracker, i.e., BACF [17], to deliver some insights, and then
introduce the formulation, network architecture, and learning of our RTINet.

3.1 Revisiting BACF

Let zt ∈ R
m×n×L and ft denote the feature representation of the current frame

xt, and the CFs adopted at frame t, respectively. In CF based trackers, tracking
can be performed by first computing the response map

∑L
l=1 zt,l � ft,l as the

cross-correlation between zt and ft, and then locating the target based on the
maximum of the response map. Here, � denotes the convolution operator, and the
cross-correlation can be efficiently performed with the Fast Fourier Transform
(FFT), making CFs very encouraging and intensively studied in visual tracking.
The original CF model updates the CFs by solving the following problem,

min
f

1
2

∥
∥
∥
∥
∥
yt −

L∑

l=1

zt,l � fl

∥
∥
∥
∥
∥

2

+
λ

2

L∑

l=1

‖fl‖2, (1)

where yt is a Gaussian shaped function based on the tracking result at frame t,
and λ is the regularization parameter.

Recently, many advanced CF models have been suggested to improve the orig-
inal CF, resulting in continuous performance improvement on visual tracking.
Here we take BACF [17] as an example, which learns CFs by better exploiting
real negative samples via background-aware modeling. The BACF model can be
equivalently formulated as,

min
f ,h

1
2

∥
∥
∥
∥
∥
yt −

L∑

l=1

zt,l � fl

∥
∥
∥
∥
∥

2

+
λ

2
‖h‖2, s.t. fl = M�hl, (2)

where M is a binary selection matrix to crop the center patch of an image. The
BACF model can be efficiently solved using the Alternating Direction Method
of Multipliers (ADMM). Accordingly, the augmented Lagrangian function of
Eq. (2) can be expressed as,

L(f ,h,µ)=
1

2

∥
∥
∥
∥
∥
yt−

L∑

l=1

zt,l�fl

∥
∥
∥
∥
∥

2

+
λ

2
‖h‖2+

L∑

l=1

µ�
l (fl−M�hl)+

ρ

2

L∑

l=1

‖fl−M�hl‖2, (3)



564 Y. Yao et al.

where µ denotes the Lagrange multiplier, and ρ is the penalty parameter. By
introducing g = 1

ρµ, the optimization on {f ,h} of Eq. (3) can be equivalently
formed as,

L(f ,h,g)=
1
2

∥
∥
∥
∥
∥
yt−

L∑

l=1

zt,l�fl

∥
∥
∥
∥
∥

2

+
λ

2
‖h‖2+

ρ

2

L∑

l=1

‖fl−M�hl + gl‖2. (4)

The ADMM algorithm can then be applied to alternatingly update h, g and f ,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h(k+1) = arg min
h

λ
2 ‖h‖2+ρ

2

∑L
l=1 ‖f (k)l −M�hl + g(k)

l ‖2
g(k+1)

l = g(k)
l + f (k)l − M�h(k+1)

l

f (k+1) = arg min
f

1
2

∥
∥
∥
∥yt −

L∑

l=1

zt,l � fl

∥
∥
∥
∥

2

+ ρ
2

∑L
l=1 ‖fl−M�h(k+1)

l + g(k+1)
l ‖2

(5)

We note that the subproblems on f (k+1) and h(k+1) have closed-form solutions.
Once the solution f∗ to Eq. (2) is obtained, the CFs adopted at frame t + 1 can
then be attained with the linear interpolation updating rule defined as,

ft+1 = (1 − η)ft + ηf∗ (6)

where η denotes the on-line adaptation rate.
Based on the formulation and optimization of BACF [17], we further explain

its motivations to the extension of CFNet [30] and the joint off-line learning of
deep representation and model adaptation:

1. In CFNet, the deep representation is integrated with the simplest CF
tracker [16] for offline training. Note that many advanced CF models, e.g.,
BACF [17], can significantly outperform the simple CF in terms of track-
ing accuracy. Thus, it is natural to conjecture that the combination of deep
representation and BACF can result in improved tracking performance.

2. One reason that CFNet only considers the conventional CF is that it has
closed-form solution and can be interpreted as a differentiable CNN layer.
As for BACF, the solution to Eq. (2) defines an implicit function of the fea-
ture representation zt and model parameter λ, restricting its integration with
CNN representation. Fortunately, when the number of iterations is fixed (i.e.,
truncated inference [32,33]), the ft+1 from Eqs. (5) and (6) can then be repre-
sented as an explicit function of the feature representation and model param-
eter. Therefore, by unrolling the ADMM optimization of BACF, it is feasible
to facilitate the end-to-end off-line learning of truncated inference for visual
tracking.

3. Moreover, BACF is performed on the handcrafted features in [17]. Denote
by ψ(·;WF ), a fully convolutional network with parameters WF . Thus, by
letting zt = ψ(xt;WF ), both deep representation and truncated inference
can be jointly off-line learned from annotated sequences.

Motivated by the above discussions, we in the following first introduce a bi-level
optimization framework for joint learning of deep representation and truncated
inference, and then present the architecture and learning of our RTINet.



Joint Representation and Truncated Inference Learning 565

3.2 Model Formulation

Suppose zt = ψ(xt;WF ) is the deep representation of xt, where WF denotes
the parameters of the representor network ψ(·;WF ). Naturally, we require that
the learned CFs ft+1 = ηf∗ + (1 − η)ft should be effective in tracking the target
of the future frame. Thus, the integration of BACF and deep representation can
be formulated as a bi-level optimization problem,

min
λ,ρ,M,η

∥
∥
∥
∥
∥
yt+1 −

L∑

l=1

zt+1,l � (ηf∗
l + (1 − η)ft,l)

∥
∥
∥
∥
∥

2

,

s.t. f∗ = arg min
f

∥
∥
∥
∥
∥
yt −

L∑

l=1

zt,l � fl

∥
∥
∥
∥
∥

2

+ λ‖h‖2,

s.t. fl = M�hl

(7)

However, f∗ defines an implicit function of zt, and ft+1, making it difficult to
compute the gradient.

With the unrolled ADMM optimization, when the number of iterations K is
fixed, all the f (1), . . . , f (K), and ft+1 can be represented as the functions of zt, yt,
and ft. For joint learning of deep representation and truncated inference, we also
slightly modify the BACF model and ADMM algorithm to make that the model
parameters λ and M, algorithm parameters ρ and η are both iteration-wise
and learnable, i.e., Θ = {Θ(1), . . . , Θ(K)} with Θ(k) = {λ(k),M(k), ρ(k), η(k)}.
To improve the robustness of the learned tracker, we require that ft+1 can also
be applied to the (t + 1)-th frame. To ease the training, we further introduce
f (k)t+1 = η(k)f (k) + (1 − η(k))ft, and require that f (k)t+1 also performs well. Taking
all the aforementioned factors into account, we present the whole RTINet model
for joint learning of representation and truncated inference as

min L(WF , Θ) =
K∑

k=1

∥
∥
∥
∥
∥
yt+1 −

L∑

l=1

ψl(xt+1;WF ) � f (k)t+1,l

∥
∥
∥
∥
∥

2

(8)

where

f (k)t+1 = FInt(f (k), ft; η(k)) = η(k)f (k) + (1 − η(k))ft, (9)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(k) = Fh(f (k−1),g(k−1); λ(k), ρ(k),M(k))

=
(

λ(k)I+ρ(k)
(

M(k)M(k)�⊗IL

))−1

ρ(k)
(

M(k)⊗IL

) (

f (k−1)+g(k−1)
)

g
(k)
l = Fg(g(k−1), f (k−1),h(k);M(k))

= g
(k−1)
l + f

(k−1)
l − M(k)�h

(k)
l

f̂
(k)
l = Ff (zt,yt,g

(k),h(k); ρ(k),M(k))

=
ẑ∗

t,l ◦ q̂

ρ(k) +
∑L

l=1 ẑ
∗
t,l ◦ ẑt,l

, q̂ = ρ(k)ĥ
(k)
l −ρ(k)ĝ

(k)
l + ẑt,l ◦ ŷt

(10a)

(10b)

(10c)



566 Y. Yao et al.

where ·̂ = F(·) denotes the FFT of a signal, ⊗ indicates the Kronecker product,
IL is an identity matrix of size L × L and ĥ(k)

l = F(M(k)�h(k)
l ). f (k) can be

further obtained by the inverse FFT of f̂ (k). In the first iteration, f (0) and g(0)

are initialized as zeros.
To sum up, our RTINet consists of two subnetworks: (i) a representor network

to generate deep representation zt = ψ(xt;WF ), and (ii) an updater network
to update the CF model ft+1 = f (K)

t+1 = φ(zt,yt, ft;Θ). While the representor
network adopts the architecture of fully convolutional network, the updater net-
work is recursively defined based on Eqs. (9)–(10c). More detailed explanation
on the representor and updater architecture will be given in the next subsection.

Fig. 1. Overview of the RTINet architecture, which includes a representor network
and an updater network. In the inference learning, we compute h, g and f recursively
following Eqs. (9)–(10c) in each stage.

3.3 Architecture of RTINet

Figure 1 provides an overview of the RTINet architecture, which includes a rep-
resentor network and a updater network. For the representor network ψ(·;WF ),
we adopt the first three convolution (conv) layers of the VGG-M [3]. ReLU non-
linearity and local response normalization are employed after each convolution
operation, and the pooling operation is deployed for the first two conv layers.
To handle different sizes of targets, we resize the patches to 224 × 224 as inputs
and produce the feature map with the size of 13 × 13 × 512.

As for the updater network φ(zt,yt, ft;Θ), we follow the unrolled ADMM
optimization to design the network architecture. As shown in Fig. 1, given
{zt,yt}, we initialize f (0) = 0 and g(0) = 0. In the first stage of the updater net-
work, (i) the node Fh(f ,g) takes f (0) and g(0) as input to generate h(1), (ii) the
node Fg(g, f ,h) takes g(0), f (0), and h(1) as input to generate g(1), and finally
(iii) the node Ff (z,y,g,h) takes zt, yt, g(1) and h(1) as input to generate f (1).
By repeating K stages, we can obtain f (K), and then the node FInt(f , ft) takes
f (K) and ft as input to generate ft+1. Note that all the nodes Fg, Fh, Ff , and FInt

are differentiable. Thus, with the annotated video sequences, both the updater



Joint Representation and Truncated Inference Learning 567

network and the representor network can be end-to-end trained by minimizing
the model objective in Eq. (8).

3.4 Model Learning

In this subsection, we present a stage-wise learning scheme to learn the model
parameters WF and Θ = {Θ(k)}k=1,2,··· ,K . After the first (k′−1) stages of learn-
ing, we can obtain the current model parameters WF and {Θ(k)}k=1,2,··· ,(k′−1).
Denote by Θ(k′) = {λ(k′),M(k′), ρ(k

′), η(k′)}. To guide the model learning, we
define the stage-wise loss function as,

Jk′ =

∥
∥
∥
∥
∥
yt+1 −

L∑

l=1

zt+1,l � f (k
′)

t+1,l

∥
∥
∥
∥
∥

2

. (11)

Then we introduce the gradient computation which is used to update model
parameters with the stochastic gradient descent (SGD) algorithm.

According to Eqs. (9)–(10c), we have the following observations:

(a) f(
k′)

t+1 is a function of f (k
′), ft and η(k′);

(b) h(k′) is a function of f(k′−1), g(k′−1), λ(k′), ρ(k′) and M(k′);
(c) g(k′) is a function of g(k′−1), f(k′−1), h(k′) and M(k′);
(d) f(k′) is a function of zt, yt, h(k′), g(k′), ρ(k′) and M(k′).

Combined these observations with Eq. (11), we can obtain the gradient of
Jk′ w.r.t. Θ(k′) in the k′-th stage, i.e., ∇

Θ(k′)Jk′ =
(
∇

η(k
′)Jk′ ,∇

ρ(k
′)Jk′ ,∇

M(k′)Jk′ ,

∇
λ(k

′)Jk′
)

.

Specifically, for each parameter in Θ(k′), we have,
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇
η(k

′)Jk′ = ∇
f
(k′)
t+1

Jk′∇
η(k

′) f
(k′)
t+1

∇
ρ(k

′)Jk′ = ∇
f(k

′)Jk′∇
ρ(k

′) f
(k′) + ∇

h(k′)Jk′∇
ρ(k

′)h
(k′)

∇
M(k′)Jk′ = ∇

f(k
′)Jk′∇

M(k′) f
(k′)+∇

g(k
′)Jk′∇

M(k′)g
(k′)+∇

h(k
′)Jk′∇

M(k′)h
(k′)

∇
λ(k′)Jk′ = ∇

h
(k′)
t+1

Jk′ · ∇
λ(k′)h

(k′)
t+1

(12)

The derivations of ∇
f(k

′)Jk′ , ∇
g(k

′)Jk′ and ∇
h(k

′)Jk′ are presented in the sup-
plementary materials.

Furthermore, Jk′ should also be used to update the model parameters WF

and {Θ(k)}k=1,2,··· ,(k′−1) for the sake of joint representation and truncated infer-

ence learning. Thus, we also give the gradient of Jk′ w.r.t. h(k′−1), g(k′−1), and
f(k′−1) as follows,

⎧
⎪⎪⎨

⎪⎪⎩

∇
h(k

′−1)Jk′ = ∇
g(k

′−1)Jk′∇
h(k

′−1)g(k′−1) + ∇
f(k

′−1)Jk′∇
g(k

′−1)f(
k′−1)

∇
g(k

′−1)Jk′ = ∇
g(k

′)Jk′∇
g(k

′−1)g(k′) + ∇
h(k

′)Jk′∇
g(k

′−1)h(k′)

∇
f(k

′−1)Jk′ = ∇
g(k

′)Jk′∇
f(k

′−1)g(k′) + ∇
h(k

′)Jk′∇
f(k

′−1)h(k′)
(13)



568 Y. Yao et al.

Please refer to the supplementary material for the detail of the derivation. There-
fore, we can back-propagate the gradient to the (k′ − 1), . . . , 1 layers and the
representor network ψ(·;WF ). After the learning of the k′-th stage, we can
further conduct the (k′ + 1)-th stage-wise training by learning Θ(k′+1) and fine-
tuning WF and {Θ(k)}k=1,2,··· ,k′ until the ending of the K-th stage-wise training.
Finally, all the model parameters WF and Θ are adopted for target localization
and model adaptation during the on-line tracking process.

4 Experiments

In this section, we first describe the implementation details, then compare with
the baseline trackers highly relevant to our approach. For comprehensive anal-
ysis, ablation studies are conducted to investigate the effect of the joint feature
representation learning and stage-wise training scheme. Finally, we compare the
proposed RTINet with state-of-the-art trackers on the OTB-2015 [31], TB-50 [31]
(i.e., the 50 more challenging sequences from OTB-2015), TempleColor-128 [21]
and VOT2016 [18] datasets. Our approach is implemented in MATLAB 2017a
using MatConvNet library, and all the experiments are run on a PC equipped
with an Intel i7 CPU 4.0 GHz, 32 GB and a single NVIDIA GTX 1080 GPU.

4.1 Implementation Details

Training Set. To train the RTINet, we employ the 2015 edition of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC2015) dataset, which consists
of more than 4,500 videos from 30 different object categories. For each video, we
pick up 20 successive frames in which the target sizes are not larger than 50% of
the image size. Then, 2,000 sequences are randomly chosen for training and the
rest are used as the validation set. To avoid the influence of target distortion, we
crop the square region centered at the target with the size of 5

√
WH × 5

√
WH,

where W and H represent the width and height of the target, respectively. And
the cropped regions are further resized to 224 × 224 as the input of the RTINet.

Training Details. Since it is not trivial to train the RTINet with all the param-
eters directly, we decouple the training of the representor network and updater
network into two steps: (1) We firstly keep the representor network fixed and
train the updater network in a greedily stage-wise manner. As for the stage k, we
initialize the hyper-parameters of the updater network (i.e., λ(k), ρ(k), η(k) and
M(k)) with the trained parameters in the previous stage k−1. Then the updater
network is trained with 50 epochs with all the parameters in the previous stages
fixed. (2) After the stage-wise training of the updater network, we apply another
50 epochs to jointly train the representor network and updater network.

During training, we initialize the convolution layers of the representor net-
work with the pre-trained VGG-M model [3]. As for the model parameters, we
set λ(0), ρ(0), η(0) and M(0) in the first stage of the updater network as 1, 1,
0.013 and the binary selection matrix, respectively. We use the stochastic gra-
dient descent (SGD) as the optimizer with the mini-batch size of 16, and the
learning rate is exponentially decayed from 10−2 to 10−5.



Joint Representation and Truncated Inference Learning 569

Table 1. Comparison with the baseline CFNet variants on OTB-2015.

Trackers CFNet-conv1 CFNet CFNet-conv1-Rep CFNet-Rep RTINet-conv1 RTINet

AUC 53.6 56.8 54.8 58.0 64.3 68.2
FPS 84 75 82.7 68 23.3 9.0

Table 2. Comparison with the baseline BACF variants on OTB-2015.

Trackers BACF BACF-VGGM BACF-Rep RTINet-VGGM stdBACF-Rep RTINet

AUC 61.5 63.1 64.0 66.5 64.2 68.2
FPS 35.3 6.1 6.5 8.9 7.0 9.0

4.2 Comparison with CFNet

The most relevant methods to our RTINet is CFNet [30], which is also proposed
for the joint learning of deep representation and CF tracker. In comparison, the
updater network of our RTINet is designed based on the unrolled optimization
of BACF [17]. Here, we evaluate two variants of the proposed method: RTINet
with three convolution layers and its rapid version, i.e., RTINet-conv1 with one
convolution layer, and compare them with CFNet, CFNet-conv1, and their two
variants with features extracted by RTINet representor, i.e., CFNet-conv1-Rep
and CFNet-Rep on OTB-2015. Following the protocols in [31], we report the
results in terms of area under curve (AUC) and tracking speed in Table 1. And
we have two observations. (1) The CFNet variants with RTINet features per-
form better than CFNet-conv1 and CFNet with an AUC gain of 1.2% and 1.2%,
respectively, thereby showing the effectiveness and generalization of the deep
features learned by RTINet. (2) In terms of AUC, both RTINet variants per-
form favorably against their counterparts, indicating that RTINet is effective in
learning feature representation and truncated inference. In particular, RTINet
brings an AUC gain of 11.4% over CFNet on the OTB-2015 dataset. As for the
rapid version, RTINet-conv1 also outperforms its baseline CFNet-conv1 by a
gain of 10.7%. RTINet even achieves an AUC of 68.2% on OTB-2015, outper-
forming other trackers with a large margin. We owe the improvements to both
the introduction of the advanced BACF tracker and truncated inference into the
RTINet framework.

We also report the average FPS of different trackers. While the best speed
belongs to the CFNet-conv1 (84 fps) and CFNet-conv1-Rep (82.7 fps), RTINet
runs at 9 fps and achieves the state-of-the-art tracking accuracy. Actually, a
large part of computational cost in RTINet comes from the deeper CNN feature
extraction. When conv1 feature is adopted, and RTINet-conv1 achieves a real
time speed of 24 fps while still performing favorably against CFNet.



570 Y. Yao et al.

Table 3. The AUC scores of RTINet by training with different number of stages.

Number of stages 1 2 3 4 5 6 7 8 9 10

Basketball 62.0 75.9 69.1 64.3 69.4 69.1 68.9 68.9 68.8 68.8

BlurCar1 77.1 83.0 81.2 81.1 80.6 80.7 80.5 80.4 80.3 80.3

CarDark 76.2 85.7 83.3 82.9 82.2 82.1 81.6 81.7 82.2 82.3

Human4 44.1 57.0 55.6 57.7 61.5 51.0 52.2 51.5 52.0 52.3

Toy 60.1 61.1 63.1 62.8 62.1 61.9 62.8 62.8 62.7 63.0

OTB-2015 59.6 68.2 67.2 67.2 66.3 66.0 65.6 66.3 66.0 66.2

4.3 Ablation Studies

In this section, we analyze in depth the effect of joint feature representation and
truncated inference learning as well as stage-wise training.

Joint Learning. To investigate the effect of joint learning, we decouple the
feature representation and truncated inference learning, which results in four
variants of RTINet: BACF-VGGM (BACF with the fixed convolutional feature
from pre-trained VGG-M), BACF-Rep (BACF with the learned RTINet rep-
resentation), RTINet-VGGM (RTINet with the fixed convolution feature from
pre-trained VGG-M) and the full RTINet model. Besides, we also apply the
learned RTINet representation and model parameters λ, η and M to the stan-
dard BACF, resulting in stdBACF-Rep. Table 2 shows the AUC scores of the
default BACF with HOG features, and the BACF variants on OTB-2015.

From Table 2, it can be seen that RTINet and RTINet-VGGM improve the
AUC scores significantly in comparison with the corresponding BACF variants.
This can be attributed to that the truncated inference learning in updater net-
work does benefit the tracking performance. Moreover, RTINet also improves
the performance of RTINet-VGGM by an AUC gain of 1.7%, and BACF-Rep
obtains a gain of 0.9% over BACF-VGGM, validating the effectiveness of repre-
sentation learning. It is worth noting that, in our RTINet the inference learning
improves the performance more than the feature learning, implying that pre-
trained VGG-M does have good representation and generalization ability. To
sum up, both the learned feature representation and truncated inference are
helpful in improving tracking accuracy, which together explain the favorable
performance of our RTINet.

Stage-Wise Learning. In Sect. 3, we present a stage-wise training scheme to
learn model parameters. In particular, we solve the BACF [17] formulation using
the truncated ADMM optimization. Thus, we analyse the effect of stage number
on tracking performance. Table 3 gives the average AUC score of RTINet on all
sequences as well as several representative ones by setting different number of
stages on the OTB-2015 dataset. RTINet with one stage performs poorly with
the AUC of 59.6%, even lower than the BACF (61.5%). This is reasonable due
to that RTINet only with one stage is similar to the simple CF rather than the



Joint Representation and Truncated Inference Learning 571

advanced BACF model. Benefited from the advanced BACF, RTINet achieves
significantly better performance within 2–5 iterations for most sequences. The
best AUC score of 68.2% of RTINet is attained with two stages on OTB-2015,
indicating that efficient solver can be learned. It can also be found that increasing
number of stages causes moderate decrease on AUC. One possible reason is
that for smaller number of stages, RTINet focuses on minimizing upper loss in
Eq. (7) and benefits accuracy. For larger number of stages, RTINet may begin to
minimize lower loss in Eq. (7) instead of accuracy.

Fig. 2. (a) The learned λ, ρ, η for each stage. (b) Visualization of M for the first two
stages. (c) Evaluation on the number of stages used for testing with an off-line trained
10-stage RTINet.

Visualization of Learned Parameters. Parameters at all stages are off-line
trained and then keep fixed during tracking. Figure 2(a) shows the plots of the
learned stage-wise λ, ρ, η used in Table 3. It can be noted that the values of λ, ρ, η
become stable from the fourth stage. From Table 3, the best tracking accuracy
is attained when the stage number is two. Thus, we present the visualization
of the learned Ms for the first two stages in Fig. 2(b). From Fig. 2(a) and (b),
we have two observations: (1) each stage has its specific parameter values, (2)
the learned Ms relax the binary cropping operation which is slightly different
with the M adopted in BACF. We also note that both the M in BACF and our
learned Ms are resized to the feature map size in tracking.

Effects of Convergence on Tracking. Generally, the ADMM algorithms are
adopted to resolve the constrained convex optimization problem with a guarantee
of convergence. Thus, it is interesting to discuss the effect of iteration numbers
after training RTINet with a fixed number of stages. To this end, we train a
10-stage RTINet and test it on the OTB-2015 by using different number of
iterations in tracking. From Fig. 2(c), the best tracking accuracy is obtained
after 4 iterations. Then RTINet may focus on minimizing the lower loss and
more iterations does not bring any increase on accuracy. Figure 2(c) also shows
the plot of tracking speed. Comparing Table 3 and Fig. 2(c), it can be seen that
direct training RTINet with small K is better than first training a 10-stage
RTINet and then testing it with small iterations.



572 Y. Yao et al.

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e
Success plots of OPE

ECO [0.648]
MDNet [0.645]
RTINet [0.637]
MetaSDNet [0.627]
C-COT [0.620]
MetaCREST [0.590]
DSiamM [0.561]
DeepSRDCF [0.560]
BACF [0.559]
STAPLE_CA [0.538]
SINT [0.533]
CFNet [0.530]
SiameseFC [0.516]

(a) TB-50

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

ECO [0.687]
RTINet [0.682]
MDNet [0.678]
C-COT [0.673]
MetaSDNet [0.658]
DeepSRDCF [0.635]
MetaCREST [0.632]
BACF [0.615]
DSiamM [0.605]
STAPLE_CA [0.600]
SiameseFC [0.582]
SINT [0.577]
CFNet [0.568]

(b) OTB-2015

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
uc

ce
ss

 r
at

e

Success plots of OPE

RTINet [0.602]

ECO [0.597]

C-COT [0.574]

ECO_HC [0.549]

DeepSRDCF [0.537]

SRDCF [0.517]

Staple [0.509]

BACF [0.498]

CFNet [0.441]

(c) TempleColor-128

Fig. 3. Overlap success plots of different trackers on the TB-50, OTB-2015 and
TempleColor-128 datasets.

4.4 Comparison with the State-of-the-art Methods

We compare RTINet with several state-of-the-art trackers, including CF-based
trackers (i.e., ECO [6], C-COT [10], DeepSRDCF [7], BACF [17], STAPLE-
CA [23]) and learning-based CNN trackers (i.e., MDNet [24], MetaSDNet [25],
MetaCREST [25], SiameseFC [1], DSiamM [13] and SINT [29]). Note that all
the results are obtained by using either the publicly available codes or the results
provided by the authors for fair comparison. Experiments are conducted on TB-
50 [31], OTB-2015 [31], TempleColor-128 [21] and VOT-2016 [18]. On the first
three datasets, we follow the OPE protocol provided in [31] and present the
success plots ranked by the AUC scores. On VOT-2016, we evaluate the trackers
in terms of accuracy, robustness and expected average overlap (EAO).

OTB-2015 and TB-50. Figure 3(a) and (b) shows the success plots of the
competing trackers the OTB-2015 and TB-50 benchmarks. And the proposed
RTINet is ranked in top-3 on the two datasets, achieves comparable performance
with the top trackers such as ECO and MDNet [24]. Moreover, RTINet obtains
an AUC score of 68.2% on OTB-2015, outperforming its counterparts CFNet
and BACF by a margin of 11.4% and 6.7%, respectively. In Fig. 3, we also com-
pare RTINet with the recently proposed Meta-Trackers [25] (i.e., MetaSDNet
and MetaCREST). Again our RTINet performs better than both MetaSDNet
and MetaCREST by the AUC score. And even the rapid version RTINet-conv1
outperforms MetaCREST, and is comparable to MetaSDNet. On the more chal-
lenging sequences in TB-50, our RTINet is still on par with the state-of-the-art
ECO and ranks the second among the competing trackers. Specifically, RTINet
performs better than the other learning-based trackers, including SiameseFC [1],
DSiamM [13] and SINT [29], and surpasses its baseline CFNet [30] by 10.7%. In
comparison to CFNet and BACF, the superiority of RTINet can be ascribed to
the incorporation of the advanced BACF model, and the joint learning of deep
representation and truncated inference. Finally, we analyze the performance with
respect to attributes. RTINet performs in top-3 on 6 of the 11 attributes and is on
par with the state-of-the-arts on the other attributes. Detailed results are given



Joint Representation and Truncated Inference Learning 573

Table 4. Comparison with the state-of-the-art trackers in terms of EAO, Robustness,
and Accuracy on VOT-2016 dataset

Trackers ECO C-COT DeepSRDCF SRDCF HCFT Staple BACF RTINet

EAO 0.374 0.331 0.276 0.247 0.220 0.295 0.233 0.298
Accuracy 0.54 0.52 0.51 0.52 0.47 0.54 0.56 0.57
Robustness 0.72 0.85 1.17 1.50 1.38 1.35 1.88 1.07

in the supplementary materials. The results further validates the effectiveness of
our proposed RTINet.

TempleColor-128. Figure 3(c) shows the success plots on TempleColor-128.
RTINet performs favorably against ECO with an AUC score of 60.2%, and
achieves significant improvements over BACF and C-COT, by a gain of 10.4%
and 2.8%, respectively. In particular, compared with its counterpart CFNet,
RTINet improves the performance with a large margin of 16.1%. The results fur-
ther demonstrate the effectiveness of joint representation and truncated inference
learning.

VOT2016. Quantitative results on VOT2016 are also be presented in terms
of accuracy, robustness and EAO in Table 4. RTINet achieves promising per-
formance and performs much better than the BACF, SRDCF and DeepSRDCF
both in terms of accuracy and robustness. In particular, it obtains the best result
on accuracy with a value of 0.57, and performs the third-best on robustness and
EAO. It is worth noting that, RTINet performs favorably to ECO by accuracy
but is inferior by robustness, which may be ascribed to that only the accuracy
is considered in the training loss in Eq. (8) of RTINet.

5 Conclusion

This paper presents a RTINet framework for joint learning of deep representa-
tion and model adaptation in visual tracking. We adopt the deep convolutional
network for feature representation and integrate the CNN with advanced BACF
tracker. To solve the BACF in the CNN architecture, we design the model adap-
tation network as truncated inference by unrolling the ADMM optimization of
the BACF model. Moreover, a greedily stage-wise learning scheme is introduced
for the joint learning of deep representation and truncated inference from the
annotated video sequences. Experimental results on three tracking benchmarks
show that our RTINet tracker achieves favorable performance in comparison
with the state-of-the-art trackers. Besides, our rapid version of RTINet can run
in real-time (24 fps) at a moderate sacrifice of accuracy. By taken BACF as an
example, our RTINet sheds some light on incorporating the advances in CF
modeling for improving the performance of learning-based trackers, and thus
deserves in-depth investigation in future work.



574 Y. Yao et al.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant Nos. 61671182 and 61471146.

References

1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-
convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48881-3 56

2. Bibi, A., Mueller, M., Ghanem, B.: Target response adaptation for correlation
filter tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9910, pp. 419–433. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46466-4 25

3. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the
details: delving deep into convolutional nets. In: BMVC (2014)

4. Chen, K., Tao, W.: Once for all: a two-flow convolutional neural network for visual
tracking. TCSVT PP, 1 (2017)

5. Choi, J., Kwon, J., Lee, K.M.: Deep meta learning for real-time visual tracking
based on target-specific feature space. arXiv:1712.09153 (2017)

6. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution oper-
ators for tracking. In: CVPR, pp. 21–26 (2017)

7. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features
for correlation filter based visual tracking. In: ICCV Workshop, pp. 58–66 (2015)

8. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially reg-
ularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)

9. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Adaptive decontami-
nation of the training set: a unified formulation for discriminative visual tracking.
In: CVPR, pp. 1430–1438 (2016)

10. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation
filters: learning continuous convolution operators for visual tracking. In: Leibe, B.,
Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1 29

11. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color
attributes for real-time visual tracking. In: CVPR, pp. 1090–1097 (2014)

12. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10593-2 13

13. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic
siamese network for visual object tracking. In: ICCV, pp. 1–9 (2017)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

15. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression
networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46448-0 45

16. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. TPAMI 37(3), 583–596 (2015)

17. Kiani Galoogahi, H., Fagg, A., Lucey, S.: Learning background-aware correlation
filters for visual tracking. In: CVPR, pp. 1135–1143 (2017)

https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-46466-4_25
https://doi.org/10.1007/978-3-319-46466-4_25
http://arxiv.org/abs/1712.09153
https://doi.org/10.1007/978-3-319-46454-1_29
https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-46448-0_45
https://doi.org/10.1007/978-3-319-46448-0_45


Joint Representation and Truncated Inference Learning 575

18. Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua,
G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48881-3 54

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

20. Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.H.: Learning spatial-temporal regu-
larized correlation filters for visual tracking. In: CVPR (2018)

21. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking:
algorithms and benchmark. TIP 24(12), 5630–5644 (2015)

22. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for
visual tracking. In: ICCV, pp. 3074–3082 (2015)

23. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In:
CVPR, pp. 1396–1404 (2017)

24. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: CVPR, pp. 4293–4302 (2015)

25. Park, E., Berg, A.C.: Meta-tracker: fast and robust online adaptation for visual
object trackers. arXiv:1801.03049 (2018)

26. Qi, Y., et al.: Hedged deep tracking. In: CVPR, pp. 4303–4311 (2016)
27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv:1409.1556 (2014)
29. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In:

CVPR, pp. 1420–1429 (2016)
30. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-End

representation learning for correlation filter based tracking. In: CVPR, pp. 5000–
5008 (2017)

31. Wu, Y., Lim, J., Yang, M.H.: Object Tracking Benchmark. TPAMI 37(9), 1834–
1848 (2015)

32. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI.
In: NIPS, pp. 10–18 (2016)

33. Zuo, W., Ren, D., Gu, S., Lin, L., Zhang, L., et al.: Discriminative learning of
iteration-wise priors for blind deconvolution. In: CVPR, pp. 3232–3240 (2015)

34. Zuo, W., Wu, X., Lin, L., Zhang, L., Yang, M.H.: Learning support correlation
filters for visual tracking. TPAMI (2018)

https://doi.org/10.1007/978-3-319-48881-3_54
http://arxiv.org/abs/1801.03049
http://arxiv.org/abs/1409.1556

	Joint Representation and Truncated Inference Learning for Correlation Filter Based Tracking
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Revisiting BACF
	3.2 Model Formulation
	3.3 Architecture of RTINet
	3.4 Model Learning

	4 Experiments
	4.1 Implementation Details
	4.2 Comparison with CFNet
	4.3 Ablation Studies
	4.4 Comparison with the State-of-the-art Methods

	5 Conclusion
	References




