
SphereNet: Learning Spherical
Representations for Detection and

Classification in Omnidirectional Images

Benjamin Coors1,3(B), Alexandru Paul Condurache2,3, and Andreas Geiger1

1 Autonomous Vision Group, MPI for Intelligent Systems and University
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Abstract. Omnidirectional cameras offer great benefits over classical
cameras wherever a wide field of view is essential, such as in virtual
reality applications or in autonomous robots. Unfortunately, standard
convolutional neural networks are not well suited for this scenario as the
natural projection surface is a sphere which cannot be unwrapped to
a plane without introducing significant distortions, particularly in the
polar regions. In this work, we present SphereNet, a novel deep learning
framework which encodes invariance against such distortions explicitly
into convolutional neural networks. Towards this goal, SphereNet adapts
the sampling locations of the convolutional filters, effectively reversing
distortions, and wraps the filters around the sphere. By building on reg-
ular convolutions, SphereNet enables the transfer of existing perspec-
tive convolutional neural network models to the omnidirectional case.
We demonstrate the effectiveness of our method on the tasks of image
classification and object detection, exploiting two newly created semi-
synthetic and real-world omnidirectional datasets.

1 Introduction

Over the last years, omnidirectional imaging devices have gained in popularity
due to their wide field of view and their widespread applications ranging from
virtual reality to robotics [10,16,21,27,28]. Today, omnidirectional action cam-
eras are available at an affordable price and 360◦ viewers are integrated into
social media platforms. Given the growing amount of spherical imagery, there
is an increasing interest in computer vision models which are optimized for this
kind of data.

The most popular representation of 360◦ images is the equirectangular projec-
tion where latitude and longitude of the spherical image are mapped to horizontal
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(a) 360◦ Cameras (b) 360◦ Image (c) Regular Kernel (d) SphereNet Kernel

Fig. 1. Overview. (a+b) Capturing images with fisheye or 360◦ action camera results
in images which are best represented on the sphere. (c) Using regular convolutions
(e.g., with 3 × 3 filter kernels) on the rectified equirectangular representation (see
Fig. 2b) suffers from distortions of the sampling locations (red) close to the poles. (d)
In contrast, our SphereNet kernel exploits projections (red) of the sampling pattern
on the tangent plane (blue), yielding filter outputs which are invariant to latitudinal
rotations. (Color figure online)

and vertical grid coordinates, see Figs. 1 and 2 for an illustration. However, the
equirectangular image representation suffers from heavy distortions in the polar
regions which implies that an object will appear differently depending on its
latitudinal position. This presents a challenge to modern computer vision algo-
rithms, such as convolutional neural networks (CNNs) which are the state-of-
the-art solution to many computer vision tasks.

While CNNs are capable of learning invariances to common object transfor-
mations and intra-class variations, they would require significantly more param-
eters, training samples and training time to learn invariance to these distor-
tions from data. This is undesirable as data annotation is time-consuming and
annotated omnidirectional datasets are scarce and smaller in size than those col-
lected for the perspective case. An attractive alternative is therefore to encode
invariance to geometric transformations directly into a CNN, which has been
proven highly efficient in reducing the number of model parameters as well as
the required number of training samples [4,29].

In this work, we present SphereNet, a novel framework for processing omni-
directional images with convolutional neural networks by encoding distortion
invariance into the architecture of CNNs. SphereNet adjusts the sampling grid
locations of the convolutional filters based on the geometry of the spherical
image representation, thus avoiding distortions as illustrated in Figs. 1 and 2. The
SphereNet framework applies to a large number of projection models including
perspective, wide-angle, fisheye and omnidirectional projection. As SphereNet
builds on regular convolutional filters, it naturally enables the transfer of CNNs
between different image representations by adapting the sampling locations of
the convolution kernels. We demonstrate this by training object detectors on
perspective images and transferring them to omnidirectional inputs. We provide
extensive experiments on semi-synthetic as well as real-world datasets which
demonstrate the effectiveness of the proposed approach for image classification
and object detection.
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In summary, this paper makes the following contributions:

• We introduce SphereNet, a framework for learning spherical image represen-
tations by encoding distortion invariance into convolutional filters. SphereNet
retains the original spherical image connectivity and, by building on regular
convolutions, enables the transfer of perspective CNN models to omnidirec-
tional inputs.

• We improve the computational efficiency of SphereNet using an approxi-
mately uniform sampling of the sphere which avoids oversampling in the
polar regions.

• We create two novel semi-synthetic and real-world datasets for object detec-
tion in omnidirectional images.

• We demonstrate improved performance as well as SphereNet’s transfer learn-
ing capabilities on the tasks of image classification and object detection and
compare our results to several state-of-the-art baselines.

2 Related Work

There are few deep neural network architectures specifically designed to operate
on omnidirectional inputs. In this section, we review the most related approaches.

Khasanova et al. [14] propose a graph-based approach for omnidirectional
image classification. They represent equirectangular images using a weighted
graph, where each image pixel is a vertex and the weights are designed to
minimize the difference between filter responses at different image locations.
This graph structure is processed by a graph convolutional network, which
is invariant to rotations and translations [15]. While a graph representation
solves the problem of discontinuities at the borders of an equirectangular image,
graph convolutional networks are limited to small graphs and image resolu-
tions (50 × 50 pixels in [15]) and have not yet demonstrated recognition perfor-
mance comparable to regular CNNs on more challenging datasets. In contrast,
our method builds on regular convolutions, which offer state-of-the-art perfor-
mance for many computer vision tasks, while also retaining the spherical image
connectivity.

In concurrent work, Cohen et al. [3] propose to use spherical CNNs for clas-
sification and encode rotation equivariance into the network. However, often full
rotation invariance is not desirable: similar to regular images, 360◦ images are
mostly captured in one dominant orientation (i.e., it is rare that the camera
is flipped upside-down). Incorporating full rotation invariance in such scenar-
ios reduces discriminative power as evidenced by our experiments. Furthermore,
unlike our work which builds on regular convolutions and is compatible with
modern CNN architectures, it is non-trivial to integrate either graph or spher-
ical convolutions into network architectures for more complex computer vision
tasks like object detection. In fact, no results beyond image classification are
provided in the literature. In contrast, our framework readily allows for adapt-
ing existing CNN architectures for object detection or other higher-level vision
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tasks to the omnidirectional case. While currently only few large omnidirectional
datasets exist, there are many trained perspective CNN models available, which
our method enables to transfer to any omnidirectional vision task.

Su et al. [30] propose to process equirectangular images with regular con-
volutions by increasing the kernel size towards the polar regions. However, this
adaptation of the convolutional filters is a simplistic approximation of distor-
tions in the equirectangular representation and implies that weights can only
be shared along each row, resulting in a significant increase in model parame-
ters. Thus, this model is hard to train from scratch and kernel-wise pre-training
against a trained perspective model is required. In contrast, we retain weight
sharing across all rows and columns so that our model can be trained directly
end-to-end. At the same time, our method better approximates the distortions
in equirectangular images and allows for perspective-to-omnidirectional repre-
sentation transfer.

One way of mitigating the problem of learning spherical representations are
cube map projections as considered in [19,22]. Here, the image is mapped to
the six faces of a cube which are considered as image planes of six virtual per-
spective cameras and processed with a regular CNN. However, this approach
does not remove distortions but only minimizes their effect. Besides, additional
discontinuities at the patch boundaries are introduced and post-processing may
be required to combine the individual outputs of each patch. We avoid these
problems by providing a suitable representation for spherical signals which can
be directly trained end-to-end.

Besides works on distortion invariance, several works focus on invariances
to geometric transformations such as rotations or flips. Jaderberg et al. [11],
introduce a separate network which learns to predict the parameters of a spatial
transformation of an input feature map. Scattering convolution networks [1,25]
use predefined wavelet filters to encode stable geometric invariants into networks
while other recent works encode invariances into learned convolutional filters
[4,9,29,31]. These works are orthogonal to the presented framework and can be
advantageously combined.

Several recent works also consider adapting the sampling locations of convo-
lutional networks, either dynamically [5] or statically [12,18]. Unlike our work,
these methods need to learn the sampling locations during training, which
requires additional model parameters and training steps. In contrast, we take
advantage of the geometric properties of the camera to inject this knowledge
explicitly into the network architecture.

3 Method

This section introduces the proposed SphereNet framework. First, we describe
the adaptation of the sampling pattern to achieve distortion invariance on the
surface of the sphere (Sect. 3.1). Second, we propose an approximation which
uniformly samples the sphere to improve the computational efficiency of our
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method (Sect. 3.2). Finally, we present details on how to incorporate SphereNet
into a classification model (Sect. 3.3) as well as how to perform object detection
on spherical inputs (Sect. 3.4).

3.1 Kernel Sampling Pattern

The central idea of SphereNet is to lift local CNN operations (e.g. convolution,
pooling) from the regular image domain to the sphere surface where fisheye or
omnidirectional images can be represented without distortions. This is achieved
by representing the kernel as a small patch tangent to the sphere as illustrated in
Fig. 1d. Our model focuses on distortion invariance and not rotation invariance,
as in practice 360◦ images are mostly captured in one dominant orientation.
Thus, we consider upright patches which are aligned with the great circles of the
sphere.

More formally, let S be the unit sphere with S2 its surface. Every point
s = (φ, θ) ∈ S2 is uniquely defined by its latitude φ ∈ [−π

2 , π
2 ] and longitude

θ ∈ [−π, π]. Let further Π denote the tangent plane located at sΠ = (φΠ , θΠ).
We denote a point on Π by its coordinates x ∈ R

2. The local coordinate system
of Π is hereby centered at s and oriented upright. Let Π0 denote the tangent
plane located at s = (0, 0). A point s on the sphere is related to its tangent plane
coordinates x via a gnomonic projection [20].

While the proposed approach is compatible with convolutions of all sizes,
in the following we consider a 3 × 3 kernel, which is most common in state-
of-the-art architectures [8,26]. We assume that the input image is provided in
equirectangular format which is the de facto standard representation for omnidi-
rectional cameras of all form factors (e.g. catadioptric, dioptric or polydioptric).
In Sect. 3.2 we consider a more efficient representation that improves the com-
putational efficiency of our method.

The kernel shape is defined so that its sampling locations s(j,k), with
j, k ∈ {−1, 0, 1} for a 3 × 3 kernel, align with the step sizes Δθ and Δφ of

Fig. 2. Kernel sampling pattern at φ = 0 (blue) and φ = 1.2 (red) in spherical (a)
and equirectangular (b) representation. Note the distortion of the kernel at φ = 1.2 in
(c). (Color figure online)
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the equirectangular image at the equator. This ensures that the image can be
sampled at Π0 without interpolation:

s(0,0) = (0, 0) (1)
s(±1,0) = (±Δφ, 0) (2)
s(0,±1) = (0,±Δθ) (3)

s(±1,±1) = (±Δφ,±Δθ) (4)

The position of these filter locations on the tangent plane Π0 can be calculated
via the gnomonic projection [20]:

x(φ, θ) =
cos φ sin(θ − θΠ0)

sinφΠ0 sinφ + cos φΠ0 cos φ cos(θ − θΠ0)
(5)

y(φ, θ) =
cos φΠ0 sinφ − sinφΠ0 cos φ cos(θ − θΠ0)
sinφΠ0 sinφ + cos φΠ0 cos φ cos(θ − θΠ0)

(6)

For the sampling pattern s(j,k), this yields the following kernel pattern x(j,k) on
Π0:

x(0,0) = (0, 0) (7)
x(±1,0) = (± tan Δθ, 0) (8)
x(0,±1) = (0,± tan Δφ) (9)

x(±1,±1) = (± tan Δθ,± sec Δθ tan Δφ) (10)

We keep the kernel shape on the tangent fixed. When applying the filter at a
different location sΠ = (φΠ , θΠ) of the sphere, the inverse gnomonic projection
is applied

φ(x, y) = sin−1

(
cos ν sinφΠ +

y sin ν cos φΠ

ρ

)
(11)

θ(x, y) = θΠ + tan−1

(
x sin ν

ρ cos φΠ cos ν − y sin φΠ sin ν

)

where ρ =
√

x2 + y2 and ν = tan−1 ρ.
The sampling grid locations of the convolutional kernels thus get distorted

in the same way as objects on a tangent plane of the sphere get distorted when
projected from different elevations to an equirectangular image representation.
Figure 2 demonstrates this concept by visualizing the sampling pattern at two
different elevations φ.

Besides encoding distortion invariance into the filters of convolutional neu-
ral networks, SphereNet additionally enables the network to wrap its sampling
locations around the sphere. As SphereNet uses custom sampling locations for
sampling inputs or intermediary feature maps, it is straightforward to allow a
filter to sample data across the image boundary. This eliminates any discontinu-
ities which are present when processing omnidirectional images with a regular
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Fig. 3. Sampling locations. This figure compares the sampling locations of
SphereNet (red) to the sampling locations of a regular CNN (blue) at the boundaries of
the equirectangular image. Note how the SphereNet kernel automatically wraps at the
left image boundary (a) while correctly representing the discontinuities and distortions
at the pole (b). SphereNet thereby retains the original spherical image connectivity
which is discarded in a regular convolutional neural network that utilizes zero-padding
along the image boundaries. (Color figure online)

convolutional neural network and improves recognition of objects which are split
at the sides of an equirectangular image representation or which are positioned
very close to the poles, see Fig. 3.

By changing the sampling locations of the convolutional kernels while keep-
ing their size unchanged, our model additionally enables the transfer of CNN
models between different image representations. In our experimental evaluation,
we demonstrate how an object detector trained on perspective images can be
successfully applied to the omnidirectional case. Note that our method can be
used for adapting almost any existing deep learning architecture from perspec-
tive images to the omnidirectional setup. In general, our SphereNet framework
can be applied as long as the image can be mapped to the unit sphere. This is
true for many imaging models, ranging from perspective over fisheye1 to omni-
directional models. Thus, SphereNet can be seen as a generalization of regular
CNNs which encodes the camera geometry into the network architecture.

Implementation: As the sampling locations are fixed according to the geom-
etry of the spherical image representation, they can be precomputed for each
kernel location at every layer of the network. Further, their relative positioning
is constant in each image row. Therefore, it is sufficient to calculate and store the
sampling locations once per row and then translate them. We store the sampling
locations in look-up tables. These look-up tables are used in a customized con-
volution operation which is based on highly optimized general matrix multiply
(GEMM) functions [13]. As the sampling locations are real-valued, interpolation
of the input feature maps is required. In our experiments, we compare nearest

1 While in some cases the single viewpoint assumption is violated, the deviations are
often small in practice and can be neglected at larger distances.
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neighbor interpolation to bilinear interpolation. For an arbitrary sampling loca-
tion (px, py) in a feature map f , interpolation is defined as:

f(px, py) =
H∑
n

W∑
m

f(m,n)g(px,m)g(py, n) (12)

with a bilinear interpolation kernel:

g(a, b) = max(0, 1 − |a − b|) (13)

or a nearest neighbor kernel:

g(a, b) = δ(�a + 0.5� − b) (14)

where δ(·) is the Kronecker delta function.

3.2 Uniform Sphere Sampling

In order to improve the computational efficiency of our method, we investigate
a more efficient sampling of the spherical image. The equirectangular represen-
tation oversamples the spherical image in the polar regions (see Fig. 4a), which
results in near duplicate image processing operations in this area. We can avoid
unnecessary computation in the polar regions by applying our method to a repre-
sentation where data is stored uniformly on the sphere, in contrast to considering
the pixels of the equirectangular image.

To sample points evenly from a sphere, we leverage the method of Saff and
Kuijlaars [24] as it is fast to compute and works with an arbitrary number
of sampling points N , including large values of N . More specifically, we obtain
points along a spiral that encircles the sphere in a way that the distance between
adjacent points along the spiral is approximately equal to the distance between
successive coils of the spiral. As visualized in Fig. 4 for an equirectangular image
with Ne = 20×10 = 200 sampling points, this results in a sampling grid of N =
127 points with a similar sampling density to the equirectangular representation
at the equator, while significantly reducing the number of sampling points at the
poles.

To minimize the loss of information when sampling the equirectangular image
we use bilinear interpolation. Afterwards, the image is represented by an N × c
matrix, where c is the number of image channels. Unlike the equirectangular for-
mat, this representation no longer encodes the spatial position of each data point.
Thus, we save this information in a separate matrix. This location matrix is used
to compute the look-up tables for the kernel sampling locations as described in
Sect. 3.1. Downsampling of the image is implemented by recalculating a reduced
set of sampling points. For applying the kernels and downsampling the image
nearest neighbor interpolation is used.
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Fig. 4. Uniform sphere sampling. Comparison of an equirectangular sampling grid
on the sphere with N = 200 points (a) to an approximation of evenly distributing
N = 127 sampling points on a sphere with the method of Saff and Kuijlaars [24] (b
and c). Note that the sampling points at the poles are much more evenly spaced in the
uniform sphere sampling (b) compared to the equirectangular representation (a) which
oversamples the image in these regions.

3.3 Spherical Image Classification

SphereNet can be integrated into a convolutional neural network for image clas-
sification by adapting the sampling locations of the convolution and pooling
kernels as described in Sect. 3.1. Furthermore, it is straightforward to addition-
ally utilize a uniform sphere sampling (see Sect. 3.2), which we will compare to
nearest neighbor and bilinear interpolation on an equirectangular representation
in the experiments. The integration of SphereNet into an image classification net-
work does not introduce novel model parameters and no changes to the training
of the network are required.

3.4 Spherical Object Detection

In order to perform object detection on the sphere, we propose the Spherical
Single Shot MultiBox Detector (Sphere-SSD), which adapts the popular Single
Shot MultiBox Detector (SSD) [17] to objects located on tangent planes of a
sphere. SSD exploits a fully convolutional architecture, predicting category scores
and box offsets for a set of default anchor boxes of different scales and aspect
ratios. We refer the reader to [17] for details. As in the regular SSD, Sphere-SSD
uses a weighted sum between a localization loss and confidence loss. However, in
contrast to the original SSD, anchor boxes are now placed on tangent planes of
the sphere and are defined in terms of spherical coordinates of their respective
tangent plane, the width/height of the box on the tangent plane as well as an
in-plane rotation. An illustration of anchor boxes at different scales and aspect
ratios is provided in Fig. 5.

In order to match anchor boxes to ground truth detections, we select the
anchor box closest to each ground truth box. During inference, we perform non-
maximum suppression. For evaluation, we use the Jaccard index computed as
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the overlap of two polygonal regions which are constructed from the gnomonic
projections of evenly spaced points along the rectangular bounding box on the
tangent plane.

Fig. 5. Spherical anchor boxes are gnomonic projections of 2D bounding boxes
of various scales, aspect ratios and orientations on tangent planes of the sphere. The
above figure visualizes anchors of the same orientation at different scales and aspect
ratios on a 16 × 8 feature map on a sphere (a) and an equirectangular grid (b).

4 Experimental Evaluation

While the main focus of this paper is on the detection task, we first validate our
model with respect to several existing state-of-the-art methods using a simple
omnidirectional MNIST classification task.

4.1 Classification: Omni-MNIST

For the classification task, we create an omnidirectional MNIST dataset (Omni-
MNIST ), where MNIST digits are placed on tangent planes of the image sphere
and an equirectangular image of the scene is rendered at a resolution of 60 × 60
pixels.

We compare the performance of our method to several baselines. First, we
trained a regular convolutional network operating on the equirectangular images
(EquirectCNN) as well as one operating on a cube map representation of the
input (CubeMapCNN). We further improved the EquirectCNN model by com-
bining it with a Spherical Transformer Network (SphereTN) which learns to
undistort parts of the image by performing a global rotation of the sphere. A
more in-depth description of the Spherical Transformer Network is provided in
the supplemental. Finally, we also trained the graph convolutional network of
Khasanova et al. [14] and the spherical convolutional model of Cohen et al. [3].
For [3] we use the code published by the authors2. As [14] does not provide code,
we reimplemented their model based on the code of Defferrard et al. [6]3.

2 https://github.com/jonas-koehler/s2cnn.
3 https://github.com/mdeff/cnn graph.

https://github.com/jonas-koehler/s2cnn
https://github.com/mdeff/cnn_graph
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Table 1. Classification results on Omni-MNIST. Performance comparison on the
omnidirectional MNIST dataset.

Method Test error (%) # of Parameters

GCNN [14] 17.21 282K

S2CNN [3] 11.86 149K

CubeMapCNN 10.03 167K

EquirectCNN 9.61 196K

EquirectCNN+SphereTN 8.22 291K

SphereNet (Uniform) 7.16 144K

SphereNet (NN) 7.03 196K

SphereNet (BI) 5.59 196K

The network architecture for all models consist of two blocks of convolution
and max-pooling, followed by a fully-connected layer. We use 32 filters in the
first and 64 filters in the second layer and each layer is followed by a ReLU
activation. The fully connected layer has 10 output neurons and uses a softmax
activation function. In the CNN and SphereNet models, the convolutional filter
kernels are of size 5 × 5 and are applied with stride 1. Max pooling is performed
with kernels of size 3 × 3 and a stride of 2. The Spherical Transformer Network
uses an identical network architecture but replaces the fully-connected output
layer with a convolutional layer that outputs the parameters of the rotation.
After applying the predicted transformation of the Spherical Transformer the
transformed output is then used as input to the EquirectCNN model.

Similarly, the graph convolutional baseline (GCNN) uses graph-conv layers
with 32 and 64 filters of polynomial order 25 each, while the spherical CNN base-
line (S2CNN) uses an S2-conv layer with 32 filters and a SO(3)-conv layer with
64 filters. Downsampling in the S2CNN model is implemented with bandwidths
of 30, 10, 6 as suggested in [3]. Thus, all models have a comparable number of
trainable model parameters (see Table 1). In addition, all models are trained
with identical training parameters using Adam, a base learning rate of 0.0001
and batches of size 100 for 100 epochs.

Results on Omni-MNIST: Table 1 compares the performance of SphereNet
with uniform sphere sampling (Uniform), nearest neighbor interpolation in the
equirectangular image (NN) and bilinear interpolation in the equirectangular
image (BI) to the baseline methods. Our results show that all three variants of
SphereNet outperform all baselines.

Despite its high number of model parameters, the graph convolutional
(GCNN) model struggles to solve the Omni-MNIST classification task. The
spherical convolutional (S2CNN) model performs better but is outperformed
by all CNN-based models. For the CNN-based models, the CubeMapCNN has
a higher test error than EquirectCNN, most likely du to the discontinuities at
cube borders and varying digit orientation in the top and bottom faces. The
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performance of the EquirectCNN is improved when combined with a Spheri-
cal Transformer Network (EquirectCNN+SphereTN), demonstrating that the
SphereTN is able to support the classification task. However, it does not reach
the performance of SphereNet, thus confirming the effectiveness of encoding dis-
tortion invariance into the network architecture itself compared to learning it
from data.

For SphereNet, the uniform sphere sampling (Uniform) variant performs sim-
ilar to the nearest neighbor (NN) variant, which demonstrates that the loss of
information by uniformly sampling the sphere is negligible. SphereNet with bilin-
ear interpolation (BI) overall performs best, improving upon all baselines by a
significant margin.

Please consult the supplemental for further analysis on the impact of varying
object scale, object elevation and choice of interpolation on the performance of
each model.

Fig. 6. Detection results on FlyingCars dataset. The ground truth is shown in
green, our SphereNet (NN) results in red. (Color figure online)

Table 2. Detection results on FlyingCars dataset. All models are trained and
tested on the FlyingCars dataset.

Method Test mAP (%) Training speed Inference speed

EquirectCNN+SphereTN 38.91 3.0 s/step 0.232 s/step

EquirectCNN 41.57 1.7 s/step 0.091 s/step

EquirectCNN++ 45.65 3.1 s/step 0.175 s/step

CubeMapCNN 48.42 1.8 s/step 0.095 s/step

SphereNet (NN) 50.18 2.1 s/step 0.101 s/step

4.2 Object Detection: FlyingCars

We now consider the object detection task. Due to a lack of suitable exist-
ing omnidirectional image benchmarks, we create the novel FlyingCars dataset.
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FlyingCars combines real-world background images of an omnidirectional 360◦

action camera with rendered 3D car models. For the 3D car models we select
a subset of 50 car models from the popular ShapeNet dataset [2], which are
rendered onto the background images at different elevations, distances and ori-
entations.

The scenes are rendered using an equirectangular projection to images of
dimension 512 × 256, covering a complete 360◦ field of view around the camera.
Each rendered scene contains between one to three cars, which may be partially
occluded. Object bounding boxes are automatically extracted and represented
by the lat/lon coordinates (φi, θi) of the object’s tangent plane as well as the
object width w and height h on the tangent plane and its in-plane rotation α. All
groundtruth coordinates are normalized to a range of [−1.0, 1.0]. In total, the
dataset comprises 1, 000 test and 5, 000 training images with multiple objects
each, out of which a subset of 1, 000 images is used as validation set.

For this task, we integrate the nearest neighbor variant (NN) of SphereNet
into the Sphere-SSD framework (see Sect. 3.4) as it strikes a balance between
computational efficiency and ease of integration into an object detection model.
Because the graph and spherical convolution baselines are not applicable to the
object detection task, we compare the performance of SphereNet to a CNN
operating on the cube map (CubeMapCNN) and equirectangular representa-
tion (EquirectCNN). The latter is again tested in combination with a Spherical
Transformer Network (EquirectCNN+SphereTN).

Following [30] we evaluate a version of EquirectCNN where the size of the
convolutional kernels is enlarged towards the poles to approximate the object
distortion in equirectangular images (EquirectCNN++). Like [30] we limit the
maximum kernel dimension to 7 × 7. However, unlike [30] we keep weight tying
in place for image rows with filters of the same dimension, thus reducing the
number of model parameters. We thereby enable regular training of the network
without kernel-wise knowledge distillation as in [30]. In addition, we utilize pre-
trained weights when kernel dimensions match with the kernels in a pre-trained
network architecture so that not all model parameters need to be trained from
scratch.

As feature extractor all models use a VGG-16 network [26], which is initial-
ized with weights pre-trained on the ILSVRC-2012-CLS dataset [23]. We change
the max-pooling kernels to size 3 × 3 and use ReLU activations, L2 regular-
ization with weight 4e−5 and batch normalization in all layers of the network.
Additional convolutional box prediction layers of depth 256, 128, 128, 128 are
attached to layer conv5 3. Anchors of scale 0.2 to 0.95 are generated for layer
conv4 3, conv5 3 and the box prediction layers. The aspect ratio for all anchor
boxes is fixed to the aspect ratio of the side view of the rendered cars (2 : 1).
The full network is trained end-to-end in the Sphere-SSD framework with the
RMSProp optimizer, batches of size 5 and a learning rate of 0.004.

Results on FlyingCars: Table 2 presents the results for the object detection
task on the FlyingCars dataset after 50, 000 steps of training. Following common
practice, we use an intersection-over-union (IoU) threshold of 0.5 for evaluation.
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Again, our results demonstrate that SphereNet outperforms the baseline meth-
ods. Qualitative results of the SphereNet model are shown in Fig. 6.

Compared to the classification experiments, the Spherical Transformer Net-
work (SphereTN) demonstrates less competitive performance as no transforma-
tion is able to account for undistorting all objects in the image at the same
time. It is thus outperformed by the EquirectCNN. The performance of the
EquirectCNN model is improved when the kernel size is enlarged towards the
poles (EquirectCNN++), but all EquirectCNN models perform worse than the
CNN operating on a cube map representation (CubeMapCNN). The reason for
the improved performance of the CubeMapCNN compared to the classification
task is most likely that discontinuities at the patch boundaries are less often
present in the FlyingCars dataset due to the smaller relative size of the objects.

Besides accuracy, another important property of an object detector is its
training and inference speed. Table 2 therefore additionally lists the training
time per batch and inference time per image on an NVIDIA Tesla K20. The
numbers show similar runtimes for EquirectCNN and CubeMapCNN. SphereNet
has a small runtime overhead of factor 1.1 to 1.2, while the EquirectCNN++
and EquirectCNN+SphereTN models have a larger runtime overhead of factor
1.8 for training and 1.9 to 2.5 for inference.

Fig. 7. Detection results on OmPaCa dataset. The ground truth is shown in
green, our SphereNet (NN) results in red. (Color figure online)

Table 3. Transfer learning results on OmPaCa dataset. We transfer detection
models trained on perspective images from the KITTI dataset [7] to an omnidirectional
representation and finetune the models on the OmPaCa dataset.

Method Test mAP (%)

CubeMapCNN 34.19

EquirectCNN 43.43

SphereNet (NN) 49.73
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4.3 Transfer Learning: OmPaCa

Finally, we consider the transfer learning task, where a model trained on a per-
spective dataset is transferred to handle omnidirectional imagery. For this task
we record a new real-world dataset of omnidirectional images of real cars with
a handheld action camera. The images are recorded at different heights and ori-
entations. The omnidirectional parked cars (OmPaCa) dataset consists of 1, 200
labeled images of size 512× 256 with more than 50 different car models in total.
The dataset is split into 200 test and 1, 000 training instances, out of which a
subset of 200 is used for validation.

We use the same detection architecture and training parameters as in Sect. 4.2
but now start from a perspective SSD model trained on the KITTI dataset
[7], convert it to our Sphere-SSD framework and fine-tune for 20, 000 itera-
tions on the OmPaCa dataset. For this experiment we only compare against the
EquirectCNN and CubeMapCNN baselines. Both the EquirectCNN+SphereTN
as well as the EquirectCNN++ are not well suited for the transfer learning task
due to the introduction of new model parameters, which are not present in the
perspective detection model and which would thus require training from scratch.

Results on OmPaCa: Our results for the transfer learning task on the
OmPaCa dataset are shown in Table 3 and demonstrate that SphereNet out-
performs both baselines. Unlike in the object detection experiments on the Fly-
ingCars dataset, the CubeMapCNN performs worse than the EquirectCNN by a
large margin of nearly 10%, indicating that the cube map representation is not
well suited for the transfer of perspective models to omnidirectional images. On
the other hand, SphereNet performs better than the EquirectCNN by more than
5%, which confirms that the SphereNet approach is better suited for transferring
perspective models to the omnidirectional case.

A selection of qualitative results for the SphereNet model is visualized in
Fig. 7. As evidenced by our experiments, the SphereNet model is able to detect
cars at different elevations on the sphere including the polar regions where regular
convolutional object detectors fail due to the heavy distortions present in the
input images. Several additional qualitative comparisons between SphereNet and
the EquirectCNN model for objects located in the polar regions are provided in
the supplementary material.

5 Conclusion and Future Work

We presented SphereNet, a framework for deep learning with 360◦ cameras.
SphereNet lifts 2D convolutional neural networks to the surface of the unit
sphere. By applying 2D convolution and pooling filters directly on the sphere’s
surface, our model effectively encodes distortion invariance into the filters of
convolutional neural networks. Wrapping the convolutional filters around the
sphere further avoids discontinuities at the borders or poles of the equirectangu-
lar projection. By updating the sampling locations of the convolutional filters we
allow for easily transferring perspective CNN models to handle omnidirectional



540 B. Coors et al.

inputs. Our experiments show that the proposed method improves upon a vari-
ety of strong baselines in both omnidirectional image classification and object
detection.

We expect that with the increasing availability and popularity of omnidi-
rectional sensors in both the consumer market (e.g., action cameras) as well as
in industry (e.g., autonomous cars, virtual reality), the demand for specialized
models for omnidirectional images such as SphereNet will increase in the near
future. We therefore plan to exploit the flexibility of our framework by applying
it to other related computer vision tasks, including semantic (instance) segmen-
tation, optical flow and scene flow estimation, single image depth prediction and
multi-view 3D reconstruction in the future.
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