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Abstract. In this paper, we propose a new Dividing and Aggregating
Network (DA-Net) for multi-view action recognition. In our DA-Net,
we learn view-independent representations shared by all views at lower
layers, while we learn one view-specific representation for each view at
higher layers. We then train view-specific action classifiers based on the
view-specific representation for each view and a view classifier based on
the shared representation at lower layers. The view classifier is used to
predict how likely each video belongs to each view. Finally, the predicted
view probabilities from multiple views are used as the weights when
fusing the prediction scores of view-specific action classifiers. We also
propose a new approach based on the conditional random field (CRF)
formulation to pass message among view-specific representations from
different branches to help each other. Comprehensive experiments on two
benchmark datasets clearly demonstrate the effectiveness of our proposed
DA-Net for multi-view action recognition.

Keywords: Dividing and Aggregating Network
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1 Introduction

Action recognition is an important problem in computer vision due to its broad
applications in video content analysis, security control, human-computer inter-
face, etc. Recently, significant improvements have been achieved, especially with
the deep learning approaches [23,24,27,35,40].

Multi-view action recognition is a more challenging task as action videos of
the same person are captured by cameras from different viewpoints. It is well-
known that failure in handling feature variations caused by viewpoints may yield
poor recognition results [31,42,43].

One motivation of this paper is to learn view-specific deep representations.
This is different from existing approaches for extracting view-invariant features
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Fig. 1. The motivation of our work for learning view-specific deep representations and
passing messages among them. The features extracted in different branches should
focus on different regions related to the same action. Message passing from different
branches will help each other and thus improve the final classification performance. We
only show the message passing from other branches to Branch B for better illustration.

using global codebooks [18,19,28] or dictionaries [43]. Because of the large diver-
gence in specific settings of viewpoint, the visible regions are different, which
makes it difficult to learn invariant features among different views. Thus, it is
more beneficial to learn view-specific feature representation to extract the most
discriminative information for each view. For example, at camera view A, the
visible region could be the upper part of human body, while the camera views B
and C have more visible cues like hands and legs. As a result, we should encour-
age the features of videos captured from camera view A to focus on the upper
body region, while the features of videos from camera view B to focus on other
regions like hands and legs. In contrast, the existing approaches tend to discard
such view-specific discriminative information.

Another motivation of this paper is that the view-specific features can be used
to help each other. Since these features are specific to different views, they are
naturally complementary to each other. This provides us with the opportunity
to pass message among these features so that they can help each other through
interaction. Take Fig. 1 as an example, for the same input image from View
B, the features from branches A, B, C focus on different regions. By conduct-
ing well-defined message passing, the specific features from View A and View
C can be used for refining the features for View B, leading to more accurate
representations for action recognition.

Based on the above two motivations, we propose a Dividing and Aggregating
Network (DA-Net) for multi-view action recognition. In our DA-Net, each branch
learns a set of view-specific features. We also propose a new approach based on
conditional random field (CRF) to learn better view-specific features by passing
message to each other. Finally, we introduce a new fusion approach by using the



Dividing and Aggregating Network for Multi-view Action Recognition 459

predicted view probabilities as the weights for fusing the classification results
from multiple view-specific classifiers to output the final prediction score for
action classification.

To summarize, our contributions are three-fold:

(1) We propose a multi-branch network for multi-view action recognition. In
this network, the lower CNN layers are shared to learn view-independent
representations. Taking the shared features as the input, each view has its
own CNN branch to learn its view-specific features.

(2) Conditional random field (CRF) is introduced to pass message among view-
specific features from different branches. A feature in a specific view is con-
sidered as a continuous random variable and passes message to the feature
in another view. In this way, view-specific features at different branches
communicate and help each other.

(3) A new view-prediction-guided fusion method for combining action classifica-
tion scores from multiple branches is proposed. In our approach, we simul-
taneously learn multiple view-specific classifiers and the view classifier. An
action prediction score is obtained for each branch, and multiple action pre-
diction scores are fused by using the view prediction probabilities as the
weights.

2 Related Works

Action Recognition. Researchers have made significant contributions in
designing effective features as well as classifiers for action recognition [17,26,
30,34,36]. Wang et al. [32] proposed the iDT feature to encode the information
from edge, flow and trajectory. The iDT feature became dominant in the THU-
MOS 2014 and 2015 challenges [7]. In the deep learning community, Tran et al.
proposed C3D [27], which designs a 3D CNN model for video datasets by com-
bining appearance features with motion information. Sun et al. [25] applied the
factorization methods to decompose 3D convolution kernels and used the spatio-
temporal features in different layers of CNNs. The recent trend in action recog-
nition follows two-stream CNNs. Simonyan and Zisserman [24] first proposed the
two-stream CNN to extract features from the RGB key frames and the optical
flow channel. Wang et al. [34] integrated the key factors from iDT and CNN and
achieved significant performance improvement. Wang et al. also proposed the
temporal segment network (TSN) [35] to utilize segments of videos under the
two-stream CNN framework. Researchers also transform the two-stream struc-
ture to the multi-branch structure. In [6], Feichtenhofer et al. proposed a single
CNN that fuses the spatial and temporal features before the final layers, which
achieves excellent results. Wang et al. proposed a multi-branch neural network,
where each branch deals with different level of features and then fuse them
together [36]. However, these works did not take the multi-view action recog-
nition into consideration. Therefore, they do not learn view-specific features
or use view prediction probabilities as the prior when fusing the classification
scores from multiple branches as in our work. They do not use message passing
to improve their features, either.
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Multi-view Action Recognition. For the multi-view action recognition tasks
where the videos are from different viewpoints, the existing action recognition
approaches may not achieve satisfactory recognition results [15,16,31,42]. The
methods using view-invariant representations are popular for multi-view action
recognition. Wu et al. [37] and Turaga et al. [28] proposed to construct the
common space as the multi-view action feature space by using global GMM or
Grassmann and Stiefel manifolds and achieved promising results. In recent works,
Zheng et al. [43], Kong et al. [10] and Hossein et al. [19] designed different meth-
ods to learn the global codebook or dictionary to better extract view-invariant
representations from action videos. By treating the problem as a domain adap-
tation problem, Li et al. [12] and Mancini et al. [14] proposed new approaches to
learn robust classifiers or domain-invariant features. Different from these meth-
ods for learning view-invariant features in the common space, we directly learn
view-specific features by using multi-branch CNNs. With these view-specific fea-
tures, we exploit the relationship among them in order to effectively leverage
multi-view features.

Conditional Random Field (CRF). CRF has been exploited for action recog-
nition in [29] as it can connect features and outputs, especially for temporal
signals like actions. Chen et al. proposed L-CORF [3] for locating actions in
videos, where CRF was used for modeling spatial-temporal relationship in each
single-view video. CRF could also exploit the relationship among spatial features.
It has been successfully introduced for image segmentation in the deep learn-
ing community by Zheng et al. [44], which deals with the relationship among
pixels. Xu et al. [38,39] modeled the relationship of pixels to learn the edges
of objects in images. Recently, Chu et al. [4,5] have utilized discrete CRF in
CNN for human pose estimation. Our work is the first for action recognition
by exploiting the relationship among features from videos captured by cameras
from different viewpoints. Our experiments demonstrate the effectiveness of our
message passing approach for multi-view action recognition.

3 Multi-view Action Recognition

3.1 Problem Overview

In the multi-view action recognition task, each sample in the training or test
set consists of multiple videos captured from different viewpoints. The task is
to train a robust model by using those multi-view training videos, and perform
action recognition on multi-view test videos.

Let us denote the training data as {(xi,1, . . . ,xi,v, . . . ,xi,V )|Ni=1}, where xi,v

is the i-th training sample/video from the v-th view, V is the total number of
views, and N is the number of multi-view training videos. The label of the i-th
multi-view training video (xi,1, . . . ,xi,V ) is denoted as yi ∈ {1, . . . , K} where K
is the total number of action categories. For better presentation, we may use xi

to represent one video when we do not care about which specific view each video
comes from, where i = 1, . . . , NV .
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To effectively cope with the multi-view training data, we design a new multi-
branch neural network. As shown in Fig. 2, this network consists of three mod-
ules. (1) Basic Multi-branch Module: This network extracts the common
features (i.e. view-independent features) for all videos by using one shared CNN,
and then extracts view-specific features by using multiple CNN branches, which
will be described in Sect. 3.2. (2) Message Passing Module: Based on the
basic multi-branch module, we also propose a message passing approach to
improve view-specific features from different branches, which will be introduced
in Sect. 3.3. (3) View-prediction-guided Fusion Module: The refined view-
specific features from different branches are passed through multiple view-specific
action classifiers and the final scores are fused with the guidance of probabilities
from the view classifier that is trained based on view-independent features.
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Fig. 2. Network structure of our newly proposed Dividing and Aggregating Network
(DA-Net). (1) Basic multi-branch module is composed of one shared CNN and sev-
eral view-specific CNN branches. (2) Message passing module is introduced between
every two branches and generate the refined view-specific features. (3) In the view-
prediction-guided fusion module, we design several view-specific action classifiers
for each branch. The final scores are obtained by fusing the results from all action
classifiers, in which the view prediction probabilities from the view classifier are used
as the weights.

3.2 Basic Multi-branch Module

As shown in Fig. 2, the basic multi-branch module consists of two parts: (1)
shared CNN: Most of the convolutional layers are shared to save computation
and generate the common features (i.e. view-independent features); (2) CNN
branches: Following the shared CNN, we define V view-specific branches, and
view-specific features can be extracted from these branches.

In the initial training phase, each training video xi first flows through the
shared CNN, and then only goes to the v-th view-specific branch. Then, we build
one view-specific classifier to predict the action label for the videos from each
view. Since each branch is trained by using training videos from a specific view-
point, each branch captures the most informative features for its corresponding
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view. Thus, it can be expected that the features from different views are comple-
mentary to each other for predicting the action classes. We refer to this structure
as the Basic Multi-branch Module.

3.3 Message Passing Module

To effective integrate different view-specific branches for multi-view action recog-
nition, we further exploit the inter-view relationship by using a conditional ran-
dom field (CRF) model to pass message among features extracted from different
branches.

Let us denote the multi-branch features for one training video as F = {fv}Vv=1,
where each fv is the view-specific feature vector extracted from the v-th branch.
Our objective is to estimate the refined view-specific feature H = {hv}Vv=1. As
shown in Fig. 3(a), we formulate this problem under the CRF framework, in
which we learn a new feature representation hv for each fv, and also regular-
ize different hv’s based on their pairwise relationship. Specifically, the energy
function in CRF is defined as,

E(H,F, Θ) =
∑

v

φ(hv, fv) +
∑

u,v

ψ(hu,hv), (1)

in which φ is the unary potential and ψ is the pairwise potential. In particular, hv

should be similar to fv, namely the refined view-specific feature representation
does not change too much from the original representation. Therefore, the unary
potential is defined as follows,

φ(hv, fv) = −αv

2
‖hv − fv‖2, (2)

where αv is a weight parameter that will be learnt during the training pro-
cess. Moreover, we employ a bilinear potential function to model the correlation
among features from different branches, which is defined as

ψ(hu,hv) = hv
�Wu,vhu, (3)

where Wu,v is the matrix modeling the relationship among different features.
Wu,v can be learnt during the training process.

Following [20], we use mean-field update to infer the mean vector of hu as:

hv =
1
αv

(αvfv +
∑

u�=v

(Wu,vhu)). (4)

Thus, the refined view-specific feature representation {hv|Vv=1} can be obtained
by iteratively applying the above equation.

From the definition of CRF, the first term in Eq. (4) serves as the unary term
for receiving the information from the feature fv for its own view v. The second
term is the pair-wise term that receives the information from other views u for
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u �= v. The Wu,v in Eqs. (3) and (4) models the relationship between the feature
vector hu from the u-th view and the feature hv from the v-th view.

The above CRF model can be implemented in neural networks as shown
in [5,44], thus it can be naturally integrated in the basic multi-branch network,
and optimized in the end-to-end training process based on the basic multi-branch
module. The basic multi-branch module together with the message passing mod-
ule is referred to as the Cross-view Multi-branch Module in the following sections.
The message passing process can be conducted multiple times with the shared
Wu,v’s in each iteration. In our experiments, we perform only one iteration as
it already provides good feature representations.

(a) Message passing 
module

(b) View-prediction-guided 
fusion module
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Fig. 3. The details for (a) inter-view message passing module discussed in Sect. 3.3,
and (b) view-prediction-guided fusion module described in Sect. 3.4. Please see the
corresponding sections for the detailed definitions and descriptions.

3.4 View-Prediction-Guided Fusion

In multi-view action recognition, a body movement might be captured from
more than one viewpoint and should be recognized from different aspects, which
implies that different views contain certain complementary information for action
recognition. To effectively capture such cross-view complementary information,
we therefore propose a View-prediction-guided Fusion Module to automatically
fuse the prediction scores from all view-specific classifiers for action recognition.

Learning View-Specific Classifiers. In the cross-view multi-branch module,
instead of passing each training video into only one specific view as in the basic
multi-branch module, we feed each video xi into all V branches.

Given a training video xi, we will extract features from each branch individu-
ally, which will lead to V different representations. Considering we have training
videos from V different views, there would be in total V ×V types of cross-view
information, each corresponding to a branch-view pair (u, v) for u, v = 1, . . . , V ,
where u is the index of the branch and v is the index of the view that the videos
belong to.

Then, we build view-specific action classifiers in each branch based on differ-
ent types of visual information, which leads to V ×V different classifiers. Let us
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denote Cu,v as the score generated by using the v-th view-specific classifier from
the u-th branch. Specifically, for the video xi, the score is denoted as Ci

u,v. As
shown in Fig. 3(b), the fused score of all the results from the v-th view-specific
classifiers in all branches is denoted as Sv. Specifically, for the video xi, the fused
score Si

v can be formulated as follows,

Si
v =

∑

u

λu,vC
i
u,v, (5)

where λu,v’s are the weights for fusing Cu,v’s, which can be jointly learnt during
the training procedure and shared by all videos. For the v-th value in the u-th
branch, we initialize the value of λu,v when u = v twice as large as the value
of λu,v when u �= v, as Cv,v is the most related score for the v-th view when
compared with other scores Cu,v’s (u �= v).

Soft Ensemble of Prediction Scores. Different CNN branches share common
information and have each own refined view-specific information, so the combi-
nation of results from all branches should achieve better classification results.
Besides, we do not want to use the view labels of input videos during the training
or testing process. In that case, we further propose a strategy to fuse all view-
specific action prediction scores {Sv|Vv=1} based on the view prediction proba-
bilities of each video, instead of using only the one score from the known view
as in the basic multi-branch module.

Let us assume each training video xi is associated with V view prediction
probabilities {piv|Vv=1}, where each piv denotes the probability of xi belonging to
the v-th view and

∑
v piv = 1. Then, the final prediction score T i can be calcu-

lated as the weighted mean of all view-specific scores based on the corresponding
view prediction probabilities,

T i =
V∑

v=1

pivS
i
v. (6)

To obtain the view prediction probabilities, as shown in Fig. 2, we addition-
ally train a view classifier by using the common features (i.e. view-independent
feature) after the shared CNN. We use the cross entropy loss for the view clas-
sifier and the action classifier, denoted as Lview and Laction respectively.

The final model is learnt by jointly optimizing the above two losses, i.e.,

L = Laction + Lview, (7)

where we treat the two losses equally and this setting leads to satisfactory results.
The cross-view multi-branch module with view-prediction-guided fusion

module forms our Dividing and Aggregating Network (DA-Net). It is worth men-
tioning that we only use view labels for training the basic multi-branch module
and the fine-tuning steps after the basic multi-branch module and the test stages
do not require view labels of videos. Even the test video comes from an unseen
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view, our model can still automatically calculate its view prediction probabilities
by using the view classifier, and ensemble the prediction scores from view-specific
classifiers for final prediction (see our experiments on cross-view action recogni-
tion in Sect. 4.3).
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Fig. 4. The layers used in the shared CNN and CNN branches in the inception 5b

block. The layers in yellow color are included in the shared CNN, while the layers in
red color are duplicated for different branches. The layers after inception 5b are also
duplicated. The ReLU and BatchNormalization layers after each convolutional layer
are treated similarly as the corresponding convolutional layers. (Color figure online)

3.5 Network Architecture

We illustrate the architecture of our DA-Net in Fig. 2. The shared CNN can be
any of the popular CNN architectures, which is followed with V view-specific
branches, each corresponding to one view. Then, we build V × V view-specific
classifiers on top of those view-specific branches, where each branch is connected
to V classifiers. Those V × V view-specific classifiers are further ensembled to
produce V branch-level scores using Eq. (5). Finally, those V branch-level scores
are reweighed to obtain the final prediction score, where the weights are the view
probabilities generated from the view classifier, which is trained after the shared
CNN. Like other deep neural networks, our proposed model can be trained by
using popular optimization approaches such as the stochastic gradient descent
(SGD) algorithm. We first train the basic multi-branch module to learn view-
specific feature in each branch, and then we fine-tune all the modules.

In our implementation, we build our network based on the temporal segment
network (TSN) [35] with some modifications. In particular, we use the BN-
Inception [9] as the backbone network. The shared CNN layers include the ones
from the input to the block inception 5a. As shown in Fig. 4, for each path
within the inception 5b block, we duplicate the last convolutional layer (shown
in red in Fig. 4) for multiple times for multiple branches and the previous layers
are shared in the shared CNN. The rest average pooling and fully connected
layers after the inception 5b block are also duplicated for multiple branches.
The corresponding parameters are also duplicated at initialization stage and
learnt separately. Similarly as in TSN, we also train a two-stream network [24],
where two streams are learnt separately using two modalities, RGB and dense
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optical flow, respectively. In the testing phase, given a test sample with multiple
views of videos, (x1, . . . ,xV ), we pass each video xv to two streams, and obtain
its prediction by fusing the outputs from two streams.

The training of our DA-Net has the same starting point of TSN. We first
train the network based on the basic multi-branch module to learn the basic
features of each branch and then fine-tune the learnt network by additionally
adding the message passing module and view-prediction-guided fusion module.

4 Experiments

In this section, we conduct experiments to evaluate our proposed model by using
two benchmark multi-view action datasets. We conduct experiments on two set-
tings: (1) the cross-subject setting, which is used to evaluate the effectiveness
of our proposed model for learning from multi-view videos, and (2) the cross-
view setting, which is used to evaluate the generalization ability of our proposed
model to unseen views.

4.1 Datasets and Setup

NTU RGB+D (NTU). [21] is a large scale dataset for human action recog-
nition, which contains 60 daily actions performed by 40 different subjects. The
actions are captured by Kinect v2 in three viewpoints. The modalities of data
including RGB videos, depth maps and 3D joint information, where only the
RGB videos are used for our experiments. The total number of RGB videos is
56, 880 containing more than 4 million frames.

Northwestern-UCLA Multiview Action (NUMA). [33] is another popu-
lar multi-view action recognition benchmark dataset. In this dataset, 10 daily
actions are performed by 10 subjects for several times, which are captured by
three static cameras. In total, the dataset consists of 1, 475 RGB videos and the
correlated depth frames and skeleton information, where only the RGB videos
are used for our experiments.

4.2 Experiments on Multi-view Action Recognition

The cross-subject evaluation protocol is used in this experiment. All action videos
of a few subjects from all views are selected as the training set, and the action
videos of the remaining subjects are used for testing.

For the NTU dataset, we use the same cross-subject protocol as in [21]. We
compare our proposed method with a wide range of baselines, among which the
work in [1,21,22] include 3D joint information, and the work in [2,13] used RGB
videos only. We also include the TSN method [35] as a baseline for comparison,
which can be treated as a special case of our DA-Net without explicitly exploit-
ing the multi-view information in training videos. The results are shown in the
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third column of Table 1. We observe that the TSN method achieves much bet-
ter results than the previous works using multi-modality data, which could be
attributed to the usage of deep neural networks for learning effective video rep-
resentations. Moreover, the recent works from Baradel et al. [2] and Luvizon et
al. [13] reported the results using only RGB videos, where the work from Luvizon
et al. [13] achieves similar performance as the TSN method. Our proposed DA-
Net outperforms all existing state-of-the-art algorithms and the baseline TSN
method.

Table 1. Accuracy comparison between our DA-Net and other state-of-the-art works
on the NTU dataset. When using RGB videos, our DA-Net, TSN [35] and the work
from Zolfaghari et al. [45] use optical flow generated from RGB videos while the rest
works do not extract optical flow features. Four methods additionally utilize the pose
modality. The best results are shown in bold.

Methods Modalities Cross-subject accuracy Cross-view accuracy

DSSCA-SSLM [22] Pose+RGB 74.9% -

STA-Hands [1] Pose+RGB 82.5% 88.6%

Zolfaghari et al. [45] Pose+RGB 80.8% -

Baradel et al. [2] Pose+RGB 84.8% 90.6%

Luvizon et al. [13] RGB 84.6% -

TSN [35] RGB 84.93% 85.36%

DA-Net (Ours) RGB 88.12% 91.96%

Table 2. Average accuracy comparison (the cross-subject setting) between our DA-
Net and other works on the NUMA dataset. The results are generated by averaging
the accuracy of each subject. The best result is shown in bold.

Methods Average accuracy

Li and Zickler [11] 50.7%

MST-AOG [33] 81.6%

Kong et al. [10] 81.1%

TSN [35] 90.3%

DA-Net (ours) 92.1%

For the NUMA dataset, we use the 10-fold evaluation protocol, where videos
of each subject will be used as the test videos each time. To be consistent with
other works, we report the video-level accuracy, in which the videos of each view
are evaluated separately. The average accuracies are shown in Table 2, where our
proposed DA-Net again outperforms all other baseline methods.

The results on both datasets clearly demonstrate the effectiveness of our DA-
Net for learning deep models using multi-view RGB videos. By learning view-
specific features as well as classifiers and conducting message passing, videos
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from multiple views are utilized more effectively. As a result, we can learn more
discriminative features and our DA-Net can achieve better action classification
results when compared with previous methods.

Table 3. Average accuracy comparison on the NUMA dataset [33] (the cross-view
setting) when the videos from two views are used for training and the videos from
the remaining view are used for testing. The best results are shown in bold. For fair
comparison, we only report the results from the methods using RGB videos.

{Source}|Target {1, 2}|3 {1, 3}|2 {2, 3}|1 Average accuracy

DVV [41] 58.5% 55.2% 39.3% 51.0%

nCTE [8] 68.6% 68.3% 52.1% 63.0%

MST-AOG [33] - - - 73.3%

NKTM [18] 75.8% 73.3% 59.1% 69.4%

R-NKTM [19] 78.1% - - -

Kong et al. [10] - - - 77.2%

TSN [35] 84.5% 80.6% 76.8% 80.6%

DA-Net (ours) 86.5% 82.7% 83.1% 84.2%

4.3 Generalization to Unseen Views

Our DA-Net can also be readily used for generalization to unseen views, which
is also known as the cross-view evaluation protocol. We employ the leave-one-
view-out strategy in this setting, in which we use videos from one view as the
test set, and employ videos from the remaining views for training our DA-Net.

Different from the training process under the cross-subject setting, the total
number of branches in the network is set to the total number of views minus
1, since videos from one viewpoint are reserved for testing. During the testing
stage, the videos from the target view (i.e. unseen view) will go through all the
branches and the view classifier can still provide the prediction scores of each
testing video belonging to a set of source views (i.e. seen views). The scores
indicate the similarity between the videos from the target view and those from
the source views, based on which we can still obtain the weighted fusion scores
that can be used for classifying videos from the target view.

For the NTU dataset, we follow the original cross-view setting in [21], in which
videos from view 2 and view 3 are used for training while videos from view 1
are used for testing. The results are shown in the fourth column of Table 1. On
this cross-view setting, our DA-Net also outperforms the existing methods by a
large margin.

For the NUMA dataset, we conduct three-fold cross validation. The videos
from two views together with their action labels are used as the training data to
learn the network and the videos from the remaining view are used for testing.
The videos from the unseen view are not available during the training stage.
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We report our results in Table 3, which shows our DA-Net achieves the best
performance. Our results are even better than the methods that use the videos
from the unseen view as unlabeled data in [10]. The detailed accuracy for each
class is shown in Fig. 5. Again we observe that DA-Net is better than nCTE [8]
and NKTM [18] in almost all the action classes.
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Fig. 5. Average recognition accuracy in each class on the NUMA dataset under the
cross-view setting. All the three methods do not utilize the features from the unseen
view during the training process.

From the results, we observe that our DA-Net is robust even without using
videos from the target view during the training process. A possible explanation is
as follows. Building upon the TSN architecture, our DA-Net further learns view-
specific features, which produces better representations to capture information
from each view. Second, the message passing module further improves the fea-
ture representation on different views. Finally, the newly proposed soft ensemble
fusion scheme using view prediction probabilities as the weight also contributes
to performance improvement. Although videos from the unseen view are not
available in the training process, the view classifiers are still able to be used to
predict probabilities of the given test video belonging to each seen view, which
are useful to obtain the final prediction scores.

4.4 Component Analysis

To study the performance gain of different modules in our proposed DA-Net,
we report the results of three variants of our DA-Net. In particular, in the first
variant, we remove the view-prediction-guided fusion module, and only keep the
basic multi-branch module and message passing module, which is referred to as
DA-Net (w/o fus.). Similarly in the second variant, we remove the message pass-
ing module, and only keep the basic multi-branch module and view-prediction-
guided fusion module, which is referred to as DA-Net (w/o msg.). In the third
variant, we only keep the basic multi-branch module, which is referred to as DA-
Net (w/o msg. and fus.). Specially in DA-Net (w/o msg. and fus.) and DA-Net
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(w/o fus.), since the fusion part is ablated, we only train one classifier for each
branch, and we equally fuse the prediction scores from all branches for obtaining
the action recognition results.

Table 4. Accuracy for cross-view setting on the NTU dataset. The second and third
columns are the accuracies from the RGB-stream and flow-stream, respectively. The
final results after fusing the scores from the two streams are shown in the fourth column.

Method RGB-stream Flow-stream Two-stream

TSN [35] 66.5% 82.2% 85.4%

Ensemble TSN 69.4% 86.6% 87.8%

DA-Net (w/o msg. and fus.) 73.9% 87.7% 89.8%

DA-Net (w/o msg.) 74.1% 88.4% 90.7%

DA-Net (w/o fus.) 74.5% 88.6% 90.9%

DA-Net 75.3% 88.9% 92.0%

We take the NTU dataset under the cross-view setting as an example for
component analysis. The baseline TSN method [35] is also included for compar-
ison. Moreover, we further report the results from an ensemble version of TSN,
in which we train two TSN’s based on the videos from view 2 and the videos
from view 3 individually, and then average their prediction scores on the test
videos from view 1 for prediction results. We refer to it as Ensemble TSN.

The results of all methods are shown in Table 4. We observe that both Ensem-
ble TSN and our DA-Net (w/o msg. and fus.) achieve better results than the
baseline TSN method, which indicates that learning individual representation
for each view helps to capture view-specific information, and thus improves the
action recognition accuracy. Our DA-Net (w/o msg. and fus.) outperforms the
Ensemble TSN method for both modalities and after two-stream fusion, which
indicates that learning common features (i.e. view-independent features) shared
by all branches for DA-Net (w/o msg. and fus.) will possibly lead to better
performance.

Moreover, by additionally using the message passing module, DA-Net (w/o
fus.) gains consistent improvement over DA-Net (w/o msg. and fus.). A possi-
ble reason is that videos from different views share complementary information,
and the message passing process could help refine the feature representation on
each branch. The DA-Net (w/o msg.) is also better than DA-Net (w/o msg. and
fus.), which demonstrates the effectiveness of our view-prediction-guided fusion
module. Our DA-Net effectively integrate the predictions from all view-specific
classifiers in a soft ensemble manner. In the view-prediction-guided fusion mod-
ule, all the view-specific classifiers integrate the total V × V types of cross-view
information. Meanwhile, the view classifier softly ensembles the action prediction
scores by using view prediction probabilities as the weights.
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5 Conclusion

In this paper, we have proposed the Dividing and Aggregating Network (DA-
Net) to address action recognition using multi-view videos. The comprehensive
experiments have demonstrated that our newly proposed deep learning method
outperforms the baseline methods for multi-view action recognition. Through
the component analysis, we demonstrate that view-specific representations from
different branches can help each other in an effective way by conducting message
passing among them. It is also demonstrated that it is beneficial to fuse the pre-
diction scores from multiple classifiers by using the view prediction probabilities
as the weights.
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