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Abstract. We propose a light-weight yet highly robust method for real-
time human performance capture based on a single depth camera and
sparse inertial measurement units (IMUs). Our method combines non-
rigid surface tracking and volumetric fusion to simultaneously recon-
struct challenging motions, detailed geometries and the inner human
body of a clothed subject. The proposed hybrid motion tracking algo-
rithm and efficient per-frame sensor calibration technique enable non-
rigid surface reconstruction for fast motions and challenging poses with
severe occlusions. Significant fusion artifacts are reduced using a new
confidence measurement for our adaptive TSDF-based fusion. The above
contributions are mutually beneficial in our reconstruction system, which
enable practical human performance capture that is real-time, robust,
low-cost and easy to deploy. Experiments show that extremely challeng-
ing performances and loop closure problems can be handled successfully.

Keywords: Performance capture · Real-time · Single-view · IMU

1 Introduction

The 3D acquisition of human performances has been a challenging topic for
decades due to the shape and deformation complexity of dynamic surfaces, espe-
cially for clothed subjects. To ensure high-fidelity digitalization, sophisticated
multi-camera array systems [4,5,7,8,14,17,24,29,43] are preferred for profes-
sional productions. TotalCapture [13], the state-of-the-art human performance
capture system, uses more than 500 cameras to minimize occlusions during

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-01240-3 24) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11213, pp. 389–406, 2018.
https://doi.org/10.1007/978-3-030-01240-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01240-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-01240-3_24
https://doi.org/10.1007/978-3-030-01240-3_24


390 Z. Zheng et al.

human-object interactions. Not only are these systems difficult to deploy and
costly, they also come with a significant amount of synchronization, calibration,
and data processing effort.

On the other end of the spectrum, the recent trend of using a single depth
camera for dynamic scene reconstruction [10,12,25,31] provides a very conve-
nient and real-time approach for performance capture combined with online non-
rigid volumetric depth fusion. However, such monocular systems are limited to
slow and controlled motions. While improvement has been demonstrated lately
in systems like BodyFusion [44], DoubleFusion [45] and SobolevFusion [32], it is
still impossible to reconstruct occluded limb motions (Fig. 1(b)) and ensure loop
closure during online reconstruction. For practical deployment, such as gaming,
where fast motion is expected and possibly interactions between multiple users,
it is necessary to ensure continuously reliable performance capture.

Fig. 1. The state-of-the-art methods easily get failed under severe occlusions. (a, d):
color references captured from Kinect (up) and a 3rd person view (down). (b, e) and
(c, f): results of DoubleFusion and our method rendered in the 3rd person view. (Color
figure online)

We propose HybridFusion, a real-time dynamic surface reconstruction system
that achieves high-quality reconstruction of extremely challenging performances
using hybrid sensors, i.e., a single depth camera and several inertial measurement
units (IMUs) sparsely located on the body. Intuitively, for the cases of extremely
fast or highly occluded or self-rotating limb motions, which cannot be handled
by the optical sensors alone, the IMUs can provide high frame rate orientation
information that help infer better human motion estimations. Moreover, they are
low cost and easy to wear. For other cases, a single depth camera owns sufficient
capacity to achieve robust reconstruction, so as to maintain the light-weight and
convenient property of the whole system compared to multi-camera ones.

Combining IMUs with depth sensors within a non-rigid depth fusion frame-
work is non-trivial. First, we need to minimize the effort and experience required
for mounting and calibrating each IMU. We, therefore, propose a per-frame sen-
sor calibration algorithm integrated into the tracking procedure to get accurate
IMU calibration without any additional extra steps. We also extend the non-
rigid tracking optimization to a hybrid tracking optimization by adding the IMU
constraints. Moreover, previous tracking&fusion methods [25,45] may generate
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seriously deteriorated reconstruction results for challenging motions and occlu-
sions due to the wrongly fused geometry, which will further affect the tracking
performance, and vice versa. We thus propose a simple yet effective scheme that
jointly models the influence of body-camera distance, fast motions and occlu-
sions in one metric, which guides the TSDF (Truncated Signed Distance Field)
fusion to achieve robust and precise results even under challenging motions (see
Fig. 1). Using such a light-weight hybrid setup, we believe HybridFusion presents
the right sweet spot for practical performance capture system as it is real-time,
robust and easy to deploy. Commodity users can capture high-quality body per-
formances and 3D content for gaming, VR/AR applications at home.

Note that IMUs or even hybrid sensors have been adopted previously to
improve the skeleton-based motion tracking [11,20,22,28]. Comparing with these
state-of-the-art hybrid motion capture systems like [11], the superiority of
HybridFusion is twofold: for one, our system can reconstruct the detailed outer
surface of the subject and estimate the inner body shape simultaneously, while
[11] needs a pre-defined model as input; for another, our system can track the
non-rigid motion of the outer surface, while [11] outputs skeleton poses merely.
By further examining the differences in the skeleton tracking solely, our sys-
tem still demonstrates substantially higher accuracy. In [11] IMU readings are
only used to query similar poses in a database, yet we integrate the inertial
measurements into a hybrid tracking energy. The detailed model and non-rigid
registration further improve the accuracy of pose estimation, since a detailed
geometry model with an embedding deformation node graph better describes
the motion of the user than a body model driven by a kinetic chain.

The main contributions of HybridFusion can be summarized as follows.

– Hybrid motion tracking. We propose a hybrid non-rigid tracking algorithm
for accurate skeleton motion and non-rigid surface motion tracking in real-
time. We introduce an IMU term that significantly improves the tracking
performance even under severe occlusion.

– Sensor calibration. We introduce a per-frame sensor calibration method
to optimize the relationship between each IMU and its attached body part
during the capture process. Unlike other IMU-based methods [2,20,28], this
method removes the requirement of explicit calibration and provides accurate
calibration results along the sequence.

– Adaptive Geometry fusion. To address the problem that previous TSDF
fusion methods are vulnerable in some challenging cases (far body-camera
distance, fast motions, occlusions, etc.), we propose an adaptive TSDF fusion
method that considers all the factors above in one tracking confidence mea-
surement to get more robust and detailed TSDF fusion results.

2 Related Work

The related work can be classified into two categories: IMU-based human
performance capture and volumetric dynamic reconstruction. We refer read-
ers to overview of prior works including pre-scanned template based dynamic
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reconstruction [9,15,34,40,42,46], shape template based dynamic reconstruction
[1,3,18,29,30] and free-form dynamic reconstruction [16,23,26,35,37] in [45].

IMU-Based Human Performance Capture. A line of research on combin-
ing vision and IMUs [11,20–22,27,28] or even using IMUs alone [41] targets at
high quality human performance capture. Among all of those works, Malleson et
al. [20] combined multi-view color inputs, sparse IMUs and SMPL model [18] in
a real-time full-body skeleton motion capture system. Pons-moll et al. [28] used
multi-view color inputs, sparse IMUs and pre-scanned user templates to per-
form full-body motion capture offline. The system is improved by using 6 IMUs
alone [41] to reconstruct natural human skeleton motion using global optimiza-
tion method, but still offline. Vlasic et al. [39] used the output of the inertial
sensors for extended kalman filter to perform human skeleton motion capture.
Tautges et al. [36] and Ronit et al. [33] both utilized sparse accelerometer data
and data-driven methods to retrieve correct poses in the database. Helten et al.
[11] used the most similar setup to our method (single-view depth information,
sparse IMUs and parametric human body model). They combined generative
tracker and discriminative tracker that retrieving closest poses in a dataset and
perform real-time human motion tracking. However, the parametric body model
cannot describe detailed surfaces of clothing.

Non-rigid Surface Integration. Starting from DynamicFusion [25], non-rigid
surface integration methods get more and more popular [10,12,31] because of
the single-view, real-time and template-free properties. It also inspires a branch
of multi-view volumetric dynamic reconstruction methods [6,7] that achieved
high quality reconstruction results. The basic idea of non-rigid surface integra-
tion is to perform non-rigid surface tracking and TSDF surface fusion iteratively,
such that the surface information gets more and more complete along the scene
motions when unseen surface parts get observed and tracked. To improve the
reconstruction performance of DynamicFusion on human body motions, Body-
Fusion [44] integrated articulated human motion prior (skeleton kinematic chain
structure) and constraint the non-rigid deformation and skeleton motion to be
similar. DoubleFusion [45] leveraged parametric body model (SMPL [18]) in
non-rigid surface integration to improve the tracking, loop closure and fusion
performance, and achieved the state-of-the-art single-view human performance
capture results. However, all of these methods are still incompetent to handle
fast and challenging motions, especially for occluded motions.

3 Overview

Initialization. We adopt 8 IMUs that sparsely located on the upper and lower
limbs of the performer as shown in Fig. 2. It is worth mentioning that unlike [20,
41] which require IMUs to be specific to model vertices, the IMUs in our system
are attached to bones as we merely trust and use the orientation measurements.
Such strategy greatly relaxes users’ efforts to wear the sensors since they only
need to ensure the IMUs are attached to the correct bones and roughly aligned
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Fig. 2. Illustration of HybridFusion pipeline.

with their length directions. Here the number of IMUs is determined by the
balance between performance and convenience, as further elaborated in Sect. 7.3.

The performer is required to start with a rough A-pose. After getting the
first depth frame, we use it to initialize the TSDF volume by projecting the
depth pixels into the volume, and then estimate the initial shape parameters
β0 and pose θ0 using volumetric shape-pose optimization [45]. We construct a
“double node graph” consisting of predefined on-body node graph and free-form
sampled far-body node graph. We use θ0 and the initial IMU readings to initialize
sensor calibration. The triangle mesh is extracted from the TSDF volume with
Marching Cube algorithm [19].

Main Pipeline. The lack of ground truth transformation between IMUs and
their attached bones leads to unstable tracking performance in our hybrid motion
tracking step. Therefore, we keep optimizing the sensor calibration frame by
frame, and the calibration gets more and more accurate thanks to the increasing
number of successfully tracked frames with different skeleton poses. Following
[45], we also optimize the inner body shape and the canonical pose. In summary,
our pipeline performs hybrid motion tracking, adaptive geometry fusion, volu-
metric shape-pose optimization and sensor calibration sequentially, as shown in
Fig. 2. Below is a brief introduction of the main components of our pipeline.

– Hybrid Motion Tracking. Given the current depth map and the IMU
measurements, we propose to jointly track the skeletal motion and the surface
non-rigid deformation through a new hybrid motion tracking algorithm. We
construct a new energy term to constrain the orientations of the skeleton
bones using the orientation measurements of their corresponding IMUs.

– Adaptive Geometry Fusion. To improve the robustness of the fusion step,
we propose an adaptive fusion method that utilizes tracking confidence to
adjust the weight of TSDF fusion adaptively. The tracking confidence can
be estimated according to the normal equations in the current procedure of
hybrid motion tracking.

– Volumetric Shape-Pose Optimization. We perform volumetric shape-
pose optimization after adaptive geometry fusion. Based on the updated
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TSDF volume, we optimize the inner body shape and canonical pose to obtain
better canonical body fitting and skeleton embedding.

– Sensor Calibration. Given the motion tracking results and IMU readings
at current frame, we optimize the sensor calibration to acquire more accurate
estimations of the transformations between IMUs and their corresponding
bones, as well as more accurate transformation estimation between the inertial
coordinate and the camera coordinate.

4 Hybrid Motion Tracking

Since our pipeline focuses on performance capture of human, we adopt a double-
layer surface representation for motion tracking, which has been proved to be
efficient and robust in [45]. Similar to [9,44,45], our motion tracking is under
the assumption that human motion largely follows articulated structures. There-
fore, we use two kinds of motion parameterizations, skeleton motions and non-
rigid node deformation. Combining IMU orientation informations, we construct
a energy function for hybrid motion tracking in order to solve the two motion
components in a joint optimization scheme. Given the depth map Dt and inertial
measurements Mt of current frame t, the energy function is:

Emot = λIMUEIMU + λdepthEdepth + λbindEbind + λregEreg + λpriEpri, (1)

where EIMU, Edepth, Ebind, Ereg and Eprior represent IMU, depth, binding, reg-
ularization and pose prior term respectively. EIMU and Edepth are data terms
that constrain the results to be consistant with IMU and depth input, Ebind

regularizes the surface non-rigid deformation with articulated skeleton motion,
Ereg constrains the locally as-rigid-as-possible property of the node graph and
Eprior is used to penalize unnatural human poses. To simplify the notation, we
claim that all variables in this section take their values at the current frame t,
and drop their subscripts of frame index.

IMU Term. To bridge the sensors’ measurements and hybrid motion tracking
pipeline, we select N = 8 binding bones on the SMPL model (Fig. 2 Initial-
ization) for the N inertial sensors, and these bones are denoted by bIMU

i (i =
1, . . . , N). The IMU term penalizes the orientation difference between IMU read-
ings and the estimated orientations of their attached binding bones:

EIMU =
∑

i∈S

∥∥∥RI2CR̃iR−1
S2B,i − R

(
bIMU
i

)∥∥∥
2

F
(2)

where S is the index set of IMUs; R̃i is the orientation measurement of i-th sensor
in the inertial coordinate system. RI2C is the rotation offset between the inertial
coordinate and the camera coordinate system, while RS2B,i is the offset between
the i-th IMU and its corresponding bone; more details are elaborated in Sect. 5.
R(bIMU

i ) is the rotational part of the skeleton skinning matrix G(bIMU
i ), which

is defined as:
G(bIMU

i ) = Gj =
∏

k∈Kj

exp
(
θk ξ̂k

)
, (3)
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where j is the index of bIMU
i in the skeleton structure; Gj is the cascaded

rigid transformation of jth bone; Kj represents parent bones indices of jth bone
along the backward kinematic chain; exp(θk ξ̂k) is the exponential map of the
twist associated with kth bone.

Note that RI2C and RB2S are crucial parameters determining the effec-
tiveness of the IMU term, and therefore they are continually optimized in our
pipeline even though we can obtain sufficiently accurate estimations through ini-
tial calculation. We provide more details about calculating and optimizing RI2C

and RS2B in Sect. 5.
The other energy terms in Eq. 1 are detailed in [44,45], as well as the efficient

GPU solver for motion tracking. Please refer to these two papers for more details.

5 Sensor Calibration

On one hand, an inertial sensor gives orientation measurements in the inertial
coordinate system, which is typically defined by the gravity field and geomagnetic
field. On the other hand, our performance capture system runs in the camera
coordinate system, which is independent of the inertial coordinate. The rela-
tionship between these two coordinates can be described as a constant mapping
denoted by RI2C . Based on the mapping, we can transform all IMU outputs from
inertial coordinate to the camera coordinate system, as formulated in Eq. 2. As
illustrated in Fig. 3, several coordinate systems are involved in order to estimate
the mapping: (1) the i-th IMU sensor coordinate system CSi

, which is aligned
with the ith sensor itself, and changes when the sensor moves, (2) the inertial
coordinate system CI, which remains static all the time, (3) the i-th bone coor-
dinate system CBi

, which is aligned with the bone associated with the ith IMU
sensor, and changes when the subject acts or moves, (4) the camera coordinate
system CC, which also remains static. Accordingly, RS2B is the transformation
from CS to CB, RI2C is from CI to CS, and their inverse transformations are
denoted as RB2S and RC2I .

Fig. 3. Illustration of different coordinates and their relationship.



396 Z. Zheng et al.

5.1 Initial Sensor Calibration

We calculate an approximation of RI2C during the initialization of our pipeline.
After fitting the SMPL model to the depth image, the mapping RB2C,i: CBi

→
CC is available according to RB2C,i = Rt0

(
bIMU
i

)
, where the subscript t0 is the

index of the first frame. Besides, we can also obtain the mapping from CI to CSi

by assigning the inverse matrix of the sensor’s reading at the first frame: RI2S,i =
R̃−1

i,t0
. To transform CI into CC through the path CI → CSi

→ CBi
→ CC, we

need to know the rotation offset between the IMUs and their corresponding bone
coordinate systems RS2B,i: CSi

→ CBi
. We assume that they are constant as the

sensors are tightly attached to the limbs and we then predefine them according
to the placement of the sensors. Thus, we can compute RI2C by

RI2C = SLERP
i=1,...,N

{(RI2C,i , wi)} = SLERP
i=1,...,N

{(RB2C,iRS2B,iRI2S,i , wi)}

= SLERP
i=1,...,N

{(
Rt0

(
bIMU
i

)
RS2B,iR̃−1

i,t0
, wi

)}
,

(4)

where SLERP {·} is the operator of spherical linear interpolation, and wi is the
interpolation weight, which is set to 1/N in our experiment.

5.2 Per-Frame Calibration Optimization

Even though the influence of measurement noises tends to be diminished by
averaging RI2C,i (Sect. 5.1), the solution of the initial sensor calibration is still
prone to errors due to the sparse IMU setup and the rough assignments of RS2B,i.
Therefore, we propose an efficient method to continuously optimize the sensor
calibration. As formulated in Sect. 4, the orientation measurements and motion
estimation are related by RI2C and RB2S,i:

RI2CR̃i = R
(
bIMU
i

)
R−1

B2S,i, (5)

thus we can compute the accumulated rotations from t0 to t as:

RI2CR̃i,tR̃−1
i,t0

R−1
I2C = Rt

(
bIMU
i

)
R−1

t0

(
bIMU
i

)
. (6)

Given the motion tracking results, we estimate the optimal rotation offset of
frame t according to

R̂I2C = arg min
RI2C

∑

i∈S

∥∥∥RI2CR̃i,tR̃−1
i,t0

R−1
I2C − Rt

(
bIMU
i

)
R−1

t0

(
bIMU
i

)∥∥∥
2

F
, (7)

and then update RI2C by blending the solution with the original value:

RI2C ← SLERP
{

(RI2C , w) ;
(
R̂I2C , ω

)}
(8)

where w,ω are both interpolation weights. We set w = 1 − 1
t , ω = 1

t to make
sure the final solution coverage to a stable global optimum. We optimize RS2B,i

in similar ways.
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6 Adaptive Geometry Fusion

Similar to prior works [7,10,12,25,45], we integrate depth maps into a refer-
ence volume. To deal with the ambiguity caused by voxel collision, we follow
[7,10,45] to detect collided voxels by voting the TSDF value at live frame and
avoid integrating depth information into these voxels. Besides voxel collision, the
surface fusion still suffers from inaccurate motion tracking, which is a factor that
previous fusion methods do not consider. Inspired by previous works addressing
the uncertainty of parameter estimation [38,47], we propose to fuse geometry
adaptively according to the tracking confidence that measures the performance
of hybrid motion tracking. Specifically, we denote xt as the motion parameters
being solved and assume it approximately follows a normal distribution:

p(xt|Dt,Mt) � N (μt,Σt) , (9)

where μt is the solution of motion tracking and the covariance Σt measures the
tracking uncertainty. By assuming p(xt|Dt,Mt) ∝ exp(−Emot), we can approx-
imate the covariance as

Σt = σ2
(
JTJ

)−1
(10)

where J is the Jacobian of Emot.

Fig. 4. Visualization of the estimated per-node tracking confidence in 3 scenarios: large
body-camera distance (a), fast motions (b) and occlusions (c).

We regard the diagonal of Σ−1
t as the confidence vector of the solution μt,

which contains the confidence of both skeleton tracking and non-rigid track-
ing parameters calculated by our hybrid motion tracking algorithm. Since the
TSDF fusion step only needs node graph to perform non-rigid deformation [25],
we merge the two types of motion tracking confidence together to get a more
accurate estimation of hybrid tracking confidence for each node. Therefore, the
tracking confidence Ctrack (xk) corresponding to a node xk can be computed as

Ctrack (xk) = (1−λ) min
(

diag(Σ̄−1
t )xk

ηxk

, 1
)

+λ
∑

j∈B
wj,xk

min

(
diag(Σ̄−1

t )bj

ηbj

, 1

)

(11)
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where B is the index set of bones; diag(Σ̄−1
t )xk

and diag(Σ̄−1
t )bj

are the averaged
covariance values of all ICP iterations corresponding to the kth node and jth
bone respectively. wj,xk

is the skinning weight associated with xk.
To better illustrate the tracking confidence, we classify the performance cap-

ture scenarios that will adversely impact the tracking performance into 3 cate-
gories (far body-camera distance, fast motions and occlusions) and visualized the
estimated tracking confidence of each node in these scenarios in Fig. 4. Since the
quality of depth input is inversely proportional to body-camera distance and the
low quality depth will significantly deteriorate the tracking and fusion perfor-
mance, the tracking confidence of all nodes declines when the body is far from
the camera (Fig. 4(a)); Moreover, the nodes under fast motions also have low
tracking confidence (Fig. 4(b)), as the tracking performance for fast motions is
usually worse than slow motions due to the blurred depth input and lack of cor-
respondences; Last, for single-view capture system, occlusions will lead to lack
of observations and worse tracking performance of corresponding body parts.
Thus, the tracking confidence of occluded nodes decreases as in Fig. 4(c).

After calculating the tracking confidence, we perform adaptive geometry
fusion as follows. For a voxel v, D(v) denotes the TSDF value of the voxel,
W(v) denotes its accumulated fusion weight, d(v) is the projective signed dis-
tance function (PSDF) value, and ω(v) is the fusion weight of v at current frame:

ω′(v) =
∑

xk∈N (v)

Ctrack (xk) , ω(v) =

{
0 ω′(v) < τ,

ω′(v) otherwise.
(12)

Finally, the voxel is updated by

D(v) ← D(v)W(v) + d(v)ω(v)
W(v) + ω(v)

, W(v) ← W(v) + ω(v) (13)

where N (v) is the collection of the KNN deformation nodes of voxel v, and τ is
a threshold controlling the minimum integration weight.

7 Experiments

We evaluate the performance of our proposed method in this section. In Sect. 7.1
we present details on the setup of our system and report the main parameters
of our pipeline. Then we compare our system with the state-of-the-art method
both qualitatively and quantitatively in Sect. 7.2. We also provide evaluations
of our main contributions in Sect. 7.3.

Figure 5 demonstrates the reconstructed dynamic geometries and the inner
body shapes on several motion sequences, including sports, dancing and so on.
From the results we can see that our system is able to reconstruct various kinds
of challenging motions and inner body shapes using a single-view setup.
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Fig. 5. Example results reconstructed by our system. In each grid, the left image is
the color reference; the middle one is the fused surface geometry; and the right one is
the inner body shape estimated by our system. (Color figure online)

7.1 System Setup

For the hard-ware setup, we use Kinect One and Noitom Legacy suite as the
depth sensor and inertial sensors respectively. Our system runs in real-time
(33 ms per frame) on a NVIDIA TITAN X GPU and an Intel Core i7-6700K
CPU. The majority of the running time is spent on the joint motion tracking
(23 ms) and the adaptive geometric fusion (6 ms). The sensor calibration opti-
mization takes 1 ms while the shape-pose optimization takes 3 ms.

The weights of energy terms serve to balance the impact of different tracking
cues, where the weight of IMU term is set to 5.0, while the other energy weights
are identical to [16]. More specifically, the strategy of assigning λIMU is to ensure
that (1) the IMU term can produce rough pose estimations, when there is a lack
of correspondences (fast motion and/or occlusion), and (2) the IMU term does
not affect the tracking adversely, when enough correspondences are available.
Note that λdepth = 1.0 and λbind = 1.0 initially, and the binding term will be
gradually relaxed so as to capture the detailed non-rigd motion of the surface.
The weights of the regularization term and prior term are fixed to 5.0 and 0.01
respectively, avoiding undesirable results.

7.2 Comparison

We compare against the state-of-the-art method, DoubleFusion [45] on 4
sequences, as shown in Fig. 6. The tracking performance of our system clearly
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outperforms DoubleFusion especially under severe occlusions. To make quanti-
tative comparison, we capture several sequences using the Vicon and our system
simultaneously. Both systems are synchronized by flashing the infrared LED.
We calibrate these two systems spatially by manually selecting the correspond-
ing point pairs and calculate their transformation. After that, we transform the
marker positions from the Vicon coordinate into the camera coordinate at the
first frame, followed by tracking their motions using the motion field and com-
paring the per-frame positions with the Vicon-detected ground-truth. We do the
same tests on DoubleFusion. Figure 7 presents the curves of per-frame maximum
error of DoubleFusion and our method on one sequence. We also list the average
errors over the entire sequence in Table 1. From the numerical results we can see
that our system achieve the higher tracking accuracy than DoubleFusion.

Table 1. Average numerical errors on the entire sequence.

Method DoubleFusion HybridFusion

Avg. of Max. Err. (m) 0.0854 0.0655

We also compare our skeleton tracking performance against the state-of-the-
art hybrid tracker, [11], using its published dataset. As depicted in Table 2, our
system maintains more accurate and stable performance for skeleton tracking,
inducing much smaller tracking errors than [11].

Table 2. Average joint tracking error and standard deviation in millimeters (compared
with [11]).

Sequence D1 D2 D3 D4 D5 D6

Helten et al. [11] 35.7(24.9) 47.4(31.4) 44.4(33.8) 34.7(25.4) 59.1(45.3) 56.2(41.6)

Ours 20.9(15.2) 27.6(19.6) 27.0(17.6) 15.5(15.6) 43.5(33.6) 40.9(27.5)

7.3 Evaluation

Sensor Calibration. In Fig. 8, we evaluate the proposed per-frame sensor cal-
ibration on a simple sequence. Figure 8(c) is the surface reconstruction results
only using initial calibration results as described in Sect. 5.1, without the per-
frame calibration optimization step (Sect. 5.2). We can see that the joint motion
tracking performance suffers from the inaccuracy of the initial calibration results.
Moreover, the erroneous motion tracking performance will lead to erroneous
surface fusion results (ghost hands and legs). With the per-frame calibration
optimization algorithm, our system can generate accurate motion tracking and
surface fusion results as shown in Fig. 8(d).
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Fig. 6. Qualitative comparison against DoubleFusion. 1st row: Color and depth image
as reference. 2nd and 3rd rows: The results reconstructed by DoubleFusion and our
system respectively. (Color figure online)

Fig. 7. Quantitative comparison on tracking accuracy against DoubleFusion. (a): The
curves of maximum position error. (b): The results of our system on two time instances.

Fig. 8. Evaluation of per-frame sensor calibration optimization. (a), (b): Color and
depth images as reference. (c): The reconstruction results without calibration opti-
mization. (d): The reconstruction results with calibration optimization. (Color figure
online)
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Adaptive Geometry Fusion. We also evaluate the effectiveness of the adap-
tive geometric fusion method. We captured several sequences in three challeng-
ing scenarios for detailed surface fusion, which include far body-camera distance,
body-part occlusion and fast motion. We then compare our adaptive geometry
fusion method against previous fusion method used in [10,25,44,45]. In Fig. 9,
the results of the previous fusion method are presented on the left side of each
sub-figure, while the reconstruction results with adaptive fusion are shown on the
right. As shown in Fig. 4, the fusion weights in our system can be automatically
adjusted (set to a very small value or skip the fusion step) in all the situations,
resulting in more plausible and detailed surface fusion results.

Fig. 9. Evaluation of adaptive fusion under far body-camera distance (a), occlusions
(b) and fast motions (c). In each sub-figure, the left mesh is fused by previous fusion
method and the right one is fused using our adaptive fusion method.

Challenging Loop Closure. In order to evaluate the performance of our sys-
tem on challenging loop closure, we capture several challenging turning around
motions. The results are shown in Fig. 10. As we can see, DoubleFusion fails to
track the motion of the performer’s arms and legs when they are occluded by
the body and finally generates unsatisfactory loop closure results. In contrast,
our system is able to track those motions under severe occlusions, generating
complete and plausible models with such challenging turning around motions.

Fig. 10. Evaluation of the performance of our system on loop closure. We show the
results in different frames. (a, d): Color reference. (b, e): The results reconstructed by
DoubleFusion. (c, f): The results generated by our system. (Color figure online)

The Number of IMUs. To better evaluate our contributions, we also make
experiments on the number of IMUs used in hybrid motion tracking. In Fig. 11,



HybridFusion 403

the performer wears the full set of Noitom Legacy suite containing 17 IMUs
attached on different body parts and performs several challenging motion such
as leapfrogging, punching and so on. Regarding the tracking results with 17 IMUs
as the ground-truth, we can get an estimation of tracking errors using different
sensor setups. In Fig. 11, we present the average position error of joints using
different numbers of IMUs. This experiment proves that using 8 IMUs (less than
a half of the full set) with a single depth camera can achieve accurate tracking
while preserving the convenience for usage.

Fig. 11. Evaluation of the number of IMUs. (a): The curves of average position error
of joints under different configurations. (b): Illustration of the 4 IMU configurations.

8 Discussion

Conclusion. In this paper, we have presented a practical and highly robust real-
time human performance capture system that can simultaneously reconstruct
challenging motions, detailed surface geometries and plausible inner body shapes
using a single depth camera and sparse IMUs. We believe the practicability of our
system enables light-weight, robust and real-time human performance capture,
which makes it possible for users to capture high-quality 4D performances even at
home. The real-time reconstructed results can be used in both AR/VR, gaming
and virtual try-on applications.

Limitations. Our system cannot reconstruct very accurate surface mesh when
people wearing very wide cloth because the cloth deformations are too complex
for our sparse node-graph deformation model. Also, human-object interactions
are very challenging, using divide-and-conquer scheme may provide plausible
results. Although the IMUs we used are relatively small and easy to wear, it
may still limit body motions. However, as the IMUs are getting more and more
small and accurate, we believe the system setup can be even easier in the future.
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