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Abstract. Template-matching methods for visual tracking have gained
popularity recently due to their comparable performance and fast speed.
However, they lack effective ways to adapt to changes in the target
object’s appearance, making their tracking accuracy still far from state-
of-the-art. In this paper, we propose a dynamic memory network to adapt
the template to the target’s appearance variations during tracking. An
LSTM is used as a memory controller, where the input is the search
feature map and the outputs are the control signals for the reading and
writing process of the memory block. As the location of the target is
at first unknown in the search feature map, an attention mechanism is
applied to concentrate the LSTM input on the potential target. To pre-
vent aggressive model adaptivity, we apply gated residual template learn-
ing to control the amount of retrieved memory that is used to combine
with the initial template. Unlike tracking-by-detection methods where
the object’s information is maintained by the weight parameters of neu-
ral networks, which requires expensive online fine-tuning to be adapt-
able, our tracker runs completely feed-forward and adapts to the tar-
get’s appearance changes by updating the external memory. Moreover,
unlike other tracking methods where the model capacity is fixed after
offline training – the capacity of our tracker can be easily enlarged as
the memory requirements of a task increase, which is favorable for mem-
orizing long-term object information. Extensive experiments on OTB
and VOT demonstrates that our tracker MemTrack performs favorably
against state-of-the-art tracking methods while retaining real-time speed
of 50 fps.
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1 Introduction

Along with the success of convolution neural networks in object recognition
and detection, an increasing number of trackers [4,13,22,26,31] have adopted
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deep learning models for visual object tracking. Among them are two dominant
tracking strategies. One is the tracking-by-detection scheme that online trains
an object appearance classifier [22,26] to distinguish the target from the back-
ground. The model is first learned using the initial frame, and then fine-tuned
using the training samples generated in the subsequent frames based on the
newly predicted bounding box. The other scheme is template matching, which
adopts either the target patch in the first frame [4,29] or the previous frame [14]
to construct the matching model. To handle changes in target appearance, the
template built in the first frame may be interpolated by the recently generated
object template with a small learning rate [30].

The main difference between these two strategies is that tracking-by-
detection maintains the target’s appearance information in the weights of the
deep neural network, thus requiring online fine-tuning with stochastic gradient
descent (SGD) to make the model adaptable, while in contrast, template match-
ing stores the target’s appearance in the object template, which is generated by a
feed forward computation. Due to the computationally expensive model updat-
ing required in tracking-by-detection, the speed of such methods are usually
slow, e.g. [21,22,26] run at about 1 fps, although they do achieve state-of-the-art
tracking accuracy. Template matching methods, however, are fast because there
is no need to update the parameters of the neural networks. Recently, several
trackers [4,13,36] adopt fully convolutional Siamese networks as the matching
model, which demonstrate promising results and real-time speed. However, there
is still a large performance gap between template-matching models and tracking-
by-detection, due to the lack of an effective method for adapting to appearance
variations online.

In this paper, we propose a dynamic memory network, where the target infor-
mation is stored and recalled from external memory, to maintain the variations
of object appearance for template-matching. Unlike tracking-by-detection where
the target’s information is stored in the weights of neural networks and therefore
the capacity of the model is fixed after offline training, the model capacity of
our memory networks can be easily enlarged by increasing the size of external
memory, which is useful for memorizing long-term appearance variations. Since
aggressive template updating is prone to overfit recent frames and the initial
template is the most reliable one, we use the initial template as a conservative
reference of the object and a residual template, obtained from retrieved memory,
to adapt to the appearance variations. During tracking, the residual template
is gated channel-wise and combined with the initial template to form the final
matching template, which is then convolved with the search image features to
get the response map. The channel-wise gating of the residual template controls
how much each channel of the retrieved template should be added to the initial
template, which can be interpreted as a feature/part selector for adapting the
template. An LSTM (Long Short-Term Memory) is used to control the reading
and writing process of external memory, as well as the channel-wise gate vector
for the residual template. In addition, as the target position is at first unknown in
the search image, we adopt an attention mechanism to locate the object roughly



Learning Dynamic Memory Networks for Object Tracking 155

in the search image, thus leading to a soft representation of the target for the
input to the LSTM controller. This helps to retrieve the most-related template in
the memory. The whole framework is differentiable and therefore can be trained
end-to-end with SGD. In summary, the contributions of our work are:

– We design a dynamic memory network for visual tracking. An external mem-
ory block, which is controlled by an LSTM with attention mechanism, allows
adaptation to appearance variations.

– We propose gated residual template learning to generate the final match-
ing template, which effectively controls the amount of appearance variations
in retrieved memory that is added to each channel of the initial matching
template. This prevents excessive model updating, while retaining the con-
servative information of the target.

– We extensively evaluate our algorithm on large scale datasets OTB and
VOT. Our tracker performs favorably against state-of-the-art tracking meth-
ods while possessing real-time speed of 50 fps.

2 Related Work

Template-Matching Trackers. Matching-based methods have recently gained
popularity due to its fast speed and comparable performance. The most notable
is the fully convolutional Siamese networks (SiamFC) [4]. Although it only uses
the first frame as the template, SiamFC achieves competitive results and fast
speed. The key deficiency of SiamFC is that it lacks an effective model for online
updating. To address this, [30] proposes model updating using linear interpo-
lation of new templates with a small learning rate, but does only sees mod-
est improvements in accuracy. Recently, the RFL (Recurrent Filter Learning)
tracker [36] adopts a convolutional LSTM for model updating, where the forget
and input gates control the linear combination of historical target information,
i.e., memory states of LSTM, and incoming object’s template automatically.
Guo et al. [13] propose a dynamic Siamese network with two general transfor-
mations for target appearance variation and background suppression. To further
improve the speed of SiamFC, [16] reduces the feature computation cost for easy
frames, by using deep reinforcement learning to train policies for early stopping
the feed-forward calculations of the CNN when the response confidence is high
enough. SINT [29] also uses Siamese networks for visual tracking and has higher
accuracy, but runs much slower than SiamFC (2 fps vs 86 fps) due to the use
of deeper CNN (VGG16) for feature extraction, and optical flow for its candi-
date sampling strategy. Unlike other template-matching models that use sliding
windows or random sampling to generate candidate image patches for testing,
GOTURN [14] directly regresses the coordinates of the target’s bounding box
by comparing the previous and current image patches. Despite its advantage on
handling scale and aspect ratio changes and fast speed, its tracking accuracy is
much lower than other state-of-the-art trackers.

Different from existing matching-based trackers where the capacity of adap-
tivity is limited by the size of neural networks, we use SiamFC [4] as the baseline
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feature extractor and extend it to use an addressable memory, whose memory
size is independent of neural networks and thus can be easily enlarged as memory
requirements of a task increase, to adapt to variations of object appearance.

Memory Networks. Recent use of convolutional LSTM for visual tracking [36]
shows that memory states are useful for object template management over long
timescales. Memory networks are typically used to solve simple logical reasoning
problem in natural language processing like question answering and sentiment
analysis. The pioneering works include NTM (Neural Turing Machine) [11] and
MemNN (Memory Neural Networks) [33]. They both propose an addressable
external memory with reading and writing mechanism – NTM focuses on prob-
lems of sorting, copying and recall, while MemNN aims at language and reasoning
task. MemN2N [28] further improves MemNN by removing the supervision of
supporting facts, which makes it trainable in an end-to-end fashion. Based on
their predecessor NTM, [12] proposes a new framework called DNC (Differen-
tiable Neural Computer), which uses a different access mechanism to alleviate
the memory overlap and interference problem. Recently, NTM is also applied to
one-shot learning [25] by redesigning the method for reading and writing mem-
ory, and has shown promising results at encoding and retrieving new information
quickly.

Our proposed memory model differs from the aforementioned memory net-
works in the following aspects. Firstly, for question answering problem, the input
of each time step is a sentence, i.e., a sequence of feature vectors (each word cor-
responds to one vector) which needs an embedding layer (usually RNN) to obtain
an internal state. While for object tracking, the input is a search image which
needs a feature extraction process (usually CNN) to get a more abstract repre-
sentation. Furthermore, for object tracking, the target’s position in the search
image patch is unknown, and here we propose an attention mechanism to high-
light the target’s information when generating the read key for memory retrieval.
Secondly, the dimension of feature vector stored in memory for natural language
processing is relatively small (50 in MemN2N vs 6×6×256=9216 in our case).
Directly using the original template for address calculation is time-consuming.
Therefore we apply an average pooling on the feature map to generate a template
key for addressing, which is efficient and effective experimentally. Furthermore,
we apply channel-wise gated residual template learning for model updating, and
redesign the memory writing operation to be more suitable for visual tracking.

3 Dynamic Memory Networks for Tracking

In this section we propose a dynamic memory network with reading and
writing mechanisms for visual tracking. The whole framework is shown in Fig. 1.
Given the search image, first features are extracted with a CNN. The image
features are input into an attentional LSTM, which controls the memory read-
ing and writing. A residual templates is read from the memory and combined
with the initial template learned from the first frame, forming the final tem-
plate. The final template is convolved with the search image features to obtain
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Fig. 1. The pipeline of our tracking algorithm. The green rectangle are the candidate
region for target searching. The Feature Extractions for object image and search image
share the same architecture and parameters. An attentional LSTM extracts the tar-
get’s information on the search feature map, which guides the memory reading process
to retrieve a matching template. The residual template is combined with the initial
template, to obtain a final template for generating the response score. The newly pre-
dicted bounding box is then used to crop the object’s image patch for memory writing.
(Color figure online)

the response map, and the target bounding box is predicted. The new target’s
template is cropped using the predicted bounding box, features are extracted
and then written into memory for model updating.

3.1 Feature Extraction

Given an input image It at time t, we first crop the frame into a search image
patch St with a rectangle that is computed by the previous predicted bounding
box. Then it is encoded into a high level representation f(St), which is a spatial
feature map, via a fully convolutional neural networks (FCNN). In this work we
use the FCNN structure from SiamFC [4]. After getting the predicted bounding
box, we use the same feature extractor to compute the new object template for
memory writing.

3.2 Attention Scheme

Since the object information in the search image is needed to retrieve the related
template for matching, but the object location is unknown at first, we apply an
attention mechanism to make the input of LSTM concentrate more on the target.
We define ft,i ∈ R

n×n×c as the i-th n × n × c square patch on f(St) in a sliding
window fashion.1 Each square patch covers a certain part of the search image.
1 We use 6 × 6 × 256, which is the same size of the matching template.
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An attention-based weighted sum of these square patches can be regarded as a
soft representation of the object, which can then be fed into LSTM to generate a
proper read key for memory retrieval. However the size of this soft feature map
is still too large to directly feed into LSTM. To further reduce the size of each
square patch, we first adopt an average pooling with n × n filter size on f(St),

f∗(St) = AvgPoolingn×n(f(St)) (1)

and f∗
t,i ∈ R

c is the feature vector for the ith patch.
The attended feature vector is then computed as the weighted sum of the

feature vectors,

at =
L∑

i=1

αt,if∗
t,i (2)

where L is the number of square patches, and the attention weights αt,i is cal-
culated by a softmax,

αt,i =
exp(rt,i)∑L

k=1 exp(rt,k)
(3)

where

rt,i = W atanh(Whht−1 + W f f∗
t,i + b) (4)

is an attention network which takes the previous hidden state ht−1 of the LSTM
controller and a square patch f∗

t,i as input. W a,Wh,W f and b are weight matrices
and biases for the network.

By comparing the target’s historical information in the previous hidden state
with each square patch, the attention network can generate attentional weights
that have higher values on the target and smaller values for surrounding regions.
Figure 2 shows example search images with attention weight maps. We can see
that our attention network can always focus on the target which is beneficial
when retrieving memory for template matching.

Fig. 2. Visualization of attentional weights map: for each pair, (left) search images and
ground-truth target box, and (right) attention maps over search image. For visualiza-
tion, the attention maps are resized using bicubic interpolation to match the size of
the original image.
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3.3 LSTM Memory Controller

For each time step, the LSTM controller takes the attended feature vector at,
obtained in the attention module, and the previous hidden state ht−1 as input,
and outputs the new hidden state ht to calculate the memory control signals,
including read key, read strength, bias gates, and decay rate (discussed later).
The internal architecture of the LSTM uses the standard model (details in the
Supplemental), while the output layer is modified to generate the control signals.
In addition, we also use layer normalization [2] and dropout regularization [27] for
the LSTM. The initial hidden state h0 and cell state c0 are obtained by passing
the initial target’s feature map through one n×n average pooling layer and two
separate fully-connected layer with tanh activation functions, respectively.

Fig. 3. Diagram of memory access mechanism.

3.4 Memory Reading

Memory is retrieved by computing a weighted summation of all memory slots
with a read weight vector, which is determined by the cosine similarity between a
read key and the memory keys. This aims at retrieving the most related template
stored in memory. Suppose Mt ∈ R

N×n×n×c represents the memory module,
such that Mt(j) ∈ R

n×n×c is the template stored in the jth memory slot and
N is the number of memory slots. The LSTM controller outputs the read key
kt ∈ R

c and read strength βt ∈ [1,∞],

kt =W kht + bk (5)

βt =1 + log(1 + exp(W βht + bβ)) (6)
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where W k,W β , bk, bβ are corresponding weight matrices and biases. The read
key kt is used for matching the contents in the memory, while the read strength
βt indicates the reliability of the generated read key. Given the read key and
read strength, a read weight wr

t ∈ R
N is computed for memory retrieval,

wr
t (j) =

exp {C(kt,kMt(j))βt}∑
j′ exp {C(kt,kMt(j′))βt} (7)

where kMt(j) ∈ R
c is the memory key generated by a n × n average pooling

on Mt(j). C(x,y) is the cosine similarity between vectors, C(x,y) = x·y
‖x‖‖y‖ .

Finally, the template is retrieved from memory as a weighted sum,

Tretr
t =

N∑

j=1

wr
t (j)Mt(j). (8)

Fig. 4. The feature channels respond to target parts: images are reconstructed from
conv5 of the CNN used in our tracker. Each image is generated by accumulating recon-
structed pixels from the same channel. The input image is shown in the top-left.

3.5 Residual Template Learning

Directly using the retrieved template for similarity matching is prone to overfit
recent frames. Instead, we learn a residual template by multiplying the retrieved
template with a channel-wise gate vector and add it to the initial template to
capture the appearance changes. Therefore, our final template is formulated as,

Tfinal
t = T0 + rt � Tretr

t , (9)

where T0 is the initial template and � is channel-wise multiplication. rt ∈ R
c is

the residual gate produced by LSTM controller,

rt = σ(W rht + br), (10)

where W r, br are corresponding weights and biases, and σ represents sigmoid
function. The residual gate controls how much each channel of the retrieved
template is added to the initial one, which can be regarded as a form of feature
selection.
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By projecting different channels of a target feature map to pixel-space using
deconvolution, as in [37], we find that the channels focus on different object parts
(see Fig. 4). Thus, the channel-wise feature residual learning has the advantage
of updating different object parts separately. Experiments in Sect. 5.1 show that
this yields a big performance improvement.

3.6 Memory Writing

The image patch with the new position of the target is used for model updating,
i.e., memory writing. The new object template Tnew

t is computed using the
feature extraction CNN. There are three cases for memory writing: (1) when the
new object template is not reliable (e.g. contains a lot of background), there is no
need to write new information into memory; (2) when the new object appearance
does not change much compared with the previous frame, the memory slot that
was previously read should be updated; (3) when the new target has a large
appearance change, a new memory slot should be overwritten. To handle these
three cases, we define the write weight as

ww
t = gw0 + grwr

t + gawa
t , (11)

where 0 is the zero vector, wr
t is the read weight, and wa

t is the allocation
weight, which is responsible for allocating a new position for memory writing.
The write gate gw, read gate gr and allocation gate ga, are produced by the
LSTM controller with a softmax function,

[gw, gr, ga] = softmax(W ght + bg), (12)

where W g, bg are the weights and biases. Since gw + gr + ga = 1, these three
gates govern the interpolation between the three cases. If gw = 1, then ww

t = 0
and nothing is written. If gr or ga have higher value, then the new template is
either used to update the old template (using wr

t ) or written into newly allocated
position (using wa

t ). The allocation weight is calculated by,

wa
t (i) =

⎧
⎨

⎩
1, if i = argmin

i
wu

t−1(i)

0, otherwise
(13)

where wu
t is the access vector,

wu
t = λwu

t−1 + wr
t + ww

t , (14)

which indicates the frequency of memory access (both reading and writing), and
λ is a decay factor. Memory slots that are accessed infrequently will be assigned
new templates.

The writing process is performed with a write weight in conjunction with an
erase factor for clearing the memory,

Mt+1(i) = Mt(i)(1 − ww
t (i)ew) + wt(i)wewTnew

t , (15)
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where ew is the erase factor computed by

ew = drgr + ga, (16)

and dr ∈ [0, 1] is the decay rate produced by the LSTM controller,

dr = σ(W dht + bd), (17)

where σ is sigmoid function. W d and bd are corresponding weights and biases.
If gr = 1 (and thus ga = 0), then dr serves as the decay rate for updating the
template in the memory slot (case 2). If ga = 1 (and gr = 0), dr has no effect
on ew, and thus the memory slot will be erased before writing the new template
(case 3). Figure 3 shows the detailed diagram of the memory reading and writing
process.

4 Implementation Details

We adopt an Alex-like CNN as in SiamFC [4] for feature extraction, where
the input image sizes of the object and search images are 127 × 127 × 3 and
255 × 255 × 3 respectively. We use the same strategy for cropping search and
object images as in [4], where some context margins around the target are added
when cropping the object image. The whole network is trained offline on the
VID dataset (object detection from video) of ILSVRC [24] from scratch, and
takes about a day. Adam [17] optimization is used with a mini-batches of 8
video clips of length 16. The initial learning rate is 1e-4 and is multiplied by
0.8 every 10k iterations. The video clip is constructed by uniformly sampling
frames (keeping the temporal order) from each video. This aims to diversify
the appearance variations in one episode for training, which can simulate fast
motion, fast background change, jittering object, low frame rate. We use data
augmentation, including small image stretch and translation for the target image
and search image. The dimension of memory states in the LSTM controller is
512 and the retain probability used in dropout for LSTM is 0.8. The number
of memory slots is N = 8. The decay factor used for calculating the access
vector is λ = 0.99. At test time, the tracker runs completely feed-forward and
no online fine-tuning is needed. We locate the target based on the upsampled
response map as in SiamFC [4], and handle the scale changes by searching for the
target over three scales 1.05[−1,0,1]. To smoothen scale estimation and penalize
large displacements, we update the object scale with the new one by exponential
smoothing st = (1 − γ) ∗ st−1 + γsnew, where s is the scale value and the
exponential factor γ = 0.6. Similarly, we dampen the response map with a cosine
window by an exponential factor of 0.15.

Our algorithm is implemented in Python with the TensorFlow toolbox [1]. It
runs at about 50 fps on a computer with four Intel(R) Core(TM) i7-7700 CPU
@ 3.60 GHz and a single NVIDIA GTX 1080 Ti with 11 GB RAM.
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5 Experiments

We evaluate our proposed tracker, denoted as MemTrack, on three challeng-
ing datasets: OTB-2013 [34], OTB-2015 [35] and VOT-2016 [18]. We follow the
standard protocols, and evaluate using precision and success plots, as well as
area-under-the-curve (AUC).

5.1 Ablation Studies

Our MemTrack tracker contains three important components: (1) an attention
mechanism, which calculates the attended feature vector for memory reading; (2)
a dynamic memory network, which maintains the target’s appearance variations;
and (3) residual template learning, which controls the amount of model updating
for each channel of the template. To evaluate their separate contributions to our
tracker, we implement several variants of our method and verify them on OTB-
2015 dataset.
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Fig. 5. Ablation studies: (left) success plots of different variants of our tracker on OTB-
2015; (right) success plots for different memory sizes {1, 2, 4, 8, 16} on OTB-2015.

We first design a variant of MemTrack without attention mechanism
(MemTrack-NoAtt), which averages all L feature vectors to get the feature vector
at for the LSTM input. Mathematically, it changes (2) to at = 1

L

∑L
i=1 f

∗
t,i. As we

can see in Fig. 5 (left), Memtrack without attention decreases performance, which
shows the benefit of using attention to roughly localize the target in the search
image. We also design a naive strategy that simply writes the new target tem-
plate sequentially into the memory slots as a queue (MemTrack-Queue). When
the memory is fully occupied, the oldest template will be replaced with the new
template. The retrieved template is generated by averaging all templates stored
in the memory slots. As seen in Fig. 5 (left), such simple approach cannot produce
good performance, which shows the necessity of our dynamic memory network.
We next devise a hard template reading scheme (MemTrack-HardRead), i.e.,
retrieving a single template by max cosine distance, to replace the soft weighted
sum reading scheme. Figure 5 (left) shows that hard-templates decrease perfor-
mance possibly due to its non-differentiability To verify the effectiveness of gated
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residual template learning, we design another variant of MemTrack— removing
channel-wise residual gates (MemTrack-NoRes), i.e. directly adding the retrieved
and initial templates to get the final template. From Fig. 5 (left), our gated resid-
ual template learning mechanism boosts the performance as it helps to select
correct residual channel features for template updating.

We also investigate the effect of memory size on tracking performance.
Figure 5 (right) shows success plots on OTB-2015 using different numbers of
memory slots. Tracking accuracy increases along with the memory size and sat-
urates at 8 memory slots. Considering the runtime and memory usage, we choose
8 as the default number.

5.2 Comparison Results

We compare our method MemTrack with 9 recent real-time trackers (≥15 fps),
including CFNet [30], LMCF [32], ACFN [5], RFL [36], SiamFC [4], SiamFC U
[30], Staple [3], DSST [7], and KCF [15] on both OTB-2013 and OTB-2015. To
further show our tracking accuracy, we also compared with another 8 recent
state-of-the art trackers that are not real-time speed, including CREST [26],
CSR-DCF [19], MCPF [38], SRDCFdecon [9], SINT [29], SRDCF [6], HDT [23],
HCF [20] on OTB-2015.
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Fig. 6. Precision and success plot on OTB-2013 for recent real-time trackers.
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OTB-2013 Results: OTB-2013 [34] dataset contains 51 sequences with 11
video attributes and two evaluation metrics, which are center location error and
overlap ratio. Figure 6 shows the one-pass comparison results with recent real-
time trackers on OTB-2013. Our tracker achieves the best AUC on the success
plot and second place on precision plot. Compared with SiamFC [4], which is
the baseline for matching-based methods without online updating, our tracker
achieves an improvement of 4.9% on precision plot and 5.8% on success plot. Our
method also outperforms SiamFC U, the improved version of SiamFC [30] that
uses simple linear interpolation of the old and new filters with a small learning
rate for online updating. This indicates that our dynamic memory networks
can handle object appearance changes better than simply interpolating new
templates with old ones.

OTB-2015 Results: The OTB-2015 [35] dataset is the extension of OTB-2013
to 100 sequences, and is thus more challenging. Figure 7 presents the precision
plot and success plot for recent real-time trackers. Our tracker outperforms all
other methods in both measures. Specifically, our method performs much better
than RFL [36], which uses the memory states of LSTM to maintain the object
appearance variations. This demonstrates the effectiveness of using an external
addressable memory to manage object appearance changes, compared with using
LSTM memory which is limited by the size of the hidden states. Furthermore,
MemTrack improves the baseline of template-based method SiamFC [4] with
6.4% on precision plot and 7.6% on success plot respectively. Our tracker also
outperforms the most recently proposed two trackers, LMCF [32] and ACFN [5],
on AUC score with a large margin. Figure 8 presents the comparison results of
8 recent state-of-the-art non-real time trackers for AUC score (left plot), and
the AUC score vs speed (right plot) of all trackers. Our MemTrack, which
runs in real-time, has similar AUC performance to CREST [26], MCPF [38]
and SRDCFdecon [9], which all run at about 1 fps. Moreover, our MemTrack
also surpasses SINT, which is another matching-based method with optical flow
as motion information, in terms of both accuracy and speed. Figure 9 further
shows the AUC scores of real-time trackers on OTB-2015 under different video
attributes including illumination variation, out-of-plane rotation, scale variation,
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Fig. 8. (left) Success plot on OTB-2015 comparing our real-time MemTrack with recent
non-real-time trackers. (right) AUC score vs speed with recent trackers.



166 T. Yang and A. B. Chan

occlusion, motion blur, fast motion, in-plane rotation, and low resolution. Our
tracker outperforms all other trackers on these attributes. In particular, for the
low-resolution attribute, our MemTrack surpasses the second place (SiamFC)
with a 10.7% improvement on AUC score. In addition, our tracker also works
well under out-of-plane rotation and scale variation. Figure 10 shows some qual-
itative results of our tracker compared with 6 real-time trackers.
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - scale variation (64)
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Success plots of OPE - occlusion (49)
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Success plots of OPE - motion blur (29)
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Success plots of OPE - fast motion (39)
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Success plots of OPE - in-plane rotation (51)
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Success plots of OPE - low resolution (9)
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Fig. 9. The success plot of OTB-2015 on eight challenging attributes: illumination
variation, out-of-plane rotation, scale variation, occlusion, motion blur, fast motion,
in-plane rotation and low resolution

Fig. 10. Qualitative results of our MemTrack, along with SiamFC [4], RFL [36], CFNet
[30], Staple [3], LMCF [32], ACFN [5] on eight challenge sequences. From left to right,
top to bottom: board, bolt2, dragonbaby, lemming, matrix, skiing, biker, girl2.

VOT-2016 Results: The VOT-2016 dataset contains 60 video sequences with
per-frame annotated visual attributes. Objects are marked with rotated bound-
ing boxes to better fit their shapes. We compare our tracker with 8 trackers
(four real-time and four top-performing)on the benchmark, including SiamFC
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Table 1. Comparison results on VOT-2016 with top performers. The evaluation met-
rics include expected average overlap (EAO), accuracy and robustness value (A and
R), accuracy and robustness rank (Ar and Rr). Best results are bolded, and second
best is underlined. The up arrows indicate higher values are better for that metric,
while down arrows mean lower values are better.

Trackers MemTrack SiamFC RFL HCF KCF CCOT TCNN DeepSRDCF MDNet

EAO (↑) 0.2729 0.2352 0.2230 0.2203 0.1924 0.3310 0.3249 0.2763 0.2572

A (↑) 0.53 0.53 0.52 0.44 0.48 0.54 0.55 0.52 0.54

R (↓) 1.44 1.91 2.51 1.45 1.95 0.89 0.83 1.23 0.91

fps (↑) 50 86 15 11 172 0.3 1 1 1

[4], RFL [36], HCF [20], KCF [15], CCOT [10], TCNN [21], DeepSRDCF [8],
and MDNet [22]. Table 1 summarizes results. Although our MemTrack performs
worse than CCOT, TCNN and DeepSRDCF over EAO, it runs at 50 fps while
others runs at 1 fps or below. Our tracker consistently outperforms the baseline
SiamFC and RFL, as well as other real-time trackers. As reported in VOT2016,
the SOTA bound is EAO 0.251, which MemTrack exceeds (0.273).

6 Conclusion

In this paper, we propose a dynamic memory network with an external address-
able memory block for visual tracking, aiming to adapt matching templates
to object appearance variations. An LSTM with attention scheme controls the
memory access by parameterizing the memory interactions. We develop channel-
wise gated residual template learning to form the final matching model, which
preserves the conservative information present in the initial target, while provid-
ing online adapability of each feature channel. Once the offline training process
is finished, no online fine-tuning is needed, which leads to real-time speed of 50
fps. Extensive experiments on standard tracking benchmark demonstrates the
effectiveness of our MemTrack.
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19. Lukežič, A., Voj́ı, T., Čehovin, L., Matas, J., Kristan, M.: Discriminative correla-
tion filter with channel and spatial reliability. In: CVPR (2017)

20. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for
visual tracking. In: ICCV (2015)

21. Nam, H., Baek, M., Han, B.: Modeling and propagating CNNs in a tree structure
for visual tracking. In: ECCV (2016)

22. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: CVPR (2016)

23. Qi, Y., et al.: Hedged deep tracking. In: CVPR (2016)
24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.

Comput. Vis. (IJCV) 115, 211–252 (2015)
25. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: One-shot

learning with memory-augmented neural networks. In: ICML (2016)

https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-46454-1_29
https://doi.org/10.1007/978-3-319-46448-0_45
https://doi.org/10.1007/978-3-319-46448-0_45
https://doi.org/10.1007/978-3-319-48881-3_54


Learning Dynamic Memory Networks for Object Tracking 169

26. Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R., Yang, M.H.: CREST: convolutional
residual learning for visual tracking. In: ICCV (2017)

27. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. JMLR (2014)

28. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: NIPS (2015)

29. Tao, R., Gavves, E., Smeulders, A.W.M.: Siamese instance search for tracking. In:
CVPR (2016)

30. Valmadre, J., Bertinetto, L., Henriques, F., Vedaldi, A., Torr, P.H.S.: End-to-end
representation learning for correlation filter based tracking. In: CVPR (2017)

31. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional
networks. In: ICCV (2015)

32. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature
maps. In: CVPR (2017)

33. Weston, J., Chopra, S., Bordes, A.: Memory networks. In: ICLR (2015)
34. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR

(2013)
35. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. PAMI (2015)
36. Yang, T., Chan, A.B.: Recurrent filter learning for visual tracking. In: ICCV Work-

shop on Visual Object Challenge (2017)
37. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

38. Zhang, T., Xu, C., Yang, M.H.: Multi-task correlation particle filter for robust
object tracking. In: CVPR (2017)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Learning Dynamic Memory Networks for Object Tracking
	1 Introduction
	2 Related Work
	3 Dynamic Memory Networks for Tracking
	3.1 Feature Extraction
	3.2 Attention Scheme
	3.3 LSTM Memory Controller
	3.4 Memory Reading
	3.5 Residual Template Learning
	3.6 Memory Writing

	4 Implementation Details
	5 Experiments
	5.1 Ablation Studies
	5.2 Comparison Results

	6 Conclusion
	References




