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Abstract. Deep neural networks have enjoyed remarkable success for
various vision tasks, however it remains challenging to apply CNNs to
domains lacking a regular underlying structures such as 3D point clouds.
Towards this we propose a novel convolutional architecture, termed Spi-
derCNN, to efficiently extract geometric features from point clouds. Spi-
derCNN is comprised of units called SpiderConv, which extend convo-
lutional operations from regular grids to irregular point sets that can
be embedded in R

n, by parametrizing a family of convolutional filters.
We design the filter as a product of a simple step function that cap-
tures local geodesic information and a Taylor polynomial that ensures
the expressiveness. SpiderCNN inherits the multi-scale hierarchical archi-
tecture from classical CNNs, which allows it to extract semantic deep
features. Experiments on ModelNet40 demonstrate that SpiderCNN
achieves state-of-the-art accuracy 92.4% on standard benchmarks, and
shows competitive performance on segmentation task.
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1 Introduction

Convolutional neural networks are powerful tools for analyzing data that can nat-
urally be represented as signals on regular grids, such as audio and images [10].
Thanks to the translation invariance of lattices in R

n, the number of parameters
in a convolutional layer is independent of the input size. Composing convolu-
tion layers and activation functions results in a multi-scale hierarchical learning
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pattern, which is shown to be very effective for learning deep representations in
practice.

With the recent proliferation of applications employing 3D depth sensors
[23] such as autonomous navigation, robotics and virtual reality, there is an
increasing demand for algorithms to efficiently analyze point clouds. However,
point clouds are distributed irregularly in R

3, lacking a canonical order and
translation invariance, which prohibits using CNNs directly. One may circumvent
this problem by converting point clouds to 3D voxels and apply 3D convolutions
[13]. However, volumetric methods are computationally inefficient because point
clouds are sparse in 3D as they usually represent 2D surfaces. Although there
are studies that improve the computational complexity, it may come with a
performance trade off [2,18]. Various studies are devoted to making convolution
neural networks applicable for learning on non-Euclidean domains such as graphs
or manifolds by trying to generalize the definition of convolution to functions on
manifolds or graphs, enriching the emerging field of geometric deep learning [3].
However, it is challenging theoretically because convolution cannot be naturally
defined when the space does not carry a group action, and when the input
data consists of different shapes or graphs, it is difficult to make a choice for
convolutional filters.1

Fig. 1. The integral formula for convolution between a signal f and a filter g is
f ∗ g(p) =

∫
q∈Rn f(q)g(p− q)dq. Discretizing the integral formula on a set of points P

in R
n gives f ∗ g(p) =

∑
q∈P,‖p−q‖≤r f(q)g(p− q) if g is supported in a ball of radius r.

(a) when P can be represented by regular grids, only 9 values of a filter g are needed
to compute the convolution due to the translation invariance of the domain. (b) when
the signal is on point clouds, we choose the filter g from a parameterized family of
function on R

3.

In light of the above challenges, we propose an alternative convolutional
architecture, SpiderCNN, which is designed to directly extract features from
point clouds. We validate its effectiveness on classification and segmentation
benchmarks. By discretizing the integral formula of convolution as shown in
Fig. 1, and using a special family of parametrized non-linear functions on R

3 as
filters, we introduce a novel convolutional layer, SpiderConv, for point clouds.

The family of filters is designed to be expressive while still being feasible to
optimize. We combine simple step functions, which are used to capture the coarse
1 There is no canonical choice of a domain for these filters.
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geometry described by local geodesic distance, with order-3 Taylor expansions,
which ensure the filters are complex enough to capture intricate local geometric
variations. Experiments in Sect. 4 show that SpiderCNN with a relatively simple
network architecture achieves the state-of-the-art performance for classification
on ModelNet40 [4], and shows competitive performance for segmentation on
ShapeNet-Part [4].

2 Related Work

First we discuss deep neural network based approaches that target point clouds
data. Second, we give a partial overview of geometric deep learning.

Point Clouds as Input: PointNet [15] is a pioneering work in using deep
networks to directly process point sets. A spatial encoding of each point is
learned through a shared MLP, and then all individual point features aggre-
gate to a global signature through max-pooling, which is a symmetric operation
that doesn’t depend on the order of input point sequence.

While PointNet works well to extract global features, its design limits its effi-
cacy at encoding local structures. Various studies addressing this issue propose
different grouping strategies of local features in order to mimic the hierarchical
learning procedure at the core of classical convolutional neural networks. Point-
Net++ [17] uses iterative farthest point sampling to select centroids of local
regions, and PointNet to learn the local pattern. Kd-Network [9] subdivides the
space using K-d trees, whose hierarchical structure serves as the instruction to
aggregate local features at different scales. In SpiderCNN, no additional choice
for grouping or sampling is needed, for our filters handle the issue automatically.

The idea of using permutation-invariant functions for learning on unordered
sets is further explored by DeepSet [22]. We note that the output of SpiderCNN
does not depend on the input order by design.

Voxels as Input: VoxNet [13] and Voxception-ResNet [2] apply 3D convolu-
tion to a voxelization of point clouds. However, there is a high computational
and memory cost associated with 3D convolutions. A variety of work [6,7,18]
has aimed at exploiting the sparsity of voxelized point clouds to improve the
computational and memory efficiency. OctNet [18] modified and implemented
convolution operations to suit a hybrid grid-octree data structure. Vote3Deep
[6] uses a feature-centric voting scheme so that the computational cost is pro-
portional to the number of points with non-zero features. Sparse Submanifold
CNN [7] computes the convolution only at activated points whose number does
not increase when the convolution layers are stacked. In comparison, SpiderCNN
can use point clouds as input directly and can handle very sparse input.

Convolution on Non-euclidean Domain: There are two main philosophi-
cally different approaches to define convolutions for non-Euclidean domains: one
is spatial and the other is spectral. The recent work ECC [20] defines convolution-
like operations on graphs where filter weights are conditioned on edge labels.
Viewing point clouds as a graph, and taking the filters to be MLPs, SpiderCNN
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and ECC [20] result in similar convolution. However, we show that our proposed
family of filters outperforms MLPs.

Spatial Methods: GeodesicCNN [12] is an early attempt at applying neural
networks to shape analysis. The philosophy behind GeodesicCNN is that for a
Riemannian manifold, the exponential map identifies a local neighborhood of a
point to a ball in the tangent space centered at the origin. The tangent plane is
isomorphic to R

d where we know how to define convolution.
Let M be a mesh surface, and let F : M → R be a function, Geodes-

icCNN first uses the patch operator D to map a point p and its neigh-
bors N(p) to the lattice Z

2 ⊆ R
2, and applies Eq. 2. Explicitly, F ∗ g(p) =∑

j∈J gj(
∑

q∈N(p) wj(u(p, q))F (q)), where u(p, q) represents the local polar coor-
dinate system around p, wj(u) is a function to model the effect of the patch
operator D = {Dj}j∈J . By definition Dj =

∑
q∈N(p) wj(u(p, q))F (q). Later,

AnisotropicCNN [1] and MoNet [14] further explore this framework by improv-
ing the choice for u and wj . MoNet [14] can be understood as using mixtures
of Gaussians as convolutional filters. We offer an alternative viewpoint. Instead
of finding local parametrizations of the manifold, we view it as an embedded
submanifold in R

n and design filters, which are more efficient for point clouds
processing, in the ambient Euclidean space.

Spectral Methods: We know that Fourier transform takes convolutions to
multiplications. Explicitly, If f, g : R

n → C, then f̂ ∗ g = f̂ ·ĝ. Therefore, formally
we have f ∗ g = (f̂ · ĝ)

∨
,2 which can be used as a definition for convolution on

non-Euclidean domains where we know how to take Fourier transform.
Although we do not have Fourier theory on a general space without any

equivariant structure, on Riemannian manifolds or graphs there are generalized
notions of Laplacian operator. Taking Fourier transform in R

n could be formally
viewed as finding the coefficients in the expansion of the eigenfunctions of the
Laplacian operator. To be more precise, recall that

f̂(ξ) =
∫

Rn

f(x) exp (−2πix · ξ)dξ, (1)

and {exp (−2πix · ξ)}ξ∈Rn are eigen-functions for the Laplacian operator Δ =∑n
i=1

∂
∂xi

. Therefore, if U is the matrix whose columns are eigenvectors of the
graph Laplacian matrix and Λ is the vector of corresponding eigenvalues, for F, g
two functions on the vertices of the graph, then F ∗ g = U(UT F � UT g), where
UT is the transpose of U and � is the Hadamard product of two matrices. Since
being compactly supported in the spatial domain translates into being smooth in
the spectral domain, it is natural to choose UT g to be smooth functions in Λ. For
instance, ChebNet [5] uses Chebyshev polynomials that reduces the complexity
of filtering, and CayleyNet [11] uses Cayley polynomials which allows efficient
computations for localized filters in restricted frequency bands of interest.

2 If h is a function, then ĥ is the Fourier transform, and h∨ is its inverse Fourier
transform.
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When analyzing different graphs or shapes, spectral methods lack abstract
motivations, because different spectral domains cannot be canonically identified.
SyncSpecCNN [21] proposes a weight sharing scheme to align spectral domains
using functional maps. Viewing point clouds as data embedded in R

3, SpiderCNN
can learn representations that are robust to spatial rigid transformations with
the aid of data augmentation.

3 SpiderConv

In this section, we describe SpiderConv, which is the fundamental building block
for SpiderCNN. First, we discuss how to define a convolutional layer in neural
network when the inputs are features on point sets in R

n. Next we introduce a
special family of convolutional filters. Finally, we give details for the implemen-
tation of SpiderConv with multiple channels and the approximations used for
computational speedup.

3.1 Convolution on Point Sets in R
n

An image is a function on regular grids F : Z
2 → R. Let W be a (2m + 1) ×

(2m + 1) filter matrix, where m is a positive integer, the convolution in classical
CNNs is

F ∗ W (i, j) =
m∑

s=−m

m∑

t=−m

F (i − s, j − t)W (s, t), (2)

which is the discretization of the following integration

f ∗ g(p) =
∫

R2
f(q)g(p − q)dq, (3)

if f, g : R
2 → R, such that f(i, j) = F (i, j) for (i, j) ∈ Z

2 and g(s, t) = W (s, t)
for s, t ∈ {−m,−m + 1, ...,m − 1,m} and g is supported in [−m,m] × [−m,m].

Now suppose that F is a function on a set of points P in R
n. Let g : R

n → R

be a filter supported in a ball centered at the origin of radius r. It is natural to
define SpiderConv with input F and filter g to be the following:

F ∗ g(p) =
∑

q∈P,‖q−p‖≤r

F (q)g(p − q). (4)

Note that when P = Z
2 is a regular grid, Eq. 4 reduces to Eq. 3. Thus the classical

convolution can be seen as a special case of SpiderConv. Please see Fig. 1 for an
intuitive illustration.

In SpiderConv, the filters are chosen from a parametrized family {gw} (See
Fig. 2 for a concrete example) which is piece-wise differentiable in w. During
the training of SpiderCNN, the parameters w ∈ R

d are optimized through SGD
algorithm, and the gradients are computed through the formula ∂

∂wi
F ∗ gw(p) =

∑
q∈P,‖q−p‖≤r F (q) ∂

∂wi
gw(p − q), where wi is the i-th component of w.
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3.2 A Special Family of Filters {gw}
A natural choice is to take gw to be a multilayer perceptron (MLP) network,
because theoretically an MLP with one hidden layer can approximate an arbi-
trary continuous function [8]. However, in practice we find that MLPs do not
work well. One possible reason is that MLP fails to account for the geomet-
ric prior of 3D point clouds. Another possible reason is that to ensure sufficient
expressiveness the number of parameters in a MLP needs to be sufficiently large,
which makes the optimization problem difficult.

Fig. 2. Visualization of a filter in the family {gw}. (a) is the scatter plot (color
represents the value of the function) of gTaylor(x, y, z) = 1+x+y+z+xy+xz+yz+xyz.
(b) is the scatter plot of gstep(x, y, z) = i+1

8
if i

8
≤ √

x2 + y2 + z2 < i+1
8

, when

i = 0, 1, ..., 7. (c) is the scatter plot of the product g = gTaylor · gstep. In the second
row, (d) (e) (f) are the graphs of gTaylor, gstep and g respectively when restricting
their domain to the plane z = 0 (the Z-axis represents the value of the function).
(Color figure online)

To address the above issues, we propose the following family of filters {gw}:

gw(x, y, z) = gStep
wS (x, y, z) · gTaylor

wT (x, y, z), (5)

with w = (wS , wT ) is the concatenation of two vectors wS = (wS
i ) and wT =

(wT
i ),3 where

gStep
wS (x, y, z) = wS

i if ri ≤
√

x2 + y2 + z2 < ri+1, (6)

3 Here we use the notation v = (vi) to represent that vi ∈ R is the i-th component of
the vector v.
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with r0 = 0 < r1 < r2... < rN , and

gTaylor
wT (x, y, z) = wT

0 + wT
1 x + wT

2 y + wT
3 z + wT

4 xy + wT
5 yz + wT

6 xz + wT
7 x2

+ wT
8 y2 + wT

9 z2 + wT
10xy2 + wT

11x
2y + wT

12y
2z + wT

13yz2

+ wT
14x

2z + wT
15xz2 + wT

16xyz + wT
17x

3 + wT
18y

3 + wT
19z

3.

(7)

The first component gStep
wS is a step function in the radius variable of the

local polar coordinates around a point. It encodes the local geodesic information,
which is a critical quantity to describe the coarse local shape. Moreover, step
functions are relatively easy to optimize using SGD.

The order-3 Taylor term gTaylor
wT further enriches the complexity of the filters,

complementary to gStep
wS since it also captures the variations of the angular com-

ponent. Let us be more precise about the reason for choosing Taylor expansions
here from the perspective of interpolation. We can think of the classical 2D con-
volutional filters as a family of functions interpolating given values at 9 points
{(i, j)}i,j∈{−1,0,1}, and the 9 values serve as the parametrization of such a fam-
ily. Analogously, in 3D consider the vertices of a cube {(i, j, k)}i,j,k=0,1, assume
that at the vertex (i, j, k) the value ai,j,k is assigned. The trilinear interpolation
algorithm gives us a function of the form

fwT (x, y, z) = wT
0 + wT

1 x + wT
2 y + wT

3 z + wT
4 xy + wT

5 yz + wT
6 xz + wT

16xyz, (8)

where wT
i ’s are linear functions in cijk. Therefore fwT is a special form of gTaylor

wT ,
and by varying wT , the family {gTaylor

wT } can interpolate arbitrary values at the
vertexes of a cube and capture rich spatial information.

3.3 Implementation

The following approximations are used based on the uniform sampling process
constructing the point clouds:

1. K-nearest neighbors are used to measure the locality instead of the radius, so
the summation in Eq. 4 is over the K-nearest neighbors of p.

2. The step function gStep
wT is approximated by a permutation. Explicitly, let X

be the 1×K matrix indexed by the K-nearest neighbors of p including p, and
X(1, i) is a feature at the i-th K-nearest neighbors of p. Then F ∗ gStep

wT (p) is
approximated by Xw, where w is a K × 1 matrix with w(i, 1) corresponds to
wT

i in Eq. 6.

Later in the article, we omit the parameters w, wS and wT , and just write
g = gStep · gTaylor to simplify our notations.

The input to SpiderConv is a c1-dimensional feature on a point cloud P , and
is represented as F = (F1, F2, ..., Fc1) where Fv : P → R. The output of a Spi-
derConv is a c2-dimensional feature on the point cloud F̃ = (F̃1, F̃2, ..., F̃c2)
where F̃i : P → R. Let p be a point in the point cloud, and q1, q2, ..., qK

are its K-nearest neighbors in order. Assume gStep
i,v,t (p − qj) = w

(i,v,t)
j , where
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t = 1, 2, ..., b and v = 1, 2, ..., c1 and i = 1, 2, ...c2. Then a SpiderConv with c1 in-
channels, c2 out-channels and b Taylor terms is defined via the formula: F̃i(p) =
∑c1

v=1

∑K
j=1 gi(p−qj)Fv(qj), where gi(p−qj) =

∑b
t=1 gTaylor

t (p−qj)w
(i,v,t)
j , and

gTaylor
t is in the parameterized family {gTaylor

wT } for t = 1, 2, ..., b.

4 Experiments

We analyze and evaluate SpiderCNN on 3D point clouds classification and seg-
mentation. We empirically examine the key hyper-parameters of a 3-layer Spi-
derCNN, and compare our models with the state-of-the-art methods.

Implementation Details: All models are prototyped with Tensorflow 1.3 on
1080Ti GPU and trained using the Adam optimizer with a learning rate of 10−3.
A dropout rate of 0.5 is used with the fully connected layers. Batch normalization
is used at the end of each SpiderConv with decay set to 0.5. On a GTX 1080Ti,
the forward-pass time of a SpiderConv layer (batch size 8) with in-channel 64
and out-channel 64 is 7.50 ms. For the 4-layer SpiderCNN (batch size 8), the
total forward-pass time is 71.68 ms.

4.1 Classification on ModelNet40

ModelNet40 [4] contains 12,311 CAD models which belong to 40 different cat-
egories with 9,843 used for training and 2,468 for testing. We use the source
code for PointNet [15] to sample 1,024 points uniformly and compute the nor-
mal vectors from the mesh models. The same data augmentation strategy as
[15] is applied: the point cloud is randomly rotated along the up-axis and the
position of each point is jittered by a Gaussian noise with zero mean and 0.02
standard deviation. The batch size is 32 for all the experiments in Sect. 4.1. We
use the (x, y, z)-coordinates and normal vectors of the 1,024 points as the input
for SpiderCNN for the experiments on ModelNet40 unless otherwise specified.

Fig. 3. The architecture of a 3-layer SpiderCNN used in ModelNet40 classification.

3-Layer SpiderCNN: Figure 3 illustrates a SpiderCNN with 3 layers of Spider-
Convs each with 3 Taylor terms, and the respective out-channels for each layer
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being 32, 64, 128.4 ReLU activation function is used here. The output features
of the three SpiderConvs are concatenated in the end. Top-k pooling among all
the points is used to extract global features.

Fig. 4. On ModelNet40 (a) shows the effect of number of pooled features on the accu-
racy of 3-layer SpiderCNN with 20-nearest neighbors. (b) shows the effect of nearest
neighbors in SpiderConv on the accuracy of 3-layer SpiderCNN with top-2 pooling.

Two important hyperparameters in SpiderCNN are studied: the number of
nearest neighbors K chosen in SpiderConv, and the number of pooled features
k after the concatenation. The results are summarized in Fig. 4. The number of
nearest-neighbors K is analogous to size of the filter in the usual convolution.
We see that 20 is the optimal choice among 12, 16, 20, and 24-nearest neighbors.
In Fig. 5 we provide visualization for top-2 pooling. The points that contribute
to the top-2 pooling features are plotted. We see that similar to PointNet, Spi-
der CNN picks up representative critical points.

SpiderCNN + PointNet: We train a 3-layer SpiderCNN (top-2 pooling and
20-nearest neighbors) and PointNet with only (x, y, z)-coordinates as input to
predict the classical robust local geometric descriptor FPFH [19] on point clouds
in ModelNet40. The training loss of SpiderCNN is only 1

4 that of PointNet’s. As a
result, we believe that a 3-layer SpiderCNN and PointNet are complementary to
each other, for SpiderCNN is good at learning local geometric features and Point-
Net is good at capturing global features. By concatenating the 128 dimensional
features from PointNet with the 128 dimensional features from SpiderCNN, we
improve the classification accuracy to 92.2%.

4-Layer SpiderCNN: Experiments show that 1-layer SpiderCNN with a Spi-
derConv of 32 channels can achieve classification accuracy 85.5%, and the per-
formance of SpiderCNN improves with the increasing number of layers of Spi-
derConv. A 4-layer SpiderCNN consists of SpiderConv with out-channels 32,
64, 128, and 258. Feature concatenation, 20-nearest neighbors and top-2 pooling
are used. To prevent overfitting, while training we apply the data augmentation

4 See Sect. 3.3 for the definition of a SpiderConv with c1 in-channels, c2 out-channels
and b Taylor terms.
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Fig. 5. Visualization of the effect of top-k pooling. Edge points and points with non-
zero curvature are preserved after pooling. (a), (b), (c), (d) are the original input
point clouds. (e), (f), (g), (h) are points contributing to features extracted via top-2
pooling.

method DP (random input dropout) introduced in [17]. Table 1 shows a com-
parison between SpiderCNN and other models. The 4-layer SpiderCNN achieves
accuracy of 92.4% which improves over the best reported result of models with
input 1024 points and normals. For 5 runs, the mean accuracy of a 4-layer Spi-
derCNN is 92.0%.

Table 1. Classification accuracy of SpiderCNN and other models on ModelNet40.

Method Input Accuracy

Subvolume [16] Voxels 89.2

VRN Single [2] Voxels 91.3

OctNet [18] Hybrid grid octree 86.5

ECC [20] GWe compute three intrinsicraphs 87.4

Kd-Network [9] (depth 15) 1024 points 91.8

PointNet [15] 1024 points 89.2

PointNet++ [17] 5000 points+normal 91.9

SpiderCNN + PointNet 1024 points+normal 92.2

SpiderCNN (4-layer) 1024 points+normal 92.4

Ablative Study: Compared to max-pooling, top-2 pooling enables the model to
learn richer geometric information. For example, in Fig. 6, we see top-2 pooling
preserves more points where the curvature is non-zero. Using max-pooling, the
classification accuracy is 92.0% for a 4-layer SpiderCNN, and is 90.4% for a
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3-layer SpiderCNN. In comparison, using top-2 pooling, the accuracy is 92.4%
for a 4-layer SpiderCNN, and is 91.5% for a 3-layer SpiderCNN.

Fig. 6. Top-2 pooling learns rich features and fine geometric details.

MLP filters do not perform as well in our setting. The accuracy of a 3-
layer SpiderCNN is 71.3% with gw = MLP(16, 1), and is 72.8% with gw =
MLP(16, 32, 1).

Without normals, the accuracy of a 4-layer SpiderCNN using only the 1,024
points is 90.5%. Using normals extracted from the 1,024 input points via orthog-
onal distance regression, the accuracy of a 4-layer SpiderCNN is 91.8%.

Fig. 7. (b) and (c) are shapes in SHREC15. (d) is a shape in ModelNet40. (a) is
the point cloud sampled from (b).

4.2 Classification on SHREC15

SHREC15 is a dataset for non-rigid 3D shape retrieval. It consists of 1,200
watertight triangle meshes divided in 50 categories. On average 10,000 vertices
are stored in one mesh model. Comparing to ModelNet40, SHREC15 contains
more complicated local geometry and non-rigid deformation of one object. See
Fig. 7 for a comparison. 1,192 meshes are used with 895 for training and 297 for
testing. We compute three intrinsic shape descriptors (Heat Kernel Signature,
Wave Kernel Signature and Fast Point Feature Histograms) for deformable shape
analysis from the mesh models. 1,024 points are sampled uniformly randomly
from the vertices of a mesh model, and the (x, y, z)-coordinates are used as the
input for SpiderCNN, PointNet and PointNet++. We use SVM with linear kernel
when the inputs are classical shape descriptors. Table 2 summarizes the results.
We see that SpiderCNN outperforms the other methods.
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Table 2. Classification accuracy on SHEREC15.

Method Input Accuracy

SVM + HKS Features 56.9

SVM + WKS Features 87.5

SVM + FPFH Features 80.8

PointNet Points 69.4

PointNet++ [17] Points 60.2

PointNet++ (our implementation) Points 94.1

SpiderCNN (4-layer) Points 95.8

4.3 Segmentation on ShapeNet Parts

ShapeNet Parts consists of 16,880 models from 16 shape categories and 50 dif-
ferent parts in total, with a 14,006 training and 2,874 testing split. Each part
is annotated with 2 to 6 parts. The mIoU is used as the evaluation metric,
computed by taking the average of all part classes. A 4-layer SpiderCNN whose
architecture is shown in Fig. 8 is trained with batch of 16. We use points with
their normal vectors as the input and assume that the category labels are known.
The results are summarized in Table 3. For 4 runs, the mean of mean IoU of Spi-
derCNN is 85.24. We see that SpiderCNN achieves competitive results despite a
relatively simple network architecture (Fig. 9).

Fig. 8. The SpiderCNN architecture used in the ShapeNet Part segmentation task.

Fig. 9. Some examples of the segmentation results of SpiderCNN on ShapeNet Part.
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Table 3. Segmentation results on ShapeNet Part dataset. Mean IoU and IoU for each
categories are reported.

MeanAeroBag Cap Car Chair Ear ph GuitarKnife LampLaptopMotorMug Pistol Rocket
board

Skate Table

PN [15] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PN++[17] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Kd-Net [9] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

SSCNN [21] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

SpiderCNN 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

5 Analysis

In this section, we conduct additional analysis and evaluations on the robustness
of SpiderCNN, and provide visualization for some of the typical learned filters
from the first layer of SpiderCNN.

Fig. 10. Classification accuracy of SpiderCNN and PointNet++ with different number
of input points on ModelNet40.

Robustness: We study the effect of missing points on SpiderCNN. Following
the setting for experiments in Sect. 4.1, we train a 4-layer SpiderCNN and Point-
Net++ with 512, 248, 128, 64 and 32 points and their normals as input. The
results are summarized in Fig. 10. We see that even with only 32 points, Spider-
CNN obtains 87.7% accuracy.

Visualization: In Fig. 11, we scatter plot the convolutional filters gw(x, y, z)
learned in the first layer of SpiderCNN and the color of a point represents the
value of gw at the point.

In Fig. 12 we choose a plane passing through the origin, and project the points
that lie on one side of the plane of the scatter graph onto the plane. We see some
similar patterns that appear in 2D image filters. The visualization gives some
hints about the geometric features that the convolutional filters in SpiderCNN
learn. For example, the first row in Fig. 12 corresponds to 2D image filters that
can capture boundary information.
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Fig. 11. Visualization of for the convolutional filters learned in the first layer of Spi-
derCNN.

Fig. 12. Visualization for the convolutional filters learned in the first layer of Spider-
CNN. The 3D filters are shown as scatter plots projected on to the planes x = 0 or
y = 0 or z = 0.

6 Conclusions

A new convolutional neural network SpiderCNN that can directly process 3D
point clouds with parameterized convolutional filters is proposed. More complex
network architectures and more applications of SpiderCNN can be explored.
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