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Abstract. Solving a multi-labeling problem with a convex penalty can
be achieved in polynomial time if the label set is totally ordered. In this
paper we propose a generalization to partially ordered sets. To this end,
we assume that the label set is the Cartesian product of totally ordered
sets and the convex prior is separable. For this setting we introduce a gen-
eral combinatorial optimization framework that provides an approximate
solution. More specifically, we first construct a graph whose minimal cut
provides a lower bound to our energy. The result of this relaxation is then
used to get a feasible solution via classical move-making cuts. To speed
up the optimization, we propose an efficient coarse-to-fine approach over
the label space. We demonstrate the proposed framework through exten-
sive experiments for optical flow estimation.
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1 Introduction

Many computer vision problems like stereo matching [1–3], semantic image seg-
mentation [4] or optical flow estimation [5,6] can be formulated as a multi-labeling
problem. For a set of variables V and a finite label set L, a mapping f : V → L is
called a multi-labeling. The multi-labeling problem aims to find a multi-labeling f
that minimizes an energy E(f). In general, this problem is known to be NP-hard,
moreover, there is no algorithm that can approximate this general energy mini-
mization with an approximation ratio better than some exponential function in
the input size [7]. Nevertheless, by making some assumptions the multi-labeling
problem becomes tractable [8–10].
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In this paper we address the problem of solving a multi-labeling problem.
In order to find an optimal multi-labeling f : V → L we want to minimize an
energy of the form

E(f) =
∑

i∈V
Ei(fi) +

∑

(i,j)∈E
Eij(fi, fj), (1)

where E ⊂ V × V denotes the pairwise dependencies of different variables. The
energies Ei : L → R and Eij : L × L → R

+
0 describe the data fidelity terms and

pairwise smoothness terms, respectively. While the data term Ei for all i ∈ V
can be chosen arbitrarily, the smoothness terms Eij are of the following form

Eij(fi, fj) = wij · d(fi, fj) for all (i, j) ∈ E . (2)

The energy (1) corresponds to a Markov random field (MRF) formulation [8]
over an undirected graph G = (V, E), where P (f) ∼ exp(−E(f)). Here, wij ≥ 0
depends on the input data and d : L × L → R

+
0 is a metric on L. Under these

mild restrictions, it is known that (1) can be minimized globally in polynomial
time if |L| = 2 [11] or if L is the totally ordered set {1, . . . , �} and there is an
even, convex function g : R → R

+
0 such that d(fi, fj) = g(fi − fj) [8].

In this paper we focus on a more general setting of partially ordered label
sets L. In particular, we assume that L = L1 × . . . × Lk can be written as the
Cartesian product of k different totally ordered label sets. In addition, we assume
that the function d that penalizes different labels for interacting pixels (i.e.for
all (i, j) ∈ E) has the form d(fi, fj) = g(fi − fj), where g is an even, separable
convex function, i.e.a sum of regularizers for each dimension of the label space.

The rest of this paper is organized as follows. We give a short overview of
the related work in Sect. 1.1. In Sect. 2 we introduce the theoretical background
of partially ordered sets, a.k.a. posets. The two main contributions of the paper
can be summarized as follows:

– We propose a combinatorial optimization framework, which can be applied
for minimizing energies defined on poset labelings. Namely, we show a general
graph construction (see Sect. 2.2), whose minimal cut provides a lower bound
to our energy. This relaxation is exploited to get a feasible solution by making
use of classical move-making cuts [1]. The proposed graph construction can
handle arbitrary data costs and separable convex smoothness costs.

– We also propose an efficient coarse-to-fine strategy in the label space (see
Sect. 3), which effectively reduces the possible search space and results in a
considerable speed-up of the algorithm.

As an illustration of the proposed optimization scheme we consider the problem
of optical flow estimation. Comprehensive experiments in Sect. 4 show that the
proposed method provides competitive results with other combinatorial opti-
mization algorithms at reduced complexity. Section 5 concludes the paper.
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1.1 Related Work

Partially ordered label sets are very common in several computer vision appli-
cations like optical flow estimation, image registration, stereo exposure fusion,
etc., where the label set L is the Cartesian product of totally ordered sets.

Schekhovtsov et al. [12] proposed an MRF model for image registration,
where the deformation is described by a coupled field of discrete x- and y-
displacements of pixels. The model consists of two layers of variables. The inter-
layer interaction is used to encode the data term, and the intra-layer interactions
encode pairwise (smoothness) constraints for neighboring pixels. This model
leads to a simpler relaxation to which the sequential tree-reweighted message
passing (TRW-S) algorithm [2] is applied. Chen and Koltun [6] addressed the
problem of optical flow estimation, where the classical Horn-Schunck objec-
tive [13] is minimized over a regular grid by making use of the TRW-S algo-
rithm [2]. Another discrete optimization approach was presented in [5] for opti-
cal flow estimation. The authors formulated the problem as a discrete inference
and applied a block coordinate descent method, which iteratively optimizes all
image rows and columns via dynamic programming.

Kohli et al. [14] considered the problem of optimizing multi-label pairwise
MRFs. The multi-label MRF model is first converted into an equivalent binary
MRF and then it is relaxed, which can be efficiently solved using a maximum flow
algorithm [11]. The solution provides a partially optimal labeling of the binary
variables, which is transferred to the multi-label problem. A detailed review for
minimizing functions with both sub-modular1 and non-submodular terms can
be found in [15], referred to as the QPBO method (quadratic pseudo-Boolean
optimization). The output of QPBO, however, is a partial labeling, which means
there is a special label that is interpreted as “unknown”.

Goldstein et al. [16] presented a general variational functional lifting tech-
nique for minimizing vector-valued problems. This technique allows to find global
minimizers for optical flow. The authors consider total-variation as regularizer.
In contrast to our approach, L2

2 penalty cannot be considered in [16]. A con-
tinuous convex relaxation for multi-label problems was proposed in [17] for the
case when the label space is a continuous product space and the regularizer is
separable. Through the relaxed problem, various problems like optic flow, stereo
matching and segmentation can be solved within provable bounds of the global
optimum. This approach allows a very general class of continuous regularizers on
multi-dimensional label spaces. The regularizers can be arbitrarily mixed, in the
sense that each dimension of the label space can have its own type of regularity.
We note that, in contrast to continuous relaxations, we focus on combinatorial
optimization approaches in this paper.

1 A set function f : 2V → R is called sub-modular, if for any pair of subsets A, B ⊂ V,
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) is satisfied.
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2 Energy Minimization on Posets

In the following, we address the problem of minimizing (1) if L is a partially
ordered set (or poset). In Sect. 2.1 we provide a short introduction to posets [18]
and explain their difficulties in an energy minimization framework. In Sect. 2.2
we show how to design a sub-modular energy that is a relaxed version of (1). In
particular, we will show in Sect. 2.3 how to efficiently minimize this lifted energy
by finding a minimal cut in a graph and how to employ a heuristic projection
scheme in order to find a feasible solution of the original energy.

2.1 Posets, Lower Level Sets and Lower Ideals

A partially ordered set is a set L together with a relation that stores for any
pair of elements α, β ∈ L whether the statement α ≤ β is true or not.

Definition 1 (Poset). Given a set L and a relation ≤ on L. We call (L,≤)
a partially ordered set or poset if the following conditions are satisfied for all
α, β, γ ∈ L

α ≤ α (Reflexivity)
α ≤ β, β ≤ α ⇒ α = β (Antisymmetry)
α ≤ β, β ≤ γ ⇒ α ≤ γ (Transitivity)

(L,≤) is called a totally ordered set if, for any pair α, β ∈ L the statement
α ≤ β or β ≤ α is true.

The main difference between posets and totally ordered sets is that there
may be two different elements α, β ∈ L in a poset for which we cannot decide
whether one element is larger than the other. From now on we use the notation
α < β iff α ≤ β and α 	= β holds. The easiest way to create a poset is to take
the Cartesian product of two or more totally ordered sets.

Lemma 1 (Cartesian Product). Let (L1,≤1) and (L2,≤2) be two totally
ordered sets. The Cartesian product L := L1 × L2 becomes a poset (L,≤) via

(α1, α2) ≤ (β1, β2) :⇔ (α1 ≤1 β1) ∧ (α2 ≤2 β2).

Proof. Follows directly from the definition of posets.

A common way to visualize the internal structure of a poset is to consider
its Hasse diagram.

Definition 2. (Hasse Diagram). Let (L,≤) be a finite poset. Then, the Hasse
diagram of L is a directed graph H = (L, EL) with the vertex set L and the edge
set

EL := {(β, α) ∈ L × L | α < β, ∀γ ∈ L : ¬(α < γ < β)}.
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Fig. 1. Hasse diagrams. (a) Hasse diagram for the poset L = L1 × L2, where L1 =
{−2, . . . , 2} and L2 = {−2, . . . , 1} are totally ordered sets. The Hasse diagrams of L1

and L2 are chains. (b) Two isomorphic Hasse diagrams for L = {0, 1} × {0, 1} ∼= L∗
1.

(c) Two isomorphic Hasse diagrams for L∗ = L∗
1 ∪ {[(1, 0)] ∪ [(0, 1)]} ∼= {0, 1, 2, 3, A12}

For the totally ordered set L = {1, . . . , �}, the Hasse diagram has exactly
� − 1 edges. These edges are of the form (α + 1, α). Thus, the Hasse diagram of
a totally ordered set is always a chain. If L is a poset on the other hand, the
Hasse diagram becomes a DAG (directed acyclic graph) (see Fig. 1).

Of particular interest for the next section is the set of lower ideals.

Definition 3. For each α ∈ L, we refer to the set

[α] := {β ∈ L | β ≤ α}
as its lower level set. Further, we call a subset I ⊂ L a lower ideal if the following
holds

α ∈ I ⇒ [α] ⊂ I.

We denote the set of all lower ideals as L∗ ⊂ 2L and the set of all lower level
sets as L∗

1 ⊂ L∗.

In fact, every element of L∗ can be represented as the union of elements
included in L∗

1. In other words, a lower ideal L ∈ L∗ is a set that accumulates
lower level sets, that is

L =
⋃

α∈L

[α].

Note that, by construction, both L and L∗
1 have the same cardinality. Never-

theless, L∗ can be larger than L∗
1. We also remark that the elements of L∗

1 are
subsets of L.

It is worth noting that for totally ordered sets, we always have L∗ = L∗
1,

which has the same cardinality as L. Thus, the difference between lower ideals
and lower level sets is only observable for posets.
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Examples. (1) For the totally ordered set (L,≤) = ({0, 1},≤) we obtain the
lower level sets as follows:

[0] ={0}, [1] ={0, 1}, L∗
1 ={[0], [1]} = L∗.

(2) For the poset (L,≤) = ({0, 1} × {0, 1},≤) we obtain

[(0, 0)] ={(0, 0)}, [(1, 0)] ={(0, 0), (1, 0)},

[(0, 1)] ={(0, 0), (0, 1)}, [(1, 1)] =L,

therefore L∗
1 = {[(0, 0)], [(1, 0)], [(0, 1)], [(1, 1)]} ∼= {0, 1, 2, 3} and we have

L∗ = L∗
1 ∪ {[(1, 0)] ∪ [(0, 1)]} ∼= {0, 1, 2, 3, A12}. (3)

Thus, for posets there is a difference between lower level sets and lower ideals
(see Fig. 1). We will refer to this difference

LA := L∗ − L∗
1 ⊂ 2L (4)

as the augmented label set, or equivalently L∗ = L∗
1 ∪ LA. Please note that the

cardinality of LA may grow exponentially with respect to |L|. In Sect. 2.2 we
will see how these augmented labels appear if we lift our energy (1). In fact, the
augmented labels result in an infeasible solution. To obtain a feasible solution
without augmented labels, we propose a heuristic projection scheme.

2.2 Energy Lifting

From now on we assume a poset (L,≤) = (L,⊂), where L = L1 × . . .×Lk is the
Cartesian product of k totally ordered sets and H = (L, EL) its Hasse diagram.
Let E be of the form (1). Furthermore, we assume that the smoothness term Eij

is of the form (2) and that d(fi, fj) = g(fi − fj) can be represented via an even,
separable convex function g. We want to construct a graph G such that each
labeling f : V → L corresponds to an s-t cut of G with E(f) as its cut value [11].

Totally Ordered Label Set. In the simple case k = 1, thus L = L1 is a totally
ordered set and we can follow the construction of Ishikawa [8] to design a graph
with the desired properties. The used vertices consist of a source s, a sink t and
the internal nodes V × L. The edges can be divided into three different classes.

The constraint edges between (i, �) and (i, � − 1) of infinite capacities guar-
antee that in an optimal cut the binary labeling of the set {i} × L has the form
(1, . . . , 1, 0, . . . , 0), where 1 indicates that a vertex is connected with the source.

The data edges can be designed as terminal links between s, respectively t,
and (i, �). This formulation is due to [19] and differs from the original formulation
of [8]. The smoothness edges of capacity wij · cδ between vertices (i, � + δ) and
(j, �) for all (i, j) ∈ E model the convex function g. This is done by using the
non-negative values

c0 = g1 − g0 and cδ = gδ+1 − 2gδ + gδ−1 (∀δ > 0).

For more details we refer to [8].
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Partially Ordered Label Set. For the general case k > 1 we want to design a
different graph with the desired properties. Like before, the used vertices are the
source s, the sink t and the internal vertices V ×L. Also, we introduce constraint
edges, data edges and smoothness edges. While these edges will be different from
Ishikawa’s construction [8], they serve nonetheless the same purpose.

The constraint edges should also connect a label � with its immediate prede-
cessor �′. Due to the partial ordering, �′ is not unique. Thus, we use the Hasse
diagram H = (L, EL) of L and introduce an edge of infinite capacity between
(i, �) and (i, �′) for each (�, �′) ∈ EL. As a consequence, we obtain a labeling
f̂ : V → L∗ instead of f : V → L. Note that the set L∗ of lower ideals contains
the lower level sets L∗

1 and the augmented labels LA. Since there is a one-to-one
relationship between L∗

1 and L, i.e.they are isomorph2, we can understand f̂ as
a relaxation of f and we will denote f̂ as f̂ : V → (L ∪ LA).

The data edges should reflect the data terms Ei(fi). Since a label fi ∈ L is
now represented by the lower level set [fi] ∈ L∗

1, we have to associate a unary
data cost of Di,� with the vertex (i, �) such that the following holds

∑

�∈[fi]

Di,� = Ei(fi) ∀i ∈ V, fi ∈ L. (5)

Since the Hasse diagram is a DAG, the matrix of this system of linear equations
is (after permutation) in upper triangular form. Therefore, the Problem (5) can
be readily solved by successive substitution. If the resulting Di,� is positive, it
results in an edge of capacity Di,� from (i, �) to the sink t. Otherwise, it results
in an edge of capacity −Di,� from the source s to (i, �) [9].

The smoothness edges should reflect the pairwise smoothness terms, that is,
Eij(fi, fj) = wij · g(fi − fj). Here, the special structure of our posets comes
into play. L = L1 × . . . × Lk results in k-dimensional labels, therefore, we write
fi = (fi,1, . . . , fi,k) and fj = (fj,1, . . . , fj,k). Since we assume that g is an even,
separable convex function, we have k even, convex functions gκ for κ = 1, . . . , k
such that

d(fi, fj) =
k∑

κ=1

gκ(fi,κ − fj,κ). (6)

Since a label fi ∈ L is now represented by its lower level set [fi], this lower level
set also contains

(01, . . . , 0κ−1, fi,κ, 0κ+1, . . . , 0k), (7)

where 0κ′ denotes the minimal element of the totally ordered set Lκ′ . Therefore,
it is enough to encode gκ on

L̂κ := {01} × . . . × {0κ−1} × Lκ × {0κ+1} × . . . × {0k}.

Note that L̂κ is a totally ordered set and we can therefore replicate Ishikawa’s
idea for all κ = 1, . . . , k in order to design the smoothness edges. Note that this
is possible since g is separable convex. For more details we refer to Fig. 2.
2 Two posets are said to be isomorph, when their Hasse diagrams as graphs are iso-

morph to each other.
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Fig. 2. Graph construction for smoothness terms. (a) Hasse diagram of the poset L =
{0, 1, 2} × {0, 1, 2}. (b), (c) Graph construction for L1 and L2

2 penalties, resp., where
the gray and white nodes connected to the source and sink (corresponding to 1 and
0), resp. This example shows the case that fi = (2, 1) ∈ L, fj = (0, 2) ∈ L. The cut is
shown by the blue dashed lines. Note that only 1-0 edges should be cut (Color figure
online)

Overall, we have proved the following theorem.

Theorem 1. Let L be a poset that can be represented as the Cartesian product
of k totally ordered sets Lκ, κ = 1, . . . , k. Further consider the multi-labeling
problem of minimizing the energy (1) for f : V → L

E(f) =
∑

i∈V
Ei(fi) +

∑

(i,j)∈E
Ei,j(fi, fj),

where the smoothness term is given as

Eij(fi, fj) = wij · d(fi, fj) = wij

k∑

κ=1

gκ(fi,κ − fj,κ) wij ≥ 0

for even, convex functions gκ for all κ = 1, . . . , k. Then we can define a lifted,
sub-modular, graph-representable functional D :

[V → (L ∪ LA)
] → R such that

D(f) = E(f) if f : V → L. (8)

So far, we found an optimal labeling f : V → (L ∪ LA). If this labeling
is in fact a labeling f : V → L that excludes augmented labels, we globally
solved the original multi-labeling problem. This can happen if the considered
data terms are very pronounced. Nonetheless, we should assume that in practice
augmented labels will occur. While D(f) = E(f) is satisfied for the lower level
sets, we like to emphasize that our energy (1) is in general not sub-modular3.
3 The proof is contained in the supplementary material.
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We consider an energy with sub-modular pairwise terms, however, the arbitrary
unary terms make the energy non-submodular. The proposed relaxation is graph-
representable, thus it is sub-modular4. Thus, we can compute the global optimum
of the relaxed energy at the cost of having augmented labels. In the next section
we provide a heuristics in order to remove these augmented labels.

2.3 Resolving Augmented Labels

Assume that LA � fi =
⋃m

μ=1[αμ]. One way of resolving the ambiguity would be
to apply move-making methods like α−β swaps [1] over the labels [α1], . . . , [αm].
Nonetheless, we like to point to a different heuristic that takes the structure of
the poset better into account. The idea is to also consider those labels that can
be constructed by the join operation ∨

α ∨ β = min{γ | α ≤ γ and β ≤ γ}.

Let us consider, for example, the label space L = {0, 1} × {0, 1} and let
fi = [(1, 0)] ∪ [(0, 1)]. In this case we consider all α − β swaps with respect to
{(1, 0), (0, 1), (1, 1)}. The rationale is that the energy with respect to fi accu-
mulated the data terms of [(1, 0)] and [(0, 1)]. Since the energy with respect to
[(1, 1)] also accumulates these data terms (and the data term of (1, 1)), it makes
sense to broaden the label space for the move-making methods.

Discussion. In many applications the label set is defined as a lattice5, (i.e.regular
grid). Topkis [18] presented a theory of sub-modular energy minimization on a
lattice. Although our label set also forms a lattice, our energy (1) is not sub-
modular. In [20] a general hierarchical model is introduced, where the label space
forms an arbitrary tree specifying a partial ordering over the labels. The authors
proposed effective multi-labeling moves, called Path-Moves [20]. The Path-Moves
algorithm can be seen as a combination of well-known α-expansion [1] and
Ishikawa’s construction [8]. Nonetheless, the label set that we consider in this
paper is a lattice, rather than a tree, therefore Path-Moves algorithm cannot be
directly applied.

3 Coarse-to-fine Strategy

In practice, the minimization of the lifted energy (8) becomes quickly intractable
as the number of labels grows. Therefore, it is beneficial to have the number of
possible labels as small as possible. In addition, we deal with the relaxation to
our original energy. There is no guarantee that we obtain a feasible solution.
Accordingly, for some pixels we may obtain augmented labels (i.e.combination

4 Graph-representability implies sub-modularity [9].
5 If two elements α and β of a poset have a least upper bound (greatest lower bound),

denoted by α ∨ β (α ∧ β), it is their join (meet). A poset that contains the join and
the meet for each pair of its element is a lattice [18].
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of labels), that we need to resolve so as to get a feasible solution. Note that the
number of the augmented labels grows exponentially by increasing the size of
the label sets, which makes the augmented label removal very challenging. To
overcome these issues, we consider the following coarse-to-fine approach.

Fig. 3. Illustration of the proposed coarse-to-fine strategy over the label space L =
{0, . . . , 7} × {0, . . . , 7}, where m = n = 2. In each iteration the search space for each
pixel is partitioned into mn = 4 equal regions, indexed by, resp., 0, 1, 2 and 3, and the
optimal region is sought. Only this optimal region of the labels space will be considered
in the next iteration. The rest of the labels, shown in red, will be ignored

To simplify the notation we assume that k = 2 and L = L1 × L2. In the first
iteration we consider only m × n labels for each pixel, where m and n are divi-
sors of the size of L1 and L2, respectively. Each of the coarse labels correspond
to a region of labels. After a decision on the coarsest level, the next iteration
only considers the region, that has been selected in the previous iteration. This
common approach is illustrated in Fig. 3. After some iterations either L1 or L2

cannot be divided anymore. This means that the remaining part of the opti-
mization boils down the minimization over a totally ordered set, which can be
globally solved via Ishikawa’s construction [8].

For the data term on the coarse level we apply min pooling over the labels
belonging to the same region. Thus, we have a strong guidance for the optimiza-
tion at the current level. For the smoothness terms we are using the distance
between the centers of the selected patches.

It is important to note that, in contrast to the previous works [21], we apply a
coarse-to-fine approach in the label space instead of the image domain. Moreover,
the goal of our method is to compute labelings that provide useful results in
practice, even if not all labels can be chosen optimally. Like α-expansion, our
method tries to find a local optimum as quickly as possible. For that reason we
can only provide a weak-persistency guarantee, namely that the global optimum
is found if no augmented label is inferred.

4 Numerical Experiments

In this section we discuss the implementation details of the proposed minimiza-
tion scheme and illustrate it through optical flow estimation.
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4.1 Implementation Details

We ran our experiments on a machine with Intel Xeon E5-2697 CPU@2.3GHz
under Linux in Matlab with C/C++ mex extensions. For the maximum flow cal-
culation and for move-making algorithms (i.e. α − β swap and α-expansion) we
used the publicly available GCO library [1,9,11]. In order to have a fair com-
parison with other methods we used float representation of the energy terms.
Our implementation is publicly available at https://github.com/csaba-domokos/
MRFOptimizationOnPosets.

Minimization. In order to minimize our relaxed energy, we applied the BK
algorithm [11]. During the flow graph construction, for each pixel an augmenting
path is sought through the data edges and the constraint edges corresponding
to the given pixel. This pre-processing has linear time complexity and ends up a
better runtime of the BK algorithm, since the BK algorithm has the worst case
complexity O(|E| |V|2 C), where C is the value of the minimum cut in the flow
graph [11].

Augmented labels. In order to resolve augmented labels, i.e.unfeasible solutions,
we applied the heuristics that we explored in Sect. 2.3. That is, we considered
a 2 × 2 label space in each iteration of the proposed coarse-to-fine approach.
Therefore we only have one augmented label, i.e.α = [(0, 1)] ∪ [(1, 0)], and we
select a feasible label among the labels {(0, 1), (1, 0), (1, 1)} via standard α − β
swap moves [1]. More precisely, the augmented labels are replaced with a feasible
label corresponding to the lowest data cost for the given pixel. Afterwards the
α − β swap algorithm [1] is run over all three label pairs. The α − β swap
algorithm requires the pairwise terms to be semi-metric, which is satisfied in our
case, since we assume even functions in our energy.

4.2 Optical Flow Estimation

To substantiate the quality of our optimization we focus on the optical flow
application. Assuming an input image pair I1 and I2, the classical optical flow
estimation aims to find the displacement between pixels in I1 and corresponding
pixels in I2 [13]. In a discrete setting one can consider totally ordered (finite)
label sets L1 and L2 to model the horizontal and vertical displacements. The
labels for each pixel is taken from the poset L1 × L2. The goal is to find an
optimal labeling f : V → L1 × L2 such that I1(pi) = I2(pi + fi).

Recently, Chen and Koltun [6] have proposed an efficient solution for optical
flow estimation. Here, we defined our energy, adopted from [6], as

E(f) =
∑

i∈V
Ei(fi) + λ

∑

(i,j)∈E
wij |fi − fj |, (9)

where λ = 0.021 and wij represents the contrast-sensitive weighting factors. The
data cost has the form of Ei(fi) = 1−max(0,NCC(i, fi)), where NCC(i, fi) is the

https://github.com/csaba-domokos/MRFOptimizationOnPosets
https://github.com/csaba-domokos/MRFOptimizationOnPosets
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Fig. 4. Qualitative results on the Sintel dataset [22]. The input images along with the
ground truth are in the first column. The results obtained by our method and the
FullFlow [6] method, resp., are shown in the second column. The average endpoint
errors and the energy values E are in parenthesis. The corresponding error maps are
in the third column. The results in the last column are obtained after EpicFlow [23]
interpolation

normalized cross-correlation between the patches of size 3 × 3 centered at pixels
i and i+fi, respectively. In order to prevent the penalty of negatively correlated
patches, negative values are clamped to zero. The pairwise smoothness terms
are defined as the contrast-sensitive Potts model [24], that is, the edge based
weighting factors wij are calculated as

wij = exp
(

−‖I1(i) − I2(j)‖22
2σ2

)
, where σ =

1√
6
.

Post-processing. In several methods, the estimated optical flow is interpolated
further to obtain sub-pixel accuracy [6,25]. Recently, it has been a common tech-
nique to apply EpicFlow interpolation [23] as post-processing. EpicFlow requires
point matches as an input and the final result is achieved through variational
optimization. We adopted the interpolation from the paper [6]. Accordingly, we
also used EpicFlow interpolation [23] (see Fig. 4).
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4.3 Evaluation

For evaluation we used the MPI Sintel dataset [22], which is a naturalistic optical
flow dataset derived from a 3D animated film Sintel. Each image has a resolution
of 438 × 1024 pixels. The data set includes a variety of challenging features like
long sequences, large motions, specular reflections, motion blur, defocus blur and
atmospheric effects. We ran our experiments on the training set with the final
sequences, including motion blur. By following the settings in [6], we first rescaled
the input images by a factor of 1/3. We considered sequences, having 50 images,
with various maximum displacements of 10, 22, 46 and 94, which correspond
to the label set of size 8 × 8, 16 × 16, 32 × 32 and 64 × 64, respectively, after
rescaling. As evaluation measure the average endpoint error was used. Some
qualitative results can be seen in Fig. 4.

Comparison. Our experiments were targeted at providing a comprehensive
comparison to state of the art combinatorial optimization approaches. As a base-
line we ran alternating optimization, initialized from the zero flow, where the
global optimization method [8] was used for each direction. We considered clas-
sical move-making algorithms, that is, α−β swap and α-expansion [1]. In case of
the TRW-S method, we used the implementation of the FullFlow method [6]. In
contrast to [6], we ran the code on a single CPU core in order to have a fair run-
time comparison. Only three iterations of the TRW-S method were computed.
For the sake of completeness, we also ran the method of Shekhovtsov et al. [12].
We used the authors implementation with similar settings as in the case of other
methods. We remark that the implementation of [12] applies the TRW-S method
as inference, however, the considered energy is not the same as the energy (9),
therefore, this comparison is not completely fair.

The quantitative results are shown in Table 1. We can observe that the clas-
sical move-making algorithms become quickly prohibitive as the size of the label

Table 1. Quantitative comparison to other combinatorial optimization approaches on
the Sintel dataset [22]. EPE and rt., resp., stand for the mean value of the average
endpoint error and the runtime (sec.). All experiments were ran on a single CPU core

Baseline α − β swap α-expansion FullFlow [6] Proposed [12]

Sequence |L| EPE rt. EPE rt. EPE rt. EPE rt. EPE rt. EPE

sleeping 1 8× 8 1.12 2.23 0.56 3.06 0.55 3.16 0.52 0.86 0.60 0.35 1.77

sleeping 2 8× 8 0.71 1.50 0.53 2.82 0.53 2.52 0.47 0.86 0.53 0.24 1.46

shaman 3 16× 16 1.10 6.44 0.76 27.48 0.73 14.19 0.62 2.74 0.85 0.44 1.45

alley 1 32× 32 1.45 20.79 0.85 377.34 0.77 61.85 0.58 10.93 0.92 0.56 1.44

alley 2 32× 32 3.69 29.45 1.24 445.39 1.16 74.93 0.74 11.23 1.32 0.70 3.48

bandage 2 32× 32 0.93 19.44 0.54 314.45 0.53 59.49 0.40 10.94 0.57 0.45 0.93

shaman 2 32× 32 1.29 16.03 0.65 377.79 0.58 67.21 0.36 10.97 0.95 0.62 0.92

ambush 7 64× 64 1.97 57.80 1.58 9278.76 1.36 286.73 0.65 47.33 1.40 0.89 3.30

market 2 64× 64 1.67 79.07 1.02 5851.91 1.19 306.62 0.58 47.96 1.61 0.84 1.27
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set grows. Our proposed method provides comparable accuracy to those meth-
ods. The FullFlow method always provided the least average endpoint error, but
its runtime grows linearly with respect to |L|. Our method provided moderately
worse results comparing to the FullFlow method, however, the runtime of our
method increases very slowly and always stayed below a second. The method [12]
provided larger errors than the other methods.

Fig. 5. Illustration of three iterations of label refinement. At the given level of the
coarse-to-fine approach, we have the (coarse) labels fi = 1 and fj = 0, and consider
their 3 × 3 neighborhoods in the (coarse) label space {0, . . . , 7} × {0, . . . , 7}, shown by
green, for refinement. In the next iteration the 3 × 3 neighborhood of the refined label
is considered

Label Refinement. One can observe from Table 1 that the error obtained by
our method grows with the size of the label set. In fact, there is an inherent
limitation of our coarse-to-fine strategy. When it makes a decision for a pixel at
a current level, then only the corresponding region of labels will be taken into
an account in the later iterations. Although, the min-pooling operation provides
a strong guidance, the labeling at the current level is not necessarily optimal.
To overcome this limitation, we investigated a label refinement technique.

In each iteration, we get a feasible solution, which is then refined by apply-
ing local move-making cuts. More precisely, for the current labeling we consider
only the labels at the given level of the coarse-to-fine approach, and explore
3 × 3 neighborhoods in the label space (see Fig. 5). The classical α − β swap
algorithm is used over the 3 × 3 regions in order to refine the current labeling.
We reconsider the resulting labels again and use the same process until no more
improvement is possible. As the α−β swap always decreases the energy, conver-
gence is guaranteed. We observed slightly improvement of the results, however,
at the price of higher runtime (see the supplementary material).

5 Conclusions

In this work we have presented a new approach to compute a (locally) optimal
labeling for a specific class of partially ordered label sets. We assume that the
label set L can be represented as the Cartesian product of k different totally
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ordered label sets Lκ. Under the assumption that the convex prior on L is sep-
arable with respect to the k totally ordered label sets, we were able to design
a graph-representable sub-modular energy. While this energy leads to a relaxed
solution, we could show that the relaxation helps us to guide local move-making
methods. In combination with variational post-processing, we were able to pro-
vide optical flow results that are comparable with state-of-the-art methods, based
on combinatorial approaches, at reduced time complexity.

Acknowledgment. This work was partially supported by the Alexander von Hum-
boldt Foundation.
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