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Abstract. Topological methods for data analysis present opportunities
for enforcing certain invariances of broad interest in computer vision,
including view-point in activity analysis, articulation in shape anal-
ysis, and measurement invariance in non-linear dynamical modeling.
The increasing success of these methods is attributed to the comple-
mentary information that topology provides, as well as availability of
tools for computing topological summaries such as persistence diagrams.
However, persistence diagrams are multi-sets of points and hence it is
not straightforward to fuse them with features used for contemporary
machine learning tools like deep-nets. In this paper we present theo-
retically well-grounded approaches to develop novel perturbation robust
topological representations, with the long-term view of making them
amenable to fusion with contemporary learning architectures. We term
the proposed representation as Perturbed Topological Signatures, which
live on a Grassmann manifold and hence can be efficiently used in
machine learning pipelines. We explore the use of the proposed descriptor
on three applications: 3D shape analysis, view-invariant activity analysis,
and non-linear dynamical modeling. We show favorable results in both
high-level recognition performance and time-complexity when compared
to other baseline methods.
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1 Introduction

Over the years, tools from topological data analysis (TDA) have been used to
characterize the invariant structure of data obtained from a noisy sampling of
an underlying metric space [24]. Invariance learning is a fundamental problem in
computer vision, since common transformations can diminish the performance
of algorithms significantly. Past work in invariance learning has fallen into one
of two classes. The first approach involves ad-hoc choices of features or metrics
between features that offer some invariance to specific factors [9]. However, this
approach has suffered due to lack of generalizable solutions. The other approach
is to increase the training size by collecting samples that capture all the variations
of the data, so that the learning algorithm can implicitly marginalize out the
variations. A similar effect can be achieved via simple data augmentation [50].

In this context, TDA has emerged as a surprisingly powerful tool to analyze
underlying invariant properties of data before any contextual modeling assump-
tions or the need to extract actionable information kicks in. Generally speak-
ing, TDA seeks to characterize the shape of high dimensional data by quanti-
fying various topological invariants such as connected components, cycles, high-
dimensional holes, level-sets and monotonic regions of functions defined on the
data [24]. Topological invariants are those properties that do not change under
smooth deformations like stretching, bending, and rotation, but without tearing
or gluing surfaces. We illustrate the connections between topological invariants
and learning invariant representations for vision via three applications:

Fig. 1. Illustration of the sequence of steps leading to the proposed Perturbed Topolog-
ical Signature (PTS) representation. For a given input dataset, the PDs are computed
and transformed to maximally occupy the 2D space. A set of perturbed PDs is cre-
ated, with each perturbed PD having its points displaced by a certain amount about
its initial position. For each PD in the set, a 2D PDF is constructed using a Gaus-
sian kernel function via kernel density estimation. The set of 2D PDFs capture a wide
range of topological noise for the given input data and are summarized using a subspace
structure, equivalent to a point on the Grassmann manifold.
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(1) Point cloud shape analysis: Shape analysis of 3-dimensional (3D)
point cloud data is a topic of major current interest due to emergence of Light
Detection and Ranging (LIDAR) based vision systems in autonomous vehicles.
It has been a difficult problem to solve with contemporary methods (e.g. deep
learning) due to the non-vectorial nature of the representations. While there is
interest in trying to extend deep-net architectures to point-cloud data [32,44,
46,53,72], the invariance one seeks is that of shape articulation, i.e. stretching,
skewing, rotation of shape that does not alter the fundamental object class.
These invariances are optimally defined in terms of topological invariants.

(2) Video analysis: One of the long-standing problems in video analysis,
specific to human action recognition, is to deal with variation in body type, exe-
cution style, and view-point changes. Work in this area has shown that temporal
self-similarity matrices (SSMs) are a robust feature and provide general invari-
ance to the above factors [34]. Temporal self-similarities can be quantified by
scalar field topological constructions defined over video features, leading to rep-
resentations with encoded invariances not relying on brute-force training data.

(3) Non-linear dynamical modeling: Many time-series analysis prob-
lems have been studied under the lens of non-linear dynamical modeling: includ-
ing motion-capture analysis, wearable-based activity analysis etc. Results from
dynamical systems theory (Takens’ embedding theorem [62]) suggest that the
placement-invariant property may be related to the topological properties of
reconstructed dynamical attractors via delay-embeddings.

One of the prominent TDA tools is persistent homology. It provides a multi-
scale summary of different homological features [25]. This multi-scale information
is represented using a persistence diagram (PD), a 2-dimensional (2D) Cartesian
plane with a multi-set of points. For a point (b, d) in the PD, a homological fea-
ture appears at scale b and disappears at scale d. Due to the simplicity of PDs,
there has been a surge of interest to use persistent homology for summarizing
high-dimensional complex data and has resulted in its successful implementa-
tion in several research areas [14,15,19,31,49,57,63,66]. However, application of
machine learning (ML) techniques on the space of PDs has always been a chal-
lenging task. The gold-standard approach for measuring the distance between
PDs is the Bottleneck or the p-Wasserstein metric [45,65]. However, a simple
metric structure is not enough to use vector based ML tools such as support
vector machines (SVMs), neural networks, random forests, decision trees, prin-
cipal component analysis and so on. These metrics are only stable under small
perturbations of the data which the PDs summarize, and the complexity of
computing distances between PDs grows in the order of O(n3), where n is the
number of points in the PD [11]. Efforts have been made to overcome these prob-
lems by attempting to map PDs to spaces that are more suitable for ML tools
[3,5,12,48,51,52]. A comparison of some recent algorithms for machine learn-
ing over topological descriptors can be found in [54]. More recently, topological
methods have also shown early promise in improving performance of image-based
classification algorithms in conjunction with deep-learning [21].
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Contributions: Using a novel perturbation framework, we propose a topolog-
ical representation of PDs called Perturbed Topological Signature (PTS). To do
this we first generate a set of perturbed PDs by randomly shifting the points in
the original PD by a certain amount. A perturbed PD is analogous to extract-
ing the PD from data that is subjected to topological noise. Next, we utilize a
2D probability density function (PDF) estimated by kernels on each of the per-
turbed PDs to generate a smooth functional representation. Finally, we simplify
and summarize the end representation-space for the set of 2D PDFs to a point
on the Grassmann manifold (a non-constantly curved manifold). The framework
described above is illustrated in Fig. 1. We develop very efficient ML pipelines
over these topological descriptors by leveraging the known metrics and statis-
tical results on the Grassmann manifold. We also develop a stability proof of
the Grassmannian representations w.r.t. the normalized geodesic distance over
the Grassmannian and the Wasserstein metrics over PDs. Experiments show
that our proposed framework recovers the lost performance due to functional
methods, while still enjoying orders of magnitude faster processing times over
the classical p-Wasserstein and Bottleneck approaches.

Outline of the Paper: Sect. 2 provides the necessary background on topo-
logical data analysis and the Grassmannian. Section 3 discusses related work,
while Sect. 4 describes the proposed framework and end representation of the
PD for statistical learning tasks. Section 5 describes the experiments and results.
Section 6 concludes the paper.

2 Preliminaries

Persistent Topology: Consider a graph G = {V, E} on the high-dimensional
point cloud, where V is the set of |V| nodes and E defines the neighborhood
relations between the samples. To estimate the topological properties of the
graph’s shape, a simplicial complex S is constructed over G. We denote S =
(G, Σ), where Σ is a family of non-empty level sets of G, with each element σ ∈ Σ
is a simplex [25]. These simplices are constructed using the ε-neighborhood rule,
ε being the scale parameter [25]. In TDA, Betti numbers βi provide the rank
of the homology group Hi. For instance, β0 denotes the number of connected
components, β1 denotes the number of holes or loops, β2 denotes the number
of voids or trapped volumes, etc. They provide a good summary of a shape’s
topological features. However, two shapes with same Betti numbers can have
very different PDs since PDs summarize the birth vs death time information of
each topological feature in a homology group. Birth time (b) signifies the scale
at which the group is formed and death time (d) is the scale at which it ceases
to exist. The difference between the death and the birth times is the lifetime
of the homology group l = |d − b|. Each PD is a multiset of points (b, d) in
R

2 and is hence represented graphically as a set of points in a 2D plane. The
diagonal where b = d is assumed to contain an infinite number of points since
they correspond to groups of zero persistence.



642 A. Som et al.

We use the Vietoris-Rips (VR) construction denoted by VR(G, ε) to obtain
simplicial complexes from G for a given scale ε [24]. An algorithm for computing
homological persistence is provided in [25] and an efficient dual variant that uses
co-homology is described in [20]. The VR construction obtains the topology of
the distance function on the point cloud data. However, given a graph G, and
a function g defined on the vertices, it is also possible to quantify the topology
induced by g on G. For example, we may want to study the topology of the
sub-level or super-level sets of g. This is referred to as scalar field topology since
g : V → R. A well-known application of this in vision is in 3D shape data,
where the graph G corresponds to the shape mesh and g is a function, such as
heat kernel signature (HKS) [60], defined on the mesh [40]. The PD of the H0

homology group of the super-level sets now describes the evolving segments of
regions in the shape. For instance, if we compute the PD of the super-level sets
induced by HKS in an octopus shape, we can expect to see eight highly persistent
segments corresponding to the eight legs. This is because the HKS values are
high at regions of high curvature in the shape. In scalar field constructions,
the PDs can be obtained efficiently using the Union-Find algorithm by first
sorting the nodes of G as per their function magnitude and keeping a trail of the
corresponding connected components [18].

Distance Metrics between PDs: PDs are invariant to rotations, translations
and scaling of a given shape, and under continuous deformation conditions are
invariant to slight permutations of the vertices [16,17]. The two classical metrics
to measure distances between PDs X and Y are the Bottleneck distance and
the p-Wasserstein metric [45,65]. They are appealing as they reflect any small
changes such as perturbations of a measured phenomenon on the shape, which
results in small shifts to the points in the persistence diagram. The Bottleneck
distance is defined as d∞(X,Y ) = infη:X→Y supx∈X ‖x−η(x)‖∞, with η ranging
over all bijections and ‖.‖∞ is the ∞-norm. Equivalently, the p-Wasserstein dis-
tance is defined as dp(X,Y ) = (infη:X→Y

∑
x∈X ‖x − η(x)‖p

∞)1/p. However, the
complexity of computing distances between PDs with n points is O(n3). These
metrics also do not allow for easy computation of statistics and are unstable
under large deformations [11].

Grassmann Manifold: Let n, p be two positive integers such that n > p > 0.
The set of p-dimensional linear subspaces in R

n is called a Grassmann manifold,
denoted by Gp,n. Each point Y on Gp,n is represented as a basis, i.e. a linear
combination of the set of p orthonormal vectors Y1, Y2, . . . , Yp. The geometric
properties of the Grassmannian have been used for various computer vision appli-
cations, such as object recognition, shape analysis, human activity modeling and
classification, face and video-based recognition, etc. [9,28,29,64]. We refer our
readers to the following papers that provide a good introduction to the geome-
try, statistical analysis, and techniques for solving optimization problems on the
Grassmann manifold [1,2,13,23,69].

Distance Metrics Between Grassmann Representations: The minimal
geodesic distance (dG) between two points Y1 and Y2 on the Grassmann
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manifold is the length of the shortest constant speed curve that connects these
points. To do this, the velocity matrix AY1,Y2 or the inverse exponential map
needs to be calculated, with the geodesic path starting at Y1 and ending at Y2.
AY1,Y2 can be computed using the numerical approximation method described
in [42]. The geodesic distance between Y1 and Y2 is represented by the follow-
ing equation: dG(Y1,Y2) = trace(AY1,Y2AY1,Y2

T) or dG(Y1,Y2) =
√

trace(θT θ).
Here θ is the principal angle matrix between Y1,Y2 and can be computed as
θ = arccos(S), where USV T = svd(YT

1 Y2). To show the stability of the pro-
posed PTS representations in section 4, we use the normalized geodesic dis-
tance represented by dNG(Y1,Y2) = 1

DdG(Y1,Y2), where D is the maximum
possible geodesic distance on Gp,n [33,39]. The symmetric directional distance
(dΔ) is another popular metric to compute distances between Grassmann rep-
resentations with different p [61,67]. It is a widely used measure in areas like
computer vision [7,8,43,56,70], communications [55], and applied mathematics
[22]. It is equivalent to the chordal metric [71] and is defined as, dΔ(Y1,Y2) =
(
max(k, l) − ∑k,l

i,j=1(y1,i
Ty2,j)2

) 1
2 . Here, k and l are subspace dimensions for

the orthonormal matrices Y1 and Y2 respectively. For all our experiments, we
restrict ourselves to distance computations between same-dimension subspaces,
i.e. k = l. The following papers propose methods to compute distances between
subspaces of different dimensions [61,67,71].

3 Prior Art

PDs provide a compact multi-scale summary of the different topological features.
The traditional metrics used to measure the distance between PDs are the Bottle-
neck and p-Wasserstein metrics [45,65]. These measures are stable with respect
to small continuous deformations of the topology of the inputs [16,17]. However,
they do poorly under large deformations. Further, a feature vector representa-
tion will be useful that is compatible with different ML tools that demand more
than just a metric. To address this need, researchers have resorted to transform-
ing PDs to other suitable representations [3,5,12,48,51,52]. Bubenik proposed
persistence landscapes (PL) which are stable and invertible functional represen-
tations of PDs in a Banach space [12]. A PL is a sequence of envelope functions
defined on the points in PDs that are ordered on the basis of their importance.
Bubenik’s main motivation for defining PLs was to derive a unique mean repre-
sentation for a set of PDs which is not necessarily obtained using Fréchet means
[45]. Their usefulness is however limited, as PLs can provide low importance to
moderate size homological features that generally possess high discriminating
power.

Rouse et al. create a simple vector representation by overlaying a grid on
top of the PD and count the number of points that fall into each bin [52].
This method is unstable, since a small shift in the points can result in a different
feature representation. This idea has also appeared in other forms, some of which
are described below. Pachauri et al. transform PDs into smooth surfaces by
fitting Gaussians centered at each point in the PD [48]. Reininghaus et al. create
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stable representations by taking a weighted sum of positive Gaussians at each
point above the diagonal and mirror the same below the diagonal but with
negative Gaussians [51]. Adams et al. design persistence images (PI) by defining
a regular grid and obtaining the integral of the Gaussian-surface representation
over the bins defined on each grid [3]. Both PIs and the multi-scale kernel defined
by Reininghaus et al. show stability with respect to the Wasserstein metrics
and do well under small perturbations of the input data. They also weight the
points using a weighting function, and this can be chosen based on the problem.
Prioritizing points with medium lifetimes was used by Bendich et al. to best
identify the age of a human brain by studying its arterial geometry [10]. Cohen-
Steiner et al. suggested prioritizing points near the death-axis and away from
the diagonal [16].

In this paper, we propose a unique perturbation framework that overcomes
the need for selecting a weighting function. We consider a range of topologi-
cal noise realizations one could expect to see, by perturbing the points in the
PD. We summarize the perturbed PDs by creating smooth surfaces from them
and consider a subspace of these surfaces, which naturally becomes a point on
the Grassmann manifold. We show the effectiveness of our features in Sect. 5
for different problems using data collected from different sensing devices. Com-
pared to the p-Wasserstein and Bottleneck distances, the metrics defined on
the Grassmannian are computationally less complex and the representations are
independent of the number of points present in the PD. The proposed PTS
representation is motivated from [28], where the authors create a subspace rep-
resentation of blurred faces and perform face recognition on the Grassmannian.
Our framework also bears some similarities to [5], where the authors use the
square root representation of PDFs obtained from PDs.

4 Perturbed Topological Signatures

In this section we go through details of each step in our framework’s pipeline,
illustrated in Fig. 1. In our experiments we transform the axes of the PD from
(b, d) → ( b+d

2 , d − b), with b ≤ d.

Create a set of Perturbed PDs: We randomly perturb a given PD to create
m PDs. Each of the perturbed PDs has its points randomly displaced by a
certain amount compared to the original. The set of randomly perturbed PDs
retain the same topological information of the input data as the original PD, but
together capture all the probable variations of the input data when subjected
to topological noise. We constrain the extent of perturbation of the individual
points in the PD to ensure that the topological structure of the data being
analyzed is not abruptly changed.

Convert Perturbed PDs to 2D PDFs: We transform the initial PD and
its set of perturbed PDs to a set of 2D PDFs. We do this via kernel den-
sity estimation: by fitting a Gaussian kernel function with zero mean, standard
deviation σ at each point in the PD, and then normalizing the 2D surface.
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The obtained PDF surface is discretized over a k × k grid similar to the app-
roach of Rouse et al. [52]. The standard deviation σ (also known as bandwidth
parameter) of the Gaussian is not known a priori and is fine-tuned to get best
results. A multi-scale approach can also be employed by generating multiple
surfaces using a range of different bandwidth parameters for each of the PDs
and still obtain favorable results. Unlike other topological descriptors that use
a weighting function over their functional representations of PDs [3,51], we give
equal importance to each point in the PD and do not resort to any weighting
function. Adams et al. prove the stability of persistence surfaces obtained using
general and Gaussian distributions (φ), together with a weighting function (f),
with respect to the 1-Wasserstein distance between PDs in [3, Thm. 4, 9]. For
Gaussian distributions, both L1 and L∞ distances between persistence surfaces
ρB , ρB′ are stable with respect to 1-Wasserstein distance between PDs B,B′,

‖ρB − ρB′‖1 ≤
√

10
π

1
σ d1(B,B′).

Projecting 2D PDFs to the Grassmannian: Let ρ(x, y) be an unperturbed
persistence surface, and let ρ(x + u, y + v) be a randomly shifted perturbation.
Under assumptions of small perturbations, we have using Taylor’s theorem:

ρ(x + u, y + v) − ρ(x, y) ≈ [ρx, ρy][u, v]T (1)

Now, in the following, we interpret ≈ as an equality, enabling us to stack
together the same equation for all (x, y), to get a matrix-vector form ρu,v

pert −ρ =
[ρx, ρy]N×2[u, v]T2×1, where the overline indicates a discrete vectorization of the
2D functions. Here, N is the total number of discretized samples from the (x, y)
plane. Now consider the set of all small perturbations of ρ, i.e. span(ρu,v

pert − ρ),
over all [u, v] ∈ R

2. It is easy to see that this set is just a 2D linear-subspace in
R

N which coincides with the column-span of [ρx, ρy]. For a more general affine-
perturbation model, we can show that the required subspace corresponds to a
6-dimensional (6D) linear subspace, corresponding to the column-span of the
N × 6 matrix [ρx, ρy, xρx, xρy, yρx, yρy]. More details on this can be found in
the supplement. In implementation, we perturb a given PD several times using
random offsets, compute their persistence surfaces, use singular value decompo-
sition (SVD) on the stacked matrix of perturbations, then select the p largest
left singular vectors, resulting in a N × p orthonormal matrix. Also, we vary
the dimension of the subspace across a range of values. Since the linear span of
our matrix can be further identified as a point on the Grassmann manifold, we
adopt metrics defined over the Grassmannian to compare our perturbed topo-
logical signatures.

Stability of Grassmannian metrics w.r.t. Wasserstein: The next natural
question to consider is whether the metrics over the Grassmannian for the per-
turbed stack are in any way related to the Wasserstein metric over the original
PDs. Let the column span of X = [ρx, ρy] be represented by X (ρ). Let ρ1, ρ2
be two persistence surfaces, then X (ρ1),X (ρ2) are the subspaces spanned by
X1 = [ρ1,x, ρ1,y] and X2 = [ρ2,x, ρ2,y] respectively. Following a result due to Ji-
Guang [33], the normalized geodesic distance dNG between X1 and X2 is upper
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bounded as follows: dNG(X1,X2) ≤ ‖X1‖F .‖X†
1‖2.‖ΔX‖F

‖X1‖F
= ‖X†

1‖2.‖ΔX‖F .
Here, ‖X†‖2 is the spectral norm of the pseudo-inverse of X, ‖X‖F is the
Frobenius norm, and ΔX = X1 − X2. In the supplement, a full derivation is
given, showing ‖ΔX‖2F ≤ 10

π
2

σ6 d21(B1, B2) + 2K2

σ4 k2
maxN , where d1(B1, B2) is

the 1-Wasserstein metric between the original unperturbed PDs, kmax is the
maximum number of points in a given PD (a dataset dependent quantity), N
refers to the total number of discrete samples from [0, 1]2 and K = 1

(
√
2πσ)2

.
This is the critical part of the stability proof. The remaining part requires us to
upper bound the spectral norm ‖X†‖2. The spectral-norm of the pseudo-inverse
of X, i.e. ‖X†‖2, is simply the inverse of the smallest singular-value of X, which
in turn corresponds to the square-root of the smallest eigenvalue of XT X. i.e.
‖X†‖2 = σmax(X†) = 1

σmin(X) = 1√
λmin(XT X)

.

Given that X = [ρx, ρy], XT X becomes the 2D structure-tensor of a Gaussian
mixture model (GMM). While we are not aware of any results that lower-bound
the eigenvalues of a 2D GMMs structure-tensor, in the supplement we show an
approach for 1D GMMs that indicates that the smallest eigenvalue can indeed
be lower-bounded, if the standard-deviation σ is upper-bounded. For example,
a non-trivial lower-bound is derived for σ < 1 in the supplement. It is inversely
proportional to the number of components in the GMM. We used σ = 0.0004 for
all our experiments. The approach in the supplement is shown for 1D GMMs, and
we posit that a similar approach applies for the 2D case, but it is cumbersome. In
empirical tests, we find that even for 2D GMMs defined over the grid [0, 1]2, with
0 < σ < 1, the spectral-norms are always upper-bounded. In general, we find
‖X†‖2 ≤ k/

√
g(σ), where g(σ) is a positive monotonically decreasing function of

σ in the domain [0, 1], and k is the number of components in the GMM (points
in a given PD). If we denote kmax and σmax as the maximum allowable number
of components in the GMM (max points in any PD in given database) and
the maximum standard deviation respectively, an upper bound readily develops.
Thus, we have

dNG(X1,X2) ≤ kmax√
g(σmax)

√
10
π

2
σ6

d21(B1, B2) + 2
K2

σ4
k2

maxN (2)

Please refer to the supplement for detailed derivation and explanation of
the various constants in the above bound. We note that even though the above
shows that the normalized Grassmannian geodesic distance over the perturbed
topological signatures is stable w.r.t the 1-Wasserstein metric over PDs, it still
relies on knowledge of the maximum number of points in any given PD across
the entire dataset kmax, and also on the sampling of the 2D grid.
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5 Experiments

In this section we first show the robustness of the PTS descriptor to differ-
ent levels of topological noise using a sample of shapes from the SHREC 2010
dataset [41]. We then test the proposed framework on three publicly available
datasets: SHREC 2010 shape retrieval dataset [41], IXMAS multi-view video
action dataset [68] and motion capture dataset [4]. We briefly go over the details
of each dataset, and describe the experimental objectives and procedures fol-
lowed. Finally, we show the computational benefits of comparing different PTS
representations using the dG and dΔ metrics, over the classical p-Wasserstein
and Bottleneck metrics used between PDs.

5.1 Robustness to Topological Noise

We conduct this experiment on 10 randomly chosen shapes from the SHREC
2010 dataset [41]. The dataset consists of 200 near-isometric watertight 3D
shapes with articulating parts, equally divided into 10 classes. Each 3D mesh is
simplified to 2000 faces. The 10 shapes used in the experiment are denoted as Si,

Fig. 2. Illustration of PD and PTS representations for 4 shapes and their noisy variants.
Columns 1 and 6 represent the 3D shape with triangular mesh faces; columns 2 and
5 show the corresponding 9th dimension SIHKS function-based PDs. columns 3 and 4
depict the PTS feature of the PD for the original and noisy shapes respectively. A zero
mean Gaussian noise with standard deviation 1.0 is applied on the original shapes in
column 1 to get the corresponding noisy variant in column 6. The PTS representation
shown is the largest left singular vector (reshaped to a 2D matrix) obtained after
applying SVD on the set of 2D PDFs and lies on the G1,n space.
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i = 1, 2, . . . , 10. The minimum bounding sphere for each of these shapes has a
mean radius of 54.4 with standard deviation of 3.7 centered at (64.4, 63.4, 66.0)
with coordinate-wise standard deviations of (3.9, 4.1, 4.9) respectively. Next, we
generate 100 sets of shapes, infused with topological noise. Topological noise
is applied by changing the position of the vertices of the triangular mesh face,
which results in changing its normal. We do this by applying a zero-mean Gaus-
sian noise to the vertices of the original shape, with the standard deviation σ
varied from 0.1 to 1 in steps of 0.1. For each shape Si, its 10 noisy shapes with
different levels of topological noise are denoted by Ni,1, . . . ,Ni,10.

Fig. 3. Sample SHREC 2010 shapes used to
test robustness of PTS feature to topological
noise.

A 17-dimensional scale-invariant
heat kernel signature (SIHKS) spec-
tral descriptor function is calculated
on each shape [36], and PDs are
extracted for each dimension of this
function resulting in 17 PDs per
shape. The PDs are passed through
the proposed framework to get the
respective PTS descriptors. The 3D mesh, PD and PTS representation for 4
of the 10 shapes (shown in Fig. 3) and their respective noisy-variants (Gaussian
noise with standard deviation 1.0) is shown in Fig. 2. In this experiment, we eval-
uate the robustness of our proposed feature by correctly classifying shapes with
different levels of topological noise. Displacement of vertices by adding varying
levels of topological noise, interclass similarities and intraclass variations of the
shapes make this a challenging task. A simple unbiased one nearest neighbor
(1-NN) classifier is used to classify the topological representations of the noisy
shapes in each set. The classification results are averaged over the 100 sets and
tabulated in Table 1. We also compare our method to other TDA-ML methods
like PI [3], PL [12], PSSK [51] and PWGK [38]. For PTS, we set the discretization
of the grid k = 50. For PIs we chose the linear ramp weighting function, set k
and σ for the Gaussian kernel function, same as our PTS feature. For PLs we use
the first landscape function with 500 elements. A linear SVM classifier is used
instead of the 1-NN classifier for the PSSK and PWGK methods. From Table 1,
the 2-Wasserstein and Bottleneck distances over PDs perform poorly even at
low levels of topological noise. However, PDs with 1-Wasserstein distance and
PTS representations with dG, dΔ metrics show stability and robustness to even
high noise levels. Nevertheless, the average time taken to compare two
PTS features using either dG or dΔ is at least two orders of magni-
tude faster than the 1-Wasserstein distance as seen in Table 1. We
also observe that comparison of PIs, PLs and PWGK is an order
of magnitude faster than comparing PTS features. However, these
methods show significantly lower performance compared to the pro-
posed feature, at correctly classifying noisy shapes as the noise level
increases.
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Table 1. Comparison of 1-Wasserstein, 2-Wasserstein, Bottleneck, dΔ and dG methods
for correctly classifying the topological representations of noisy shapes to their original
shape.

Method Ni,1 Ni,2 Ni,3 Ni,4 Ni,5 Ni,6 Ni,7 Ni,8 Ni,9 Ni,10 Average

Accuracy

(%)

Average

Time Taken

(10−4 sec)

PD

(1-Wasserstein)

100.00 100.00 100.00 99.90 100.00 99.80 99.60 99.00 96.60 94.40 98.93 256.00

PD

(2-Wasserstein)

97.50 98.00 98.10 97.20 97.20 96.00 94.40 92.80 90.30 88.50 95.00 450.00

PD (Bottleneck) 99.90 99.90 99.90 99.20 99.40 98.60 97.10 96.90 94.30 92.70 97.79 36.00

PI (L1) 100.00 100.00 100.00 99.70 98.10 93.70 83.20 68.30 56.00 44.90 84.39 0.31

PI (L2) 99.90 99.50 98.60 97.40 93.10 88.50 82.90 69.70 59.40 49.90 83.89 0.26

PI (L∞) 89.10 83.00 80.20 78.90 78.40 69.90 68.60 64.00 61.90 56.80 73.08 0.12

PL (L1) 99.20 99.70 99.00 98.50 98.50 97.30 95.90 92.30 89.10 84.50 95.40 0.74

PL (L2) 99.10 99.70 98.90 98.50 98.30 96.90 95.60 92.10 89.00 84.30 95.24 0.76

PL (L∞) 98.90 99.60 98.80 98.40 98.30 96.50 94.80 91.70 88.70 83.80 94.95 0.09

PSSK - SVM 100.00 100.00 100.00 100.00 100.00 100.00 91.60 90.00 89.80 89.00 96.04 4.55

PWGK - SVM 100.00 100.00 100.00 100.00 100.00 99.90 99.40 95.90 87.50 73.30 95.60 0.17

PTS (dG) 100.00 100.00 100.00 100.00 100.00 99.90 99.80 98.80 96.80 93.60 98.89 2.30

PTS (dΔ ) 100.00 100.00 100.00 100.00 100.00 99.90 99.90 99.30 97.10 94.10 99.03 1.60

5.2 3D Shape Retrieval

In this experiment, we consider all 10 classes consisting of 200 shapes from
the SHREC 2010 dataset, and extract PDs using 3 different spectral descriptor
functions defined on each shape, namely: heat kernel signature (HKS) [60], wave
kernel signature (WKS) [6], and SIHKS [36]. HKS and WKS are used to capture
the microscopic and macroscopic properties of the 3D mesh surface, while SIHKS
descriptor is the scale-invariant version of HKS.

Using the PTS descriptor we attempt to encode invariances to shape articu-
lations such as rotation, stretching, skewing. For the task of 3D shape retrieval
we use a 1-NN classifier to evaluate the performance of the PTS representation
against other methods [3,12,38,40,51]. A linear SVM classifier is used to report
the classification accuracy of the PSSK and PWGK methods. Li et al. report best
results after carefully selecting weights to normalize the distance combinations
of their BoF+PD and ISPM+PD methods. As in [40], we also use the three spec-
tral descriptors and combine our PTS representations for each descriptor. PIs,
PLs and PTS features are also designed the same way as described before. The
results reported in Table 2 show that the PTS feature (with subspace dimension
p = 1) alone using the dΔ metric achieves an accuracy of 99.50 %, outperforming
other methods. The average classification result of the PTS feature on varying
the subspace dimension p = 1, 2, . . . , 25 is 98.42±0.4 % and 98.72±0.25 % using
dΔ and dG metrics respectively, thus displaying its stability with respect to the
choice of p.
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5.3 View-Invariant Activity Analysis

The IXMAS dataset contains video and silhouette sequences of 11 action classes,
performed 3 times by 10 subjects from five different camera views. The 11 classes
are as follows - check watch, cross arms, scratch head, sit down, get up, turn
around, walk, wave, punch, kick, pick up. Sample frames across 5 views for 2
actions are shown in Fig. 4. We consider only the silhouette information in the
dataset for our PTS representations. For each frame in an action sequence we
extract multi-scale shape distributions which are referred to as A3M, D1M, D2M
and D3M, over the 2D silhouettes [58]. The multi-scale shape distribution feature
captures the local to global changes in different geometric properties of a shape.
For additional details about this feature, please see: [47,58,59].

Fig. 4. Sample frames for “check watch”
and “punch” action sequences from five
views in the IXMAS dataset.

For n frames in an action
sequence and b bins in each shape
distribution at a certain scale, an
n × b matrix representing the action
is obtained. Treating the n frames
as nodes, scalar field topological PDs
are calculated across each column,
resulting in b PDs. PDs capture the
structural changes along each bin in
the distributions. We select 5 differ-
ent scales for the multi-scale shape
features, giving us 5b PDs per action
which are passed through the pro-
posed pipeline resulting in 5b PTS
features. PTS features try to encode
the possible changes with respect to
view-point variation, body-type and execution style. To represent the entire
action as a point on the Grassmannian, we select the first two largest singular
vectors from each of the 5b PTS descriptors, apply SVD and choose 20 largest
components.
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Table 3. Comparison of the recognition results
on the IXMAS dataset. Results are presented
for two combinations of train camera X and
test camera Y. “Same Camera” denotes X=Y ;
“Any-To-Any” implies any combination of
X,Y.
Method Same Camera

Accuracy (%)

Any-To-Any

Accuracy (%)

Best Mean±SD Best Mean±SD

SSM-HOG [34] 67.30 - 52.60 -

PTS-HOG 51.31 - 41.24 -

SSM-HOG +

PTS-HOG

69.01 - 55.13 -

SSM-HOG +

PTS-A3M

73.15 72.06±1.14 58.36 56.96±1.05

SSM-HOG +

PTS-D1M

74.25 73.26±1.53 59.26 57.67±1.19

SSM-HOG +

PTS-D2M

74.92 74.22±1.36 59.77 58.19±1.03

SSM-HOG +

PTS-D3M

76.18 73.72±1.13 60.33 58.72±1.11

SSM-OF [34] 66.60 - 53.80 -

SSM-OF +

PTS-A3M

72.02 70.25±1.06 58.85 57.48±0.93

SSM-OF +

PTS-D1M

73.67 71.62±1.17 59.56 57.81±1.05

SSM-OF +

PTS-D2M

73.45 72.53±1.12 60.60 59.05±1.11

SSM-OF +

PTS-D3M

74.41 72.21±1.03 61.51 59.33±1.13

SSM-HOG-OF

[34]

76.28 - 61.25 -

SSM-HOG-OF

+ PTS-A3M

79.30 78.05±0.71 64.93 63.58±0.65

SSM-HOG-OF

+ PTS-D1M

79.61 79.03±0.96 65.39 64.27±0.65

SSM-HOG-OF

+ PTS-D2M

79.86 79.35±0.76 65.70 64.62±0.83

SSM-HOG-

OF +

PTS-D3M

81.12 79.49±0.99 66.16 64.99±0.79

To perform multi-view action
recognition, we train non-linear
SVMs using the Grassmannian
RBF kernel, krp(Xi,Yi) = exp

(
−

β‖Xi
TYi‖2F

)
, β > 0 [30]. Here, Xi,

Yi are points on the Grassmannian
and ‖.‖F is the Frobenius norm.
We set β = 1 in our implemen-
tations. Junejo et al. train non-
linear SVMs using the χ2 ker-
nel over the SSM-based descrip-
tors and follow a one-against-all
approach for multi-class classifica-
tion [34]. We follow the same app-
roach and use a joint weighted
kernel between their SSM kernel
and our kernel, i.e. χ2 + λ · krp,
where λ = 0.1, 0.2, . . . 1.0. The
SSM-based descriptors are com-
puted using the histogram of gra-
dients (HOG), optical flow (OF)
and fusion of HOG, OF fea-
tures. The classification results
are tabulated in Table 3. Apart
from reporting results of PTS rep-
resentations obtained using the
multi-scale shape distributions, we
also show recognition results of
PTS feature computed over the
HOG descriptor (PTS-HOG). We
see significant improvement in the
results by fusing different PTS fea-
tures with the SSM-based descriptor. We also tabulate the mean and standard
deviation values for all classification results obtained after varying λ from 0.1
to 1.0 and subspace dimension p from 1 to 10. These results demonstrate the
flexibility and stability associated with the proposed PTS topological descriptor.
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5.4 Dynamical Analysis on Motion Capture Data

Table 4. Comparison of classification per-
formance and the average time taken to
compare two feature representations on the
motion capture dataset.

Method Accuracy (%) Average
Time
Taken
(10−4

sec)

PD (1-Wasserstein)
NN [73]

93.68 22.00

Hilbert Sphere
NN [5]

89.87 590.00

Hilbert Sphere
PGA+SVM [5]

91.68 -

PTS (dΔ ) - NN 85.96 0.19

PTS - SVM 91.92 -

This dataset consists of human body
joint motion capture sequences in 3D,
where each sequence contains 57 tra-
jectories (19 joint trajectories along
3 axes). There are 5 action classes
- dance, jump, run, sit and walk,
with each class containing 31, 14, 30,
35 and 48 sequences respectively. H1

homology group PDs are computed
over the reconstructed attractor for
each trajectory, resulting in 57 PDs
per action [5] and the correspond-
ing PTS feature is also extracted. We
report the average classification per-
formance over 100 random splits, with
each split having 25 random test sam-
ples (5 samples from each class) and
remaining 133 training samples. For SVM classification, we train non-linear
SVMs using the projection kernel, kp(Xi,Yi) = ‖Xi

TYi‖2F [29].
The results are tabulated in Table 4. PTS features have a classification accu-

racy of 85.96 % and 91.92 % using the 1-NN and SVM classifier respectively.
While these results are slightly lower than the 1-Wasserstein metric, the pro-
posed descriptor with the dΔ metric is more than 2 orders of magnitude faster.
Topological properties of dynamic attractors for analysis of time-series data has
been studied and applied to tasks such as wheeze detection [27], pulse pressure
wave analysis [26] and such applications are surveyed in [37]. We ask our readers
to refer to these papers for further exploration.

Table 5. Comparison of the average time taken to measure distance between two PDs
using the 1-Wasserstein, 2-Wasserstein and Bottleneck metrics, and between two PTS
features using dG and dΔ metrics. The time reported is averaged over 3000 distance
calculations between the respective topological representations for all three datasets
used in Sect. 5.

Dataset Average

Number of

Points in PD

Average Time Taken (10−4 sec) Subspace

Dimension (p)

of PTS Feature1-Wasserstein 2-Wasserstein Bottleneck dG dΔ

SHREC 2010 [41] 71 256.00 (Kerber

et al. [35]:

219.00)

450.00 (Kerber

et al. [35]:

237.00)

36.00 (Kerber

et al. [35]:

295.00)

2.30 1.60 10

IXMAS [68] 23 16.00 16.00 3.43 2.21 0.68 20

Motion Capture [4] 27 22.00 22.00 2.72 0.24 0.19 1
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5.5 Time-Complexity of Comparing Topological Representations

All experiments are carried out on a standard Intel i7 CPU using Matlab 2016b
with a working memory of 32 GB. We used the Hungarian algorithm to com-
pute the Bottleneck and p-Wasserstein distances between PDs. Kerber et al.
take advantage of the geometric structure of the input graph and propose geo-
metric variants of the above metrics, thereby showing significant improvements
in runtime performance when comparing PDs having several thousand points
[35]. However, extracting PDs for most real datasets of interest in this paper
does not result in more than a few hundred points. For example, on average we
observe 71, 23, 27 points in each PD for the SHREC 2010, IXMAS and motion
capture datasets respectively. The Hungarian algorithm incurs similar computa-
tions in this setting as shown in Table 5. The dG and dΔ metrics used to compare
different PTS representations (grid size k = 50) are fast and computationally
less complex compared to the Bottleneck and p-Wasserstein distance measures.
The average time taken to compare two topological signatures (PD or PTS) for
each of the datasets is tabulated in Table 5. The table also shows the average
number of points seen per PD and the subspace dimension p used for the PTS
representation.

Table 6. Comparison of the average time taken to mea-
sure distance between two PTS features using dG and dΔ

metrics w.r.t. variation in grid size k. The time reported
is averaged over 3000 distance calculations between the
topological representations for the SHREC 2010 dataset.
Grid size (k) Average Time Taken (10−4 sec)

5 10 20 40 60 80 100 200 300 400 500

PTS (dG) 0.72 0.73 0.89 1.31 1.48 2.28 5.53 8.35 18.40 32.88 47.07

PTS (dΔ) 0.20 0.33 0.84 0.72 1.00 1.85 4.32 7.70 17.69 31.56 46.68

Table 6 shows the
variation of the aver-
age time taken to com-
pare PTS features on
varying the grid size (k)
of the 2D PDF. Here
too the average time is
reported after averaging
over 3000 distance cal-
culations between PTS
features computed from PDs of the SHREC 2010 dataset. We observe that the
time taken to compare two PTS features with a grid size k = 500 is two orders
of magnitude greater than the time obtained for PTS features using k = 5. How-
ever, these times are still smaller than or on par with the times reported using
p-Wasserstein and Bottleneck distances between PDs as seen in Table 5. For all
our experiments we set k = 50 for our PTS representations and as shown in
Table 5, the times reported for dΔ and dG are at least an order of magnitude
faster than Bottleneck distance and two orders of magnitude faster than the
p-Wasserstein metrics.

6 Conclusion and Discussion

We believe that a perturbed realization of a PD computed over a high-
dimensional shape/graph is robust to topological noise affecting the original
shape. Based on the type of data and application, topological noise can imply
different types of variations, such as: articulation in 3D shape point cloud data;
diversity in body structure, execution style and view-point pertaining to human
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actions in video analysis, etc. In this paper, we propose a novel topological
representations called PTS that is obtained using a perturbation approach, tak-
ing first steps towards robust invariant learning with topological features. We
obtained perturbed persistence surfaces and summarized them as a point on
the Grassmann manifold, in order to utilize the different distance metrics and
Mercer kernels defined for the Grassmannian. The dG and dΔ metrics used to
compare different Grassmann representations are computationally cheap as they
do not depend on the number of points present in the PD, in contrast to Bot-
tleneck and p-Wasserstein metrics, which do. The PTS feature offers flexibility
in choosing the weighting function, kernel function and perturbation level. This
makes it easily adaptable to different types of real-world data. It can also be
easily integrated with various ML tools, which is not easily achievable with PDs.
Future directions include fusion with contemporary deep-learning architectures
to exploit the complementarity of both paradigms. We expect that topological
methods will push the state-of-the-art in invariant representations, where the
requisite invariance is incorporated using a topological property of an appropri-
ately redefined metric space. Additionally, the proposed methods may help open
new feature-pooling options in deep-nets.

Acknowledgments. This work was supported in part by ARO grant number
W911NF-17-1-0293 and NSF CAREER award 1452163.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Riemannian geometry of grassmann man-
ifolds with a view on algorithmic computation. Acta Applicandae Mathematica
80(2), 199–220 (2004)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton (2009)

3. Adams, H., et al.: Persistence images: a stable vector representation of persistent
homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)

4. Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In:
IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8 (2007)

5. Anirudh, R., Venkataraman, V., Natesan Ramamurthy, K., Turaga, P.: A Rieman-
nian framework for statistical analysis of topological persistence diagrams. In: The
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
68–76 (2016)

6. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum
mechanical approach to shape analysis. In: IEEE International Conference on Com-
puter Vision Workshops (ICCV Workshops), pp. 1626–1633 (2011)

7. Bagherinia, H., Manduchi, R.: A theory of color barcodes. In: IEEE Interna-
tional Conference on Computer Vision Workshops (ICCV Workshops), pp. 806–813
(2011)

8. Basri, R., Hassner, T., Zelnik-Manor, L.: Approximate nearest subspace search.
IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 266–278 (2011)

9. Begelfor, E., Werman, M.: Affine invariance revisited. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2087–2094. IEEE
(2006)



656 A. Som et al.

10. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology
analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016)

11. Bertsekas, D.P.: A new algorithm for the assignment problem. Math. Program.
21(1), 152–171 (1981)

12. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J.
Mach. Learn. Res. 16(1), 77–102 (2015)

13. Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer Science & Business,
New York (2012)

14. Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An
entropy-based persistence barcode. Pattern Recogn. 48(2), 391–401 (2015)

15. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp.
386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-
6 32

16. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discret. Comput. Geom. 37(1), 103–120 (2007)

17. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions
have Lp-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (2001)

19. Dabaghian, Y., Mémoli, F., Frank, L., Carlsson, G.: A topological paradigm for
hippocampal spatial map formation using persistent homology. PLoS Computa.
Biol. 8(8), 1–14 (2012)

20. De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)
homology. Inverse Probl. 27(12), 124003 (2011)

21. Dey, T.K., Mandal, S., Varcho, W.: Improved image classification using topological
persistence. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling
& Visualization. The Eurographics Association (2017). https://doi.org/10.2312/
vmv.20171272

22. Draper, B., Kirby, M., Marks, J., Marrinan, T., Peterson, C.: A flag representation
for finite collections of subspaces of mixed dimensions. Linear Algebr. Appl. 451,
15–32 (2014)

23. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogo-
nality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

24. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society (2010)

25. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discret. Comput. Geom. 28(4), 511–533 (2002)

26. Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and
its application to wheeze detection. IEEE Signal Process. Lett. 21(4), 459–463
(2014). https://doi.org/10.1109/LSP.2014.2305700

27. Emrani, S., Saponas, T.S., Morris, D., Krim, H.: A novel framework for pulse pres-
sure wave analysis using persistent homology. IEEE Signal Process. Lett. 22(11),
1879–1883 (2015). https://doi.org/10.1109/LSP.2015.2441068

28. Gopalan, R., Taheri, S., Turaga, P., Chellappa, R.: A blur-robust descriptor with
applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(6),
1220–1226 (2012)

29. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on
subspace-based learning. In: Proceedings of the International Conference on
Machine Learning (ICML), pp. 376–383. ACM (2008)

https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.2312/vmv.20171272
https://doi.org/10.2312/vmv.20171272
https://doi.org/10.1109/LSP.2014.2305700
https://doi.org/10.1109/LSP.2015.2441068


Perturbation Robust Representations of Topological Persistence Diagrams 657

30. Harandi, M.T., Salzmann, M., Jayasumana, S., Hartley, R., Li, H.: Expanding the
family of Grassmannian kernels: an embedding perspective. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 408–423.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0 27

31. Heath, K., Gelfand, N., Ovsjanikov, M., Aanjaneya, M., Guibas, L.J.: Image webs:
computing and exploiting connectivity in image collections. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2010)

32. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological
signatures. arXiv preprint arXiv:1707.04041 (2017)

33. Ji-guang, S.: Perturbation of angles between linear subspaces. J. Comput. Math.,
58–61 (1987)

34. Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-independent action recognition
from temporal self-similarities. IEEE Trans. Pattern Anal. Mach. Intell. 33(1),
172–185 (2011)

35. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence
diagrams. J. Exp. Algorithmics (JEA) 22(1), 1–4 (2017)

36. Kokkinos, I., Bronstein, M., Yuille, A.: Dense scale invariant descriptors for images
and surfaces. Ph.D. thesis, INRIA (2012)

37. Krim, H., Gentimis, T., Chintakunta, H.: Discovering the whole by the coarse: a
topological paradigm for data analysis. IEEE Signal Process. Mag. 33(2), 95–104
(2016). https://doi.org/10.1109/MSP.2015.2510703

38. Kusano, G., Hiraoka, Y., Fukumizu, K.: Persistence weighted Gaussian kernel
for topological data analysis. In: International Conference on Machine Learning
(ICML), pp. 2004–2013 (2016)

39. Li, C., Shi, Z., Liu, Y., Xu, B.: Grassmann manifold based shape matching and
retrieval under partial occlusions. In: International Symposium on Optoelectronic
Technology and Application: Image Processing and Pattern Recognition (2014)

40. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1995–
2002 (2014)

41. Lian, Z., et al.: Shrec’10 track: non-rigid 3D shape retrieval. In: Eurographics
Workshop on 3D Object Retrieval (3DOR), vol. 10, pp. 101–108 (2010)

42. Liu, X., Srivastava, A., Gallivan, K.: Optimal linear representations of images for
object recognition. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR) (2003)

43. Luo, D., Huang, H.: Video motion segmentation using new adaptive manifold
denoising model. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2014)

44. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional
neural networks on Riemannian manifolds. In: IEEE International Conference on
Computer Vision Workshops (ICCVW), pp. 37–45 (2015)

45. Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persis-
tence diagrams. Inverse Probl. 27(12), 124007 (2011)

46. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.: Geo-
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