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Abstract. Autonomous urban driving navigation with complex multi-
agent dynamics is under-explored due to the difficulty of learning an
optimal driving policy. The traditional modular pipeline heavily relies
on hand-designed rules and the pre-processing perception system while
the supervised learning-based models are limited by the accessibility of
extensive human experience. We present a general and principled Con-
trollable Imitative Reinforcement Learning (CIRL) approach which suc-
cessfully makes the driving agent achieve higher success rates based on
only vision inputs in a high-fidelity car simulator. To alleviate the low
exploration efficiency for large continuous action space that often pro-
hibits the use of classical RL on challenging real tasks, our CIRL explores
over a reasonably constrained action space guided by encoded experi-
ences that imitate human demonstrations, building upon Deep Deter-
ministic Policy Gradient (DDPG). Moreover, we propose to specialize
adaptive policies and steering-angle reward designs for different control
signals (i.e. follow, straight, turn right, turn left) based on the shared
representations to improve the model capability in tackling with diverse
cases. Extensive experiments on CARLA driving benchmark demon-
strate that CIRL substantially outperforms all previous methods in terms
of the percentage of successfully completed episodes on a variety of goal-
directed driving tasks. We also show its superior generalization capability
in unseen environments. To our knowledge, this is the first successful case
of the learned driving policy by reinforcement learning in the high-fidelity
simulator, which performs better than supervised imitation learning.
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1 Introduction

Autonomous urban driving is a long-studied and still under-explored task [27,31]
particularly in the crowded urban environments [25]. A desirable system is
required to be capable of solving all visual perception tasks (e.g. object and
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lane localization, drivable paths) and determining long-term driving strategies,
referred as “driving policy”. Although visual perception tasks have been well
studied by resorting to supervised learning on large-scale datasets [20,39], sim-
plistic driving policies by manually designed rules in the modular pipeline is
far from sufficient for handling diverse real-world cases as discussed in [28,30].
Learning a optimal driving policy that mimics human drivers is less explored
but key to navigate in complex environments that requires understanding of
multi-agent dynamics, prescriptive traffic rule, negotiation skills for taking left
and right turns, and unstructured roadways. These challenges naturally lead
people to machine learning approaches for discovering rich and robust planning
strategies automatically.

A line of researches [2,4,13,15,24,35] for learning policies follow the end-to-
end imitation learning that directly maps sensor inputs to vehicle control com-
mands via supervised training on large amounts of human driving data. However,
these systems cannot be generalized to unseen scenarios and their performances
are severely limited by the coverage of human driving data. For example, the
model of Bojarski et al. [2] trained for road following fails for turning right/left.
Moreover, it is difficult to pose autonomous driving with long-term goal-oriented
navigation as a supervised learning problem as the autonomous vehicle needs to
heavily interact with the environment including other vehicles, pedestrians and
roadways.

It is thus desirable to have a richer control policy which considers a large
amount of feedbacks from the environment including self-states, collisions and
off-road conditions for autonomous driving. Deep reinforcement Learning (RL)
offers, in principle, a reasonable system to learn such policies from explo-
ration [33]. However, the amount of exploration required for large action space
(such as a sequence of continuous steer angles, brakes and speeds) has prohibited
its use in real applications, leading to unsatisfactory results by recent efforts on
RL-based driving policy learning [6,30] in complex real-world tasks.

Fig. 1. An overview of our Controllable Imitative Reinforcement Learning (CIRL),
including a controllable imitation stage and a reinforcement learning stage optimized
via Deep Deterministic Policy Gradient (DDPG). The imitation stage first train the
network by supervised learning with groundtruth actions from recorded human driving
videos. Then we share the learned weights into the actor network and optimize both
actor and critic with feedbacks from reward module by interacting with the simulator.
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In this paper, we resolve this challenging planning task with our novel Con-
trollable Imitative Reinforcement Learning (CIRL) that facilitates the contin-
uous controllable deep-RL by exploiting the knowledge learned from demon-
strations of human experts. The whole architecture is illustrated in Fig. 1. Our
CIRL is based on the Deep Deterministic Policy Gradient (DDPG) [21] that
is an off-policy replay-memory-based actor-critic algorithm. The conventional
DDPG often falls into local optimal due to too much failed explorations for
large action space. Our CIRL solves this issue by providing better exploration
seeds for the search over the action space of the actor networks. Specifically, the
actor networks are first warmed up by learned knowledge via imitation learn-
ing using human demonstrations in order to initialize the action exploration
in a reasonable space. Then our CIRL incorporates DDPG to gradually boost
the generalization capability of the learned driving policy guided by continu-
ous reward signals sent back from the environment. Furthermore, to support
the goal-oriented navigation, we introduce a controllable gating mechanism to
selectively activate different branches for four distinct control signals (i.e. follow,
straight, turn right, turn left). Such gating mechanism not only allows the model
to be controllable by a central planner or the drivers’ intent, but also enhances
the model’s capability by providing tailored policy functions and reward designs
for each command case. In addition, distinct abnormal steer angle rewards are
further proposed to better guide policies of each control signal as auxiliary aggre-
gated rewards.

Our key contributions can be summarized as: (1) we present the first suc-
cessful deep-RL pipeline for vision-based autonomous driving that outperforms
previous modular pipeline and other imitation learning on diverse driving tasks
on the high-fidelity CARLA benchmark; (2) we propose a novel controllable
imitative reinforcement learning approach that effectively alleviates the ineffi-
cient exploration of large-scale continuous action space; (3) a controllable gating
mechanism is introduced to allow models be controllable and learn specialized
policies for each control signal with the guidance of distinct abnormal steer-angle
rewards; (4) comprehensive results on public CARLA benchmark demonstrates
our CIRL achieves state-of-the-art performance on a variety of driving scenarios
and superior generalization capability by applying the same agent into unseen
environments. More successfully driving videos are presented in https://www.
youtube.com/watch?v=zhbpl8U UW8&t=10s.

2 Related Work

Autonomous driving has recently attracted extensive research interests [25]. In
general, prior approaches can be categorized into two different pipelines based
on the modularity level. The first type is the highly tuned system that assembles
a bunch of visual perception algorithms and then uses model-based planning and
control [8]. Recently, more efforts have been devoted to the second type, that is,
end-to-end approaches that learn to map sensory input to control commands [2,
4,27,35,36,38]. Our method belongs to the second spectrum.

https://www.youtube.com/watch?v=zhbpl8U_UW8&t=10s
https://www.youtube.com/watch?v=zhbpl8U_UW8&t=10s
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End-to-End Supervised Learning. The key to autonomous driving is the
ability of learn driving policy that automatically outputs control signals for steer-
ing wheel, throttle, brake, etc., based on observations. As a straight-forward
idea, imitation learning that learns policies via supervised training on human
driving data has been applied to a variety of tasks, including modeling naviga-
tional behavior [41], off-road driving [24,31], and road following [2,4,27,35,38].
These works differ in several aspects: the input representation (raw sensory input
or pre-processed signals), predicting distinct control signals, experimenting on
simulated or real data. Among them, [2,4,24,27] also investigated training net-
works for directly mapping vision inputs into control signals. The very recent
work [4] relates to our CIRL in incorporating control signals into networks. How-
ever, supervised approaches usually require a large amount of data to train a
model that can generalize to different environments. Obtaining massive data
for all cities, scenarios and dynamical requires significant human involvement
and is impractical since we cannot cover all possible situations that may hap-
pen. From the technical aspect, different from these works, our CIRL aims to
learn advanced policies by interacting with the simulator guided by the imitation
learning towards more and general complex urban driving scenarios. In addition,
distinct abnormal steer-angle rewards are defined for each control signal, enabling
the model to learn coherent specialized policies with human commonsense.

Fig. 2. Actor Network Architecture of CIRL. The gating function selectively activates
different branches to predict three actions for “Straight”, “TurnLeft”, “TurnRight”
and “Follow” commands.

Reinforcement Learning for Autonomous Driving. Reinforcement learn-
ing learns by a trial-and-error fashion, and does not require explicit supervi-
sion from human. Deep-RL or RL algorithm has been applied to a wide variety
of tasks, such as object recognition [3,9,14,18,19], computer games [23], robot
locomotion [7], scene navigation [40] and autonomous driving in the simula-
tors [1,30,37]. The most critical challenges in real-world applications are the
high-dimensional large-scale continuous action space. Learning an optimal pol-
icy using such exhaustive exploration is prone to be very time-consuming and
easy to fall into local optimum after many episodes. It is thus desirable to find a
feasible action space that can help speed up the exploration. Our CIRL addresses
this issue by leveraging learned experiences by imitation learning to guide the
reinforcement driving agent.

There exists some prior works also investigated the power of imitation learn-
ing. Generative Adversarial Imitation Learning (GAIL [12]) builds a genera-
tive model, which is a stochastic policy that produces similar behaviors to the
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expert demonstrations. InfoGAIL [17] extends GAIL into a policy where low-level
actions can be controlled through more abstract, high-level latent variables. The
most similar work to ours are DQfD [11], [16] and DDPGfD [34], which combines
Deep Q Networks (DQN) with learning from demonstrations. However, DQfD
is restricted to domains with discrete action spaces, DQfD, [16] and DDPGfD
are not applicable for autonomous driving with significant different actor-critics,
action spaces and reward definitions. Moreover, different with DDPGfD that
loads the demonstration transitions into the replay buffer, we directly use the
knowledge from demonstrations to guide the reinforcement explorations by ini-
tializing actor networks with pretrained model parameters via imitation learning.
Our experiments show our strategy is particular better and more efficient than
DDPGfD when applied to the autonomous driving simulator.

3 Controllable Imitative Reinforcement Learning

We illustrate the whole architecture of our CIRL method. To resolve the sample
inefficiency issue in applying RL to complex tasks, our CIRL adopts an imi-
tation stage and a reinforcement learning stage. First, given a set of human
driving videos, we first use the supervised ground truth deterministic actions
to pretrain the network. The command gating mechanism is incorporated to
endow the model controllable capability for a central planner or drivers’ intent.
Second, to further enhance the policy with better generalization and robust-
ness, the reinforcement learning optimization is employed to boost the ability of
actor network. We first initialize the actor network with pretrained weights from
the imitation stage, and then optimize it via the reward module by interacting
with the simulator. Due to its superior performance on exploring continuous
action space, we use the Deep Deterministic Policy Gradient (DDPG) as the RL
optimization. Benefiting from the use of human driving demonstrations for ini-
tializing the actor network, the sample complexity can be significantly reduced to
enable the learning within the equivalent of hours of exploration and interaction
with the environment.

3.1 Controllable Imitation Learning

Given N human driving video sequences vi, i ∈ (1, . . . , N) with the observation
frame Ii,t, control command ci,t, speed si,t, action ai,t at each time step t, we
can learn a deterministic policy network F via the basic imitation learning to
mimic the human experts. Detailed network architecture of F is presented in
Fig. 2. The control command ci,t is introduced to handle the complex scenarios
where the subsequent actions also depend on the driver’s intent in addition to
the observation [4]. The action space ai,t contains three continuous actions, that
is steering angle as

i,t, acceleration aa
i,t, and braking action ab

i,t. The command
ci,t is a categorical variable that control the selective branch activation via the
gating function G(ci,t), where ci,t can be one of four different commands, i.e.
follow the lane (Follow), drive straight at the next intersection (Straight), turn



Imitative Reinforcement Learning for Self-driving 609

left at the next intersection (TurnLeft), and turn right at the next intersection
(TurnRight). Four policy branches are specifically learned to encode the distinct
hidden knowledge for each case and thus selectively used for action prediction.
The gating function G is an internal direction indicator from the system. The
controllable imitation learning objective is to minimize the parameters θI of the
policy network F I , defined as:

min
θI

N∑

i

Ti∑

t

L(F (Ii,t, G(ci,t), si,t),ai,t), (1)

where the loss function L is defined as the weighted summations of L2 losses for
three predicted actions âi,t:

L(âi,t,ai,t) = ||âs
i,t − as

i,t||2 + ||âa
i,t − aa

i,t||2 + ||âb
i,t − ab

i,t||2, (2)

For fair comparison between our CIRL and imitation learning, we use the same
experiment setting as [6] to verify the effectiveness of boosting driving policies
by our imitative reinforcement learning. The sensory inputs are images from
a forward-facing camera, speed measurements from the simulator and control
commands generated by the navigation planner.

Fig. 3. Critic Network Architecture of CIRL. The action outputs from actor network
are fed into critic network to obtained the estimated value.

3.2 Imitative Reinforcement Learning

Our CIRL uses the policy network F pretrained from conditional imitation learn-
ing to boost the sample efficiency of reinforcement learning to obtain more gen-
eral and robust policies. We first present the underlying optimization techniques
and then the reward designs.

Markov Decision Process. By interacting with the car simulator, the driving
agent can be optimized based on a reward signal provided by the environment,
with no human driving intervention, which can be defined as a Markov Decision
Processes (MDPs) [32]. In the autonomous driving scenario, the MDP is defined
by a tuple of <I,C, S,A,R, P, λ>, which consists of a set of states O defined
with observed frames I, speeds S, control command C, a set of actions A, a
reward function R(o,a), a transition function P (o′|o,a), and a discount factor
γ. In each state o = <I, c, s> ∈ O, the agent takes an action a ∈ A. After taking
this action and interacting with the environment, the agent receives a reward
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R(o,a) and reaches a new state o′ depending on the probability distribution
P (o′|o,a). To make the driving policies more realistic, we focus on the goal-
directed navigation, that is, the vehicle has to reach a predetermined goal along
the path generated by the topological planner. The new observation o′ is thus
updated by the simulator observation and a sequence of commands towards the
goal. The episode is terminated when the vehicle reaches the goal, when the
vehicle collides with an obstacle, or when a time budget is exhausted.

A deterministic and stationary policy π specifies which action the agent
will take given each state. The goal of the driving agent is to find the policy
π that maps states to actions that maximizes the expected discounted total
reward. It can be thus learned by using a action value function: Qπ(o,a) =
Eπ[

∑+∞
t=0 γtR(ot,at)], where Eπ is the expectation over the distribution of the

admissible trajectories (o0,a0, . . . , ot,at) by executing the policy π sequentially
over the time episodes.

Imitative Deep Deterministic Policy Gradient. Since the autonomous
driving system needs to predict continuous actions (steer angles, braking,
and acceleration), we resort to the actor-critic approach for continuous con-
trol problem, and both actor and critic are parametrized by deep networks.
Denoting the parameters of the policy network as θ, and μ as the initial
state distribution, the actor-critic approach aims to maximize a mean value
J(θ) = Eo∼μ[Q(π|̇θ)(o, π(o|θ))] in which θ can be updated via gradient descent
as: θ + α∇θJ(θ) → θ. In this work, we employ the Deep Deterministic Policy
Gradient [21] due to its promising performance on continuous control problem,
which directly uses the gradient of Q-function with respect to the action for
policy training. A policy network Fπ (actor) with parameters θπ and an action-
value function network FQ (critic) with parameters θQ are jointly optimized.
The detailed network architectures of Fπ and FQ are presented in Figs. 2 and 3.

Different from the conventional DDPG that randomly initializes the θπ, our
imitative DDPG proposes to load the pretrained θI in Eq. (1) via the imitation
learning into θπ, obtaining a new θ̄π as the parameter initialization. It thus
enables to produce reliable new transitions e = (o,a, r = R(o,a), o′ ∼ P (|̇o,a))
by acting based on a = π(o|θ̄π) + N where N ∼ OU(μ, σ2) is a random process
allowing action exploration. OU(·) denotes the Ornstein-Uhlenbeck process. Such
further noisy exploration ensure that the agent’s behavior does not converge
prematurely to a local optimum. The key advantage of our imitative DDPG lies
in better initialized exploration starting points by learning from human expects,
which can help significantly reduce the exhaustive exploration in the early stage
of DDPG that may cost a few days, as discussed in previous works [26]. Starting
from a better state, the random action exploration allows RL to further refine
actions according to the feedbacks from the simulator and results in more general
and robust driving policies. The critic network is optimized by the one-step off-
policy evaluation:

L(θQ) = E(o,a,r,o′)∼D[R − Q(o,a|θQ)]2, (3)
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Fig. 4. Example observations of different environment settings. Training condition is
used for training while the rest settings are used for testing. Besides the settings (first
row) evaluated in [6], this work further validates the generalization capability of the
model on four new settings (second row).

where D is a distribution over transitions e in the replay buffer and the one-
step return R = r + γQ′((o′, π′(o′)|θ̄π ′)|θQ′). θ̄π ′ and θQ′ are parameters of
corresponding target networks of Fπ and FQ, which are used to stabilize the
learning. On the other hand, the actor network is further updated from the
starting state from the controllable imitative learning:

∇θ̄πJ(θ̄π) ≈ Eo,a∼D[∇aQ(o,a|θQ)|a=π(o,θQ)∇θπ
π(o|θ̄π)]. (4)

Reward Module. Another contribution of our CIRL is our reward module
tailored for the autonomous driving scenario. The reward is a sum of five terms
according to the measurements from simulator: negatively weighted abnormal
steer angles rs, positively weighted speed rv in km/h, and negatively weighted
collision damage rd, overlap with the sidewalk rr, and overlap with the opposite
lane ro. The rewards are computed according to the simulator measurements
after taking actions over the agent. First, the reward rs for abnormal steer-angles
w.r.t each command control is defined as:

rs(c) =

{
−15 if s is in opposite direction with c for TurnLeft and TurnRight
−20 if |s| > 0.2, c for Straight.

(5)
Second, the reward rv for speed measurements after performing actions on

the simulator with respect to each common control is defined as:

rv(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(25, v) if c for Follow
min(35, v) if c for Straight
v if v ≤ 20, c for TurnLeft and TurnRight
40 − v if v > 20, c for TurnLeft and TurnRight

(6)

Finally, the rr and ro are both set as −100 for having overlapping with the
sidewalk and opposite lane, respectively. The collision damage rd is as −100 for
collision with other vehicles and pedestrians and as −50 for other things (e.g.
trees and poles). The final reward r conditioning on different command controls
is computed as:

r = R(o,a) = rs(c) + rv(c) + rr + ro + rd. (7)
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Note that exact penalty values are applied for all experiments in our benchmark
according to their specific limitations, such as speeds and angles [6].

4 Experiments

4.1 Experiment Settings

Evaluation Benchmark. We conduct extensive experiments on the recently
release CARLA car simulator benchmark [6] because of its superior high-fidelity
simulated environment and open-source accessibility, compared to other simu-
lators. A large variety of assets were produced for CARLA, including cars and
pedestrians. CARLA provides two towns: Town 1 and Town 2. For fair compari-
son with other state-of-the-art policy learning methods [4,6], Town 1 is used for
training and Town 2 exclusively for testing, as illustrated in Fig. 4. The weather
conditions are organized in three groups, including Training Weather set, New
Weather set and New Weather2 set. Training Weather set is used for training,
containing clear day, clear sunset, daytime rain, and daytime after rain. New
Weather set and New Weather2 set are never used during training and for test-
ing the generalization. New Weather set includes cloudy daytime and soft rain
at sunset, and New Weather2 set includes cloudy noon, midrainy noon, cloudy
sunset, hardrain sunset. Besides three test settings evaluated in [6], we further
evaluate four new settings for more paths in Town 2, New weather2 set as shown
in the first row in Fig. 4.

State-of-the-Art Pipelines. We compare our CIRL model with three state-
of-the-art pipelines in CARLA benchmark, that is modular pipeline (MP) [6],
imitation learning (IL) [6], and reinforcement learning (RL) [6], and fairly com-
pete with them on four increasingly difficult driving tasks, i.e. Straight, One
turn, Navigation and Navigation with dynamic obstacles, illustrated in Fig. 5.
Particularly, the baseline MP [6] decomposes the driving task into the follow-
ing subsystems including perception, planning and continuous control, and its
local planning resorts to completely rule-based predefined policies that are com-
pletely dependent on the scene layout estimated by the perception module. The
baseline IL [6] takes the images from a forward-facing camera and command
controls as inputs, and directly trains the model via supervised learning using
human driving videos. Note that for fair comparison, we adopt the same net-
work architecture and settings with their model during the controllable imitation
stage. RL [6] is also a deep reinforcement learning pipeline that uses the asyn-
chronous advantage actor-critic (A3C) algorithm [22]. Different from their used
five reward terms, we empirically remove the distance rewards traveled towards
the goal since the way-points used for estimating distances are too sparse to give
valid feedbacks during exploration. In addition, we propose to use controllable
abnormal steer-angle rewards to penalize the unexpected angle predictions.

Note that for all methods, one same agent is used on all four tasks and cannot
be fine-tuned separately for each scenario. The tasks are set up as goal-directed
navigation: an agent is randomly initialized somewhere in town and has to reach
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Fig. 5. Illustrated observations of four different tasks in the bird view.

a destination point. For each combination of a task, a town, and a weather set,
the paths are carried out over 25 episodes. In each episode, the target of driving
agent is to reach a given goal location. An episode is considered successful if the
agent reaches the goal within a time budget, which is set to reach the goal along
the optimal path at a speed of 10 km/h.

Implementation Settings. During the controllable imitation stage, to fairly
demonstrate the effectiveness of our imitative reinforcement learning, we use
the exact same experiment settings in [4] for pre-training actor network. 14 h of
driving data collected from CARLA are used for training and the network was
trained using the Adam optimizer. Further details are referred in [4].

During the imitative reinforcement learning stage, in terms of OU explo-
ration parameters, we empirically set μ as 0, 0.15, and 0.5 and σ as 0.02, 0.05,
0 for steer-angle, speed and braking actions, respectively. The discount factor γ
is set as 0.9. The initial learning rate of actor network is set as 0.00001 since
it uses the shared weights from controllable imitation learning and the learning
rate of critic network is set as 0.001. Learning and exploration rate are lin-
early decreased to zero over the course of training. The actor-critic networks are
trained with 0.3 millions of simulation steps for roughly 12 h of non-stop driving
at 10 frames per second. In contrast, existing reinforcement learning approach
provided in [6] requires 10 millions of simulation steps corresponding to roughly
12 days of non-stop driving with 10 parallel actor threads. Our CIRL can obtain
high percentage of successfully completed episodes after several hours with good
sample efficiency, benefiting from a good exploration start boosted by the con-
trollable imitation stage. The proposed method is implemented on TensorFlow
framework. All models are trained on four NVIDIA GeForce GTX1080 GPUs.

4.2 Comparisons with State-of-the-Arts

Table 1 reports the comparisons with the state-of-the-art pipelines on CARLA
benchmarks in terms of the percentage of successfully completed episodes under
four different conditions. All results of MP, IL and RL were reported from [6]. For
“Training conditions” task, the models are tested on the combination of Town 1,
Training Weather setting which has different starting and target locations under
the same general environment and conditions with the training stage. The rest
test settings are conducted for evaluating more aggressive generalization, that
is, adaption to the previously unseen Town 2 and to previously unencountered
weather from the New Weather and New Weather2.
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Table 1. Quantitative comparison with other state-of-the-art autonomous driving sys-
tems on four goal-directed navigation tasks. The table reports the percentage (%) of
successfully completed episodes in each condition. Higher is better. The tested methods
are: modular pipeline (MP) [6], imitation learning (IL) [6], and reinforcement learning
(RL) [6] and our CIRL model.

Task Training conditions New town New weather New town/weather

MP IL RL CIRL MP IL RL CIRL MP IL RL CIRL MP IL RL CIRL

Straight 98 95 89 98 92 97 74 100 100 98 86 100 50 80 68 98

One turn 82 89 34 97 61 59 12 71 95 90 16 94 50 48 20 82

Navigation 80 86 14 93 24 40 3 53 94 84 2 86 47 44 6 68

Nav. dynamic 77 83 7 82 24 38 2 41 89 82 2 80 44 42 4 62

We can observe that our CIRL substantially outperforms all baseline methods
under all conditions, especially better than their RL baseline. Furthermore, our
CIRL shows superior generalization capabilities in the rest three unseen setting
(e.g. unseen new town), which obtains not perfect results but considerably better
performance over other methods, e.g. 71% of our CIRL vs. 59% and 12% of
IL and RL, respectively. More qualitative results are shown in Fig. 7, which
provides some infraction examples that the IL model suffers from and our CIRL
successfully avoids.

It is also interesting that both learning-based methods (IL and our
CIRL) achieve comparable and better performances than the modular pipeline,
although MP adopted the sophisticated perception steps (segmentation and clas-
sification) to identify key cues in the environment and used manually rule-based
policies. One exception is that the modular pipeline performs better under the
“New weather” condition than that of the training conditions, and both IL and
CIRL are slightly inferior to it. But MP’s results perform bad on navigation
task and considerably decrease on all tasks in unseen “New town” and “New
town/weather” conditions. The reason is that MP heavily depends on the per-
ception stage that fails systematically under complex weather conditions in the
context of a new environment, and rule-based policies that may fail for long-range
goal-driven navigation. We can conclude that MP is more fragile to unseen envi-
ronments than the end-to-end learning based models since the perception part
itself is difficult and hard to adapt across diverse unknown scenes.

Table 2. The percentage (%) of successfully completed episodes of our CIRL on four
new settings for further evaluating generalization.

Task New town/path2 New town/weather2 New path New weather2

Navigation 50 58 95 87

Nav. dynamic 38 47 87 86
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Table 3. The percentage (%) of successfully completed episodes of our CIRL under
different weather conditions for the navigation tasks in training town and new town.

Navigation task CloudyNoon MidRainyNoon CloudySunset WetCloudySunset HardRainSunset

CIRL (Town 1) 92 96 96 64 56

CIRL (New town) 95 52 85 90 5

On the other hand, the conventional reinforcement learning [6] performs sig-
nificantly worse than all other methods, even with considerably more training
time: 12 days of driving in the simulator. The reason is that RL itself is well
known to be brittle [10] and needs very time-consuming exploration to get rea-
sonable results. Rather than video games in Atari [23] and maze navigation [5],
the real-world tasks like self-driving require complex decision making to exploit
visual cues, leading to severe sample inefficiency and unfeasible parameter search.

In contrast, the proposed CIRL effectively benefits from both merits of imi-
tation learning (i.e. fast convergence) and traditional reinforcement learning (i.e.
robust long-term decision making). Our CIRL that enhances the policies by only
rough 12 h of driving explorations in car simulator can achieve significant better
performances on all tasks than the best MP and IL methods. Different from pre-
vious RL models that conduct too much random and meaningless explorations
in the beginning, the actor network in our CIRL can start the exploration in a
good and reasonable point by transferring knowledge from the first controllable
imitation stage. The reward feedbacks by driving and interacting with complex
dynamics in the simulator can further facilitate the policy learning with better
robustness and generalization capability.

4.3 Generalization Capability

The exact driving trajectories during training cannot be repeated during testing.
Therefore performing perfectly on CARLA benchmark requires robust general-
ization, which is challenging for existing deep learning methods. As reported
in Table 1, it is obvious that all methods perform closely to those in “Training
conditions” under the “New weather” setting. However, their performances dra-
matically drop on the “New town” settings. For example, on the most challeng-
ing navigation task “Nav.dynamic” in the New town/weather setting, previous
best MP and IL methods obtain only 44% and 42% complete success episodes
compared to 62% of our CIRL. In general, our CIRL shows much better gener-
alization capabilities over other methods, but still needs further improvements.

Besides the previous two types of generalization (i.e. unseen weather con-
ditions and unseen new town), we further conduct more experiments on two
another new conditions (i.e. more path trajectories and the New weather2 set)
on two most difficult tasks to further evaluate more general cases, resulting in
four new settings in Table 2. We can see that our model shows reasonably robust
and good performance on different navigation paths and weather set. Adapting
our CIRL to navigate in unseen towns can be improved by training in wider
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Table 4. Ablation studies on one-turn task on four different settings.

Method (one-turn) Training
conditions

New town New
weather

New
town/weather

CIRL w/o steer reward 91 65 96 76

CIRL w/ add replay 96 71 94 82

CIRL more simulation steps 95 68 98 80

Our CIRL 97 71 94 82

Table 5. Results on comma.ai dataset in terms of mean absolute error (MAE).

Model PilotNet [2] CIRL
(CARLA)

CIRL from
scrach

CIRL
finetuning

Steer-angle MAE 1.208 2.939 1.186 1.168

Fig. 6. Example observations under distinct weather conditions. Better viewed in zoom.

range of different scenes. This further demonstrates well the advantages of inte-
grating together the controllable imitation learning and DDPG algorithm into
boosting driving policies towards more challenging tasks.

We also extensively dive into the affects of different weather conditions on
driving generalization capability, as reported in Table 3. Driving behaviors under
five weather conditions with distinct levels of difficulties are evaluated on both
seen town and unseen town. We can observe promising results obtained under
weathers with good visibility, such as CloudyNoon, CloudySunset. But regarding
to more challenging rainy weathers, the model obtains very low successfully
completed rates. One of main reasons is that the road and surrounding dynamics
are extremely hard to be perceived as a result of heavy rains, as shown in Fig. 6.

4.4 Comparisons on Real Scenes

We report results of applying our CIRL trained on CARLA into real scenes in
Table 5 on Comma.ai [29] dataset. To finetune on Comma.ai, we use pretrained
network parameters before direction branches on CARLA and initialize 3 stacked
fc-layers (256, 256, 1) to predict one steer angle. The learning rate is set to 1e-3.
We train 18 epochs and batch size is 256. “CIRL (CARLA)” denotes directly
applying model trained on CARLA into prediction in real scenes. We can see
that finetuning pretrained CIRL model on comma.ai (“CIRL finetuning”) out-
performs the baseline PilotNet and “CIRL from scratch” that is trained from
scratch on Comma.ai. It verifies well that our CIRL model learned from the
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Table 6. Success rates on One Turn task in New Town (i.e. validation town)

Reward our reward our reward×10 our reward/10 w/o speed w/o
offroad
& coll

Old weather 71% 70% 52% 20% 31%

New weather 82% 82% 68% 14% 28%

high-quality CARLA simulator can be easily transferred into real scenes to
enhance driving policy learning for real autonomous vehicles.

4.5 Ablation Studies

We also conduct comprehensive experiments to verify the effects of each key
component of our model, as reported in Table 4. Experiments are conducted on
the challenging one-turn task on four different environments.

Different Strategies of Using Demonstrations. To validate the effectiveness
of our imitative reinforcement learning, we compare our CIRL with DDPGfD [34]
that performs learning from demonstrations for robotic manipulation problems.
In contrast to our strategy of providing a better exploration start, DDPGfD
instead loads the demonstration transitions into the replay buffer and keeps all
transitions forever. We thus implement and incorporate the demonstrate replay
buffer into our CIRL, and “CIRL w/add reply” denotes the results of this vari-
ant for running the same number of simulation steps with our CIRL. We can
see there is no noticeable performance difference between “CIRL w/add reply”
and our CIRL. It speaks well that the good starting point for exploration is
already enough for learning reasonable policies in an efficient way. We also try
the performance of pure DDPGfD on our task without using imitation learning
to initialize the actor network, which is quite bad after several days of driving
simulation due to the need of exhaustive exploration, we thus did not list their
results. Note that for justifying the optimization step, we keep all experiments
settings of all variants as same, e.g. reward design.

The Effect of Abnormal Steer-Angle Rewards. Different from the reward
terms in [6], we propose to adopt specialized steer-angle rewards with respect to
each command control. Our comparisons between “CIRL w/o steer reward” and
“CIRL” further demonstrate the effectiveness of incorporating such rewards for
stabilizing the action exploration by providing more explicit feedbacks.

The Effect of Simulation Step Number. One raised question for our CIRL
is whether the performance can be further improved by performing RL pol-
icy learning with more simulation steps. “CIRL more simulation steps” reports
results of running CIRL model for 0.5 million steps. We find that no signifi-
cant improvement in terms of percentages of completely success episodes can be
obtained in unseen driving scenarios. This verifies our model can achieve good
policies by efficient sample exploration with the acceptable computation cost.
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Fig. 7. Visualization comparisons between the imitation learning baseline [6] and our
CIRL model. We illustrate some driving cases for straight and one-turn tasks, and show
the IL baseline fails with some types of infractions (e.g. collision with static object,
more than 30% overlap with Sidewalk, in opposite lane) while our CIRL successfully
completes the goal-oriented tasks. For each case, two consecutive frames are shown.

On the other hand, this may motivate us to further improve model capability
from other aspects, such as exploring more environments and video dynamics to
improve the generalization ability.

Reward Function. Set scales of reward values following Coach RL framework1

used in CARLA environment. Ablation studies on different reward scales for
all rewards are reported in Table 6. We can observe that removing speed or
offroad&collision reward significantly decreases the success rate. Moreover, using
10x larger reward values obtains minor performance difference while 10x smaller
rewards lead to worse results.

5 Conclusion

In this paper, we propose a novel CIRL model to address the challenging prob-
lem of vision-based autonomous driving in the high-fidelity car simulator. Our
CIRL incorporates controllable imitation learning with DDPG policy learning to
resolve the sample inefficiency issue that is well known in reinforcement learning
research. Moreover, specialized steer-angle rewards are also designed to enhance
the optimization of our policy networks based on controllable imitation learn-
ing. Our CIRL achieves the state-of-the-art driving performance on CARLA
benchmark and surpasses the previous modular pipeline, imitation learning and
reinforcement learning pipelines. It further demonstrates superior generalization
capabilities on a variety of different environments and conditions.

1 https://nervanasystems.github.io/coach/.

https://nervanasystems.github.io/coach/
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