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Abstract. Due to the expensive and time-consuming annotations (e.g.,
segmentation) for real-world images, recent works in computer vision
resort to synthetic data. However, the performance on the real image
often drops significantly because of the domain shift between the syn-
thetic data and the real images. In this setting, domain adaptation
brings an appealing option. The effective approaches of domain adap-
tation shape the representations that (1) are discriminative for the main
task and (2) have good generalization capability for domain shift. To
this end, we propose a novel loss function, i.e., Conservative Loss, which
penalizes the extreme good and bad cases while encouraging the mod-
erate examples. More specifically, it enables the network to learn fea-
tures that are discriminative by gradient descent and are invariant to the
change of domains via gradient ascend method. Extensive experiments
on synthetic to real segmentation adaptation show our proposed method
achieves state of the art results. Ablation studies give more insights into
properties of the Conservative Loss. Exploratory experiments and discus-
sion demonstrate that our Conservative Loss has good flexibility rather
than restricting an exact form.

1 Introduction

Deep convolutional neural networks have brought impressive advances to the
state of the art across a multitude of tasks in computer vision [1-3]. At the same
time, these significant leaps require a large amount of labeled data. For some
pixel-level tasks, e.g., semantic segmentation, obtaining a fine-grained label is
expensive and time-consuming. In [4], they report that it takes more than 90 min
for manually labeling a single image. Recent advances in Computer Graphics [5]
offer an alternative solution to address the data issue. In [5], they automatically
capture both images and fine-grained labels from GTAV game with the speed
faster than human in several orders of magnitude.
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However, models trained on the synthetic data fail to perform well on the real-
world images. The main reason is the shift between training and test domains [6].
In the presence of the domain shift, the model trained on the synthetic data often
tends to be biased towards the source domain (synthetic images), making them
incapable to generalize to the target domain (real images).

Traditional approaches for domain adaptation mainly focus on the image
classification task, which can be summarized as two lines: (1) minimizing the
distance between the source and target distributions [7-9]; (2) explicitly ensuring
that two distributions close to each other by adversarial learning [10,11]. Existing
works [12,13] used the similar idea, i.e., gradient reversal layer, to our proposed
loss in the domain adaptation for image classification, which was achieved by
multiplying a negative scalar during the backpropagation. However, since there
exist large category discrepancies between pixels in one image, the manner of
uniformly reversing the gradients for all pixels with same scalar is not suitable
for the structured prediction in the segmentation. Those drawbacks limit the
gradient reversal layer to generalize to the segmentation adaptation.

Semantic segmentation provides pixel-level label for input image, which car-
ries more dense and structured information than image classification, and thus
making its domain adaptation difficult. Hence, the domain adaptation tech-
niques in the classification task which focus on sparsely high-level features do not
translate well to the segmentation adaptation [14]. Few works have explored the
domain adaptation for segmentation [14-16]. Orthogonal to those works focusing
on manipulating the data statistics [15] or applying the curriculum learning [14]
to adaptation, we propose the novel Conservative Loss to realize it without intro-
ducing extra computational overhead.

We observe that with training step goes by, the performance on the target
domain first rises and then falls. We show the trends of mlIoU on the experi-
ment of synthetic (GTAV data [5]) to real (Cityscapes data [4]) segmentation
adaptation in Fig. 1. It can be observed that the performance on source domain
and target domain would not reach the best at the same time because of the
domain shift. Since there is no ground truth for target domain during training,
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epoch (b) Target domain: unlabeled data

Fig. 1. We show the tendency of mIoU on the source domain and target domain. The
curves indicate the trends and points denote the actual mloU. Besides, we display the
samples from source domain (GTAV) and target domain (Cityscapes)
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it is required to find the saddle point of target domain on the source domain.
It is note-worthy that the saddle point for target domain does bias to the best
score on the source domain but not reach, which delivers a balance between the
discriminativeness and domain-invariant. This phenomenon is consistent with
many domain adaptation theories [17-19]. Therefore, we focus on learning rep-
resentations with two following characteristics which are: (i) discriminative for
semantic segmentation on the source domain (corresponding to the ‘first rises’)
and (ii) invariant to the change of domains.

In this paper, this is achieved by training with the Conservative Loss in an
adversarial framework. The Conservative Loss is extremely simple. It holds two
attributes corresponding to the properties of desired representations. First, when
the probability of ground truth label on the source domain is low, the Conserva-
tive Loss enforces the network to learn more discriminative features via gradient
descent, which corresponds to the first property of discriminativeness. Second,
when the probability of ground truth label is much high, our loss penalizes this
case by giving a negative value, which prevents the model from biasing to source
domain training data further increasing the generalization capability. This corre-
sponds to the second property of domain-invariant. Our loss function can be seen
to seek the optimal parameters that deliver a saddle point of those two objectives.
Furthermore, the generative adversarial network (GAN) [20] is also introduced
to our model. Unlike some works [10,15] where they apply the feature-level dis-
criminator, we utilize the GAN to further supplement the domain alignment by
enforcing reconstructed images to be indistinguishable for the discriminator.

We conduct extensive experiments on synthetic to real segmentation adapta-
tion. The proposed method considerably improves over previous state-of-the-art
and achieves 9.3 points of mIoU gain on Synthia [21] to Cityscapes [4] experi-
ment without introducing any extra computational overhead during evaluation.
Ablation studies verify the effect of different components to our performance and
give more insights into properties of our Conservative Loss. More discussions and
visualization demonstrate the Conservative Loss has good flexibility rather than
limiting to a fixed instantiation.

2 Related Work

Semantic Segmentation. Semantic segmentation is a highly active field, which
is a task of assigning object label to each pixel of image. With the surge of deep
segmentation model [3], most recent top-performing methods are built on the
CNNs [1,22,23].

Huge amount of human effort is required to annotate the fined-grained seman-
tic segmentation ground truth. According to [5], it did take about 60 min to man-
ually segment each image. On the contrary, collecting data from video games such
as GTAV [5] is much faster and cheaper compared with the human annotator.
For example, [5] extracted 24,966 GTAV images with annotations within 49 hrs
by using a GPU parallel method. However, it is hard to apply the model trained
on the synthetic image to the real-world image because of their discrepant data
distributions.
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Domain Adaptation. Many machine learning methods rely on the assumption
that the training and test data are in the same distribution. However, it is often
the case that there exists some discrepancies [17,19], which leads to significant
performance drop on the test data. Domain adaptation aims to alleviate the
impact of the discrepancy between training and test data.

Domain Adaptation for Image Classification. Existing works on domain adap-
tation mostly focus on image classification problem. Conventional methods
include Maximum Mean Discrepancy (MMD) [7-9], geodesic flow kernel [§],
sub-space alignment [24], asymmetric metric learning [25], etc. Recently, domain
adaptation approaches aim to improve the adaptability of deep neural net-
works [7,13,26-31].

Domain Adaptation for Semantic Segmentation. Much less attention has been
given to domain adaptation for semantic segmentation task. The pioneering work
in this task is [15], which combines the global and local alignment methods with
a domain adversarial training. Another work [14] applies the curriculum learn-
ing to solve the domain adaptation from easy to hard. In [16], they propose
an unsupervised learning to adapt road scene segmenters across different cities.
In [32], they perform output space adaptation at feature level by an adversarial
module. Unlike them constraining the distribution [15] or the output of the net-
work [32], we propose the Conservative Loss to naturally seek the discriminative
and domain-invariant representations.

Adversarial Learning. Recently, Generative Adversarial Network (GAN) [20]
has raised great attention. Some works extend this framework for domain adap-
tation. CoGAN [11] achieves the domain adaptation by generating cross-domain
instances. Domain adversarial neural networks [12] consider adversarial training
for suppressing domain biases. In [10], they incorporate adversarial discrimi-
native setting to help mitigate performance degradation. In our work, we also
incorporate the GAN into our model, whose discriminator drives the source
image towards the target one for promoting domain alignment.

3 Methodology

As presented above, the key to realize unsupervised domain adaptation is the
discriminative and domain-invariant representations. The Conservative Loss is
proposed to penalize the extreme cases and its goal is to deliver a balance between
the discriminative and the domain-invariant representations. Furthermore, we
introduce the generative adversarial networks to align the source and target
embedding. Below, we first describe the framework of our model and its network
blocks. Then, the Conservative Loss and its background are presented in details.
Finally, the alternative optimization is provided.

3.1 Framework Overview

Our framework is illustrated in Fig.2. In our setting, there are two domains:
source domain (image and label) and target domain (image only). Our framework
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Fig. 2. The pipeline of our framework. E denotes the encoder, G denotes the generator,
and D is the discriminator. S is the pixel-wise classifier for semantic segmentation.
The red color represents the network blocks for the source domain, and the blue for
the target domain. We also display the Conservative Loss and its backpropagation.
/" represents the gradient ascend and \, denotes the gradient descend (Color figure
online)

aims to achieve good performance on the target domain by applying the model
trained on the source domain.

Our model consists of two major parts, i.e., GAN and Segmentation part.
The GAN aims to align the source and target embedding. More specifically,
the generator and discriminator are playing a minimax game [20], in which the
generator takes source embedding as input and generates the target-like image to
fool the discriminator, while the discriminator tries to classify the reconstructed
image [10,11]. The segmentation part can be seen as a regular segmentation
model. For each part, the detailed components are shown in the following:

e The encoder(E) performs the feature embedding given source or target image,
whose architecture is a fully convolutional network. The generator(G) recon-
structs the image based on the embedding. The discriminator(D) does classify
the reconstructed images as real or fake. S is the pixel-wise classifier.

e The GAN consists of encoder, generator and discriminator.

e The segmentation part consists of encoder and pixel-level classifier. Note that
the encoder does work in both GAN and Segmentation.

The detailed architecture of generators and discriminators is described in the
supplementary material because of the limited page space.

3.2 Background

In this section, we briefly introduce the theory of domain adaptation and present
its relation to our proposed loss.
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Many theoretical analyses of domain adaptation [17-19] have offered a upper
bound on the expected risks of target domain, which depends on its source
domain error (test-time) and the divergence between two domains. Formally,

er <es+ %d(S,T) +e, (1)

where S and 7 denote the source domain and target domain, respectively. € is
the expected risk. d is the domain divergence, which has different notions, for
example H-divergence [19]. C is a constant term.

It can be observed that two terms es and d(S,T) closely relate to the prop-
erties in the desired representations. The first term es indicates that the model
should produce discriminative representations for getting smaller expected risks
on the source domain, which corresponds to the first property of discrimina-
tiveness. The second term d(S,7) defines the discrepancy distance between two
distributions, in which the more similar the representations of both domains are,
the smaller it is. This correlates with the second property of domain-invariant.
More theoretical analyses are shown in the supplementary material.
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Fig. 3. The proposed Conservative Loss with different a. It can be observed that the
Conservative Loss keeps low values in the middle level and punishes the extremely good
or bad cases

3.3 Comnservative Loss

As explained above, the desired representations should be discriminative for
the main task on source domain and possess good generalization ability rather
than getting into the overfitting. We thus propose the Conservative Loss for the



Penalizing Top Performers: Conservative Loss 593

semantic segmentation on the source domain, which carries the two following
properties:

e When the probability of ground truth class is low, the loss function gives
a positive value, which enables the network to learn a more discriminative
feature by using gradient descent method.

e When the probability is high, the loss function delivers the negative value,
which makes the network avoid the bias towards the source domain via the
gradient ascend further learning the better generalization.

The Conservative Loss is formulated as:

CL(pt) = (14 log,(p+))? * log,(—log, (p)), (2)

where p; is the probability of our prediction towards ground truth. a is the base
of logarithmic function, which also indicates the intersection point with x-axis,
that is % The Conservative Loss is visualized for several values of a € [2, e, 3, 4]
in Fig. 3, in which e is Euler’s number and e ~ 2.718. Specifically, (1+ log, (p;))>
acts as a modulating factor, which delivers the large values when p; is much low
or high. log,(—log,(p:)) is designed as the switch of gradient direction, in which
when p; > % it is negative, otherwise it is positive.

In the following, we have raised two lemmas to analysis the appealing prop-
erty of our Conservative Loss.

Lemma 1. The objective function of domain adaptation system contains a sad-
dle point, which relates to the zero point of Conservative Loss.

As the pipeline in Fig. 2 shown, the full objective consists of two parts, includ-
ing the loss £, , for Segmentation and the loss Lcan for GAN. The sign of

seg,p, dynamically depends on p;. When p; is much high, the negative value
leads to the gradient ascend for escaping the bias to source domain. Otherwise,
the positive value makes the features discriminative. It can be seen that our
loss balances the two objectives (discriminativeness and domain-invariant) that
shape the representations during learning, and its zero point acts as the saddle

point. More details are shown in the supplementary material.

Lemma 2. Our loss encourages the moderate examples in large range, which
makes the overall optimization more stable.

From the loss form, it can be observed that the loss focuses on the hard
negatives and positives, and tends to give the low value for the probability in
the middle level. For instance, with a = e, the loss values of p; = 0.9 and
ptr = 0.1 are —1.8 and 1.4, respectively, while the loss values of p; = 0.5 and
pt = 0.6 are —0.03 and —0.06. In such setting, the loss extends the range in
which an example receives low loss, which brings a stable optimization even in
the case of the gradient descend and ascend frequently alternate due to the joint

. R
optimization of ’Cseg,pt and Lgan.
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In practice we use a A-balanced variant of the Conservative Loss:

CL(p:) = A(1 +log, (p¢))? * log, (— log, (pt))- (3)

As our experiments will show, different balanced factors A yield slightly differ-
ent performance. While in our main experiments we use the Conservative Loss
defined above, its exact form is not crucial. In Sect.4.5 we offer other forms
of our loss which also maintain the two properties, and experimental results
demonstrate that they can also be effective.

3.4 Model Objective

Our full objective is to alternatively update the three network blocks, i.e., dis-
criminators(D), generators(G) and encoder(E). Note that S is a pixel-level clas-
sifier which has no learnable parameters in our model. Hence, the objective
contains three terms: Lp, Lo and Lg. We then explain the various losses used
in our method and describe the alternative optimization scheme.

Adversarial Loss. Inheriting from GAN [20], we apply the adversarial losses
which are derived from the discriminator to all three blocks. We term them as
Lcan,D; Lgan,g and Lgan,e. For each adversarial loss it consists of two parts,
ie., L,y for the source image and LY, for the target image. Thus we can
obtain the adversarial loss by Loan = L&,y + L5 4. It is noted that for the
encoder, the adversarial loss does a cross-domain update (i.e., classifying the
image as real or fake from source domain to target domain and vice versa),
which enforces the network to generate similar embeddings for two domains.

Reconstructed Loss. The generator performs the image reconstruction. We
use L1 distance as L. because L1 encourages less blurring.

Segmentation Loss. As Sect. 3.3 introduced, the Conservative Loss is applied
to the semantic segmentation in the domain adaptation setting.

During training, we iteratively optimize all three learnable parts (Encoder,
Generator and Discriminator). During inference, only the encoder and segmenta-
tion classifier are used to produce the results on target domain. The alternating
update scheme is described as following;:

(1) Update discriminators: the overall loss is Lp = Lgan,p-

(2) Update generators: the loss involves the adversarial loss and reconstructed
loss. The overall loss is Lo = Lgan,g + Lree-

(3) Update encoder: since the encoder does work in both two components, i.e.,
GAN and Segmentation, the overall loss is a combination of several losses,
including adversarial loss and segmentation loss on source domain; L =

LeanE + Lieqy-
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4 Experiments

4.1 Dataset

Following previous works [14,15], we use GTAV [5] or Synthia [21] dataset as
the source domain with pixel-level labels, and we use Cityscapes [4] dataset as
the target domain. We briefly introduce the datasets as following:

GTAYV has 24,966 urban scene images rendered by the gaming engine GTAV.
The semantic categories are compatible with the Cityscapes dataset. We take
the whole GTAV dataset with labels as the source domain data.

Synthia is a large dataset which contains different video sequences rendered
from a virtual city. We take SYNTHIA-RAND-CITYSCAPES [21] as the source
domain data which provides 9,400 images from all the sequences with Cityscape-
compatible annotations. Inheriting from existing methods [14], we take 16 com-
mon object categories for the evaluation.

Cityscapes is a real-world image dataset focused on the urban scene, which
consists of 2,975 images in training set and 500 images for validation. The res-
olution of images is 2048 x 1024 and 19 semantic categories are provided with
pixel-level labels. We take the unlabeled training set as the target domain
data. The adaptation results are reported on the validation set.

4.2 Training Setup

In our experiments, we use the FCN8s [3] as the semantic segmentation model.
The backbone is VGG16 [2] which is pretrained on the ImageNet dataset [33].
We apply the PatchGAN [34] as the discriminator, in which the discriminator
tries to classify whether overlapping image patches are real or fake. Similar to
EBGAN [35], we add the Gaussian noise to the generator. During training, Adam
[36] optimization is applied with £, = 0.9 and G2 = 0.999. For the Conservative
Loss, we apply a = e and the balanced weight A = 5. The ablation study will
give more detailed explanations. Due to the GPU memory limitation, the images
used in our experiments are resized and cropped to 1024 x 512 and the batch size
is 1. More experimental settings will be available in the supplementary material.
Warm Start. In our experiments, two different training strategies are employed,
which are cold start and warm start. The cold start is that the whole model is
trained by using the Conservative Loss from scratch. The warm start indicates
the model is trained by first using cross entropy loss and then using our Con-
servative Loss. Many works [37-39] demonstrate that the warm start strategy
to gradient update provides a more stable training compared with cold start.
As the ablation study will show, the warm start performs better than the cold
start. In the next domain adaptation experiments, the model is trained using
warm start strategy for fairness.

4.3 Results

In this section, we provide a quantitative evaluation by performing two adapta-
tion experiments, i.e., from GTAV to Cityscapes and from Synthia to Cityscapes.
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We compare our method with several existing models, including FCNWild [15],
CDA [14] and [32]. FCNWild [15] applies the dilated network [40] as the back-
bone and the base model of [14] is the FCN8s-VGG19 [3]. Tsai et al. [32] adopts
adversarial learning in the output space to perform feature adaptation. The
detailed results of each category are available in the supplementary material.

Table 1. Results of domain adaptation from GTAV — Cityscapes. The bold values
denote the best scores in the column.

Methods Base mloU | mIoU gain
NoAdapt [15] |DilatedNet [40] | 21.1
FCNWild [15] | DilatedNet [40] | 27.1 | 6.0

NoAdapt [14] | FCNSs [3] 22.3

CDA [14] FCNSs [3] 28.9 6.6
Tsai et al. [32] | FCNS8s (3] 350 |—
Ours-NoAdapt | FCN8s [3] 30.0

Ours FCNSs [3] 38.1 8.1

Table 2. Results of domain adaptation from Synthia — Cityscapes.

Methods Base mloU | mIoU gain | mIoU-2
NoAdapt [15] | DilatedNet [40] | 17.4
FCNWild [15] | DilatedNet [40] |20.2 |2.8

NoAdapt [14] | FCNSs [3] 22.0

CDA [14] FCNSs [3] 200 7.0

Tsai et al. [32] | FCN8s [3] — — 37.6
Ours-NoAdapt | FCNS8s [3] 24.9

Ours FCN8s [3] 34.2 9.3 40.3

GTAV — Cityscapes. For a fairness, the result is evaluated over the 19 com-
mon classes. From Table 1 shown, our proposed method achieves the best per-
formance (mIoU = 38.1), which has 9.2 points higher than [14] and 11 points
higher than [15]. Due to the different experimental settings and backbone net-
work (baseline method [14] also mentions the difference), our own baseline per-
formance is higher than other methods. However, the highlight is the perfor-
mance gain. We can find that the proposed method yields an improvement of
8.1 points higher than 6.0 in [15] and 6.6 in [14].

Synthia — Cityscapes. We report the results of mloU in Table 2. It is noted
that [32] reported the results on Synthia [21] to Cityscapes adaptation with only
13 object categories (excluding wall, fense and pole). We also report this results
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as the mloU-2. Our proposed model achieves a mloU of 34.2, and more impor-
tantly our model obtains a 9.3 points of performance gain which is higher than
the performance gain of [14] (7.0) and [15] (2.8). Compared with [32] on 13 cate-
gories, our method also achieves the better performance. In particular, our model
does not use any additional scene parsing data except the source domain and tar-
get domain data, while the [14] uses another dataset, i.e., PASCAL CONTEXT
dataset, to obtain the superpixel label.

Table 3. Results of ablation study for different components in the proposed model.
CL means the Conservative Loss. CE means the cross entropy loss

Model | FCN8s+-CE | FCN8s+GAN+CE | FCN8s+GAN+CL
mloU |30.0 34.4 38.1

Table 4. Results of ablation experiments for a and A in the Conservative Loss

a (with fixed A = 5) |2 e 3 4
mloU 37.5138.1|37.3|36.8
A (with fixed a =¢€) |1 5 10 |20
mloU 37.2138.1|37.9|37.8

4.4 Ablation Study

In this section, we perform the thorough ablation experiments, including exper-
iments with different components, different factors in the Conservative Loss and
different training strategies. Those experiments demonstrate different contribu-
tions of components and provide more insights of our method.

Effect of Different Components. In this experiment, we show how each
component in our model affects the final performance. We consider several cases
as following: (1): the baseline model, which contains only the base segmentation
model (FCN8s in our model) and is trained using source data only. (2) the FCN8s
and GAN component, which consists of base model and GAN and is trained using
both source data and target data with the cross entropy loss. (3) the full model,
which involves three parts, i.e., base model, GAN and Conservative Loss. We
perform the ablation experiments on GTAV — Cityscapes setting.

The results of ablation study are shown in Table 3. It can be observed that
each component plays an important role in performance improvement. More
specifically, our full model achieves the best results and obtains 8.1 points per-
formance gain. The GAN part also gets 4.4 performance gain compared with
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FCNB8s+CE. Note that the GAN component could introduce the unlabeled tar-
get domain data into the whole model, so the Conservative Loss is applied based
on the GAN and there is no variant of FCN8s+CL.

Effect of ¢ and )\ in the Conservative Loss. In this part, we design the
ablation experiments for a and A in the Conservative Loss. As shown in Eq. 2,
a is the base of logarithm and denotes the intersection point with x-axis. A is a
balanced factor. We show the impacts of different a and X in Table4.

Since there are two variables, we perform the ablation study for one variable
with another fixed. For the ablation of ¢ (with fixed A = 5), it can be observed
that a = e achieves the best result. Furthermore, we can find that all different
a obtain much better performance compared with the cross entropy loss (34.4
in Table 3), which demonstrates that our loss performs consistently better and
has high robustness. For the ablation of A (with fixed a = e), different A show
slightly different results and A = 5 obtains the best performance.

Warm Start and Cold Start. As described in Sect. 4.2, we use a warm start
strategy to train the proposed model. In this experiment, we compare the two
training strategies. For the cold start strategy, we clamp the Conservative Loss
with [min = —10, max = 10], while this constraint is not exist in the warm start.
We use the A-balanced Conservative Loss with A =5 and a = e.

Table 5. Results of two training strategies, i.e., cold start and warm start. CL. means
the Conservative Loss

Loss function | [14] | CL with cold start | CL with warm start
mloU 28.9135.2 38.1

In Tableb, it can be observed that the Conservative Loss with cold start
outperforms [14] with a large margin (6.3 points). The warm start performs
better than the cold start because it enables the network to train stably.

4.5 Discussion

In this section, we design several experiments to verify the capability of the pro-
posed method. We show the effect of adaptation on distribution to measure how
domain gap is reduced in the feature level. We compared with several classifica-
tion losses and homogeneous losses to show its superiority and flexibility.

Visualizations. To verify the effect of adaptation on the distribution, we use
t-SNE [41] to visualize feature distributions in Fig.4. 100 images are randomly
selected from each domain and for each image the features from last convo-
lutional layer (the channel size equals to class categories.) are extracted. We
compare the distributions of our model with FCN8s (No adaptation). Four cate-
gories are sampled to display for a clearly visual effect. We observe that with the
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& GTAV (Source) % Cityscapes (Target)

. FCN8s Ours

Fig. 4. We show the effect of adaptation on the distribution of the extracted features.
& denotes the point from source domain and % is from target domain

loss
o

Loss mloU

Cross Entropy  34.4
Focal Loss 35.8
Conservative Loss 38.1

0.1 0.2 0.3 0.4 0.5 0.6

probability of ground truth class

Fig. 5. The left figure shows three classification losses, including Cross Entropy loss
(CE) in blue, Focal Loss (FL) in green and Conservative Loss (CL) in red. The right
table shows the results of all three losses on GTAV — Cityscapes adaptation experiment
(Color figure online)

adaptation applying, the distance between two domains with same class becomes
closer and the discrepancy between different classes also gets clear.

Comparison with Other Classification Losses. In this experiment, we
compare the Conservative Loss to Cross Entropy Loss and Focal Loss [42].
The Cross Entropy Loss is given by CE(p;) = —log(p:), which is plotted in
Fig.5 with green line. To ensure fairness, we utilize the a-balanced Focal Loss
FL(pt) = —a;(1 — p;)? log(p;) and warm start in the experiment of Focal Loss,
and apply a; = 5 by using a cross-validation.

From the right table in Fig. 5, it can be observed that the Focal Loss obtains
a better performance compared with the cross entropy loss because it focuses
learning on hard negative examples. However, in the domain adaptation, the
domain-invariant representations are crucial to achieve good adaptation per-
formance. The Conservative Loss does enable the network to be insensitive to
domain changes by punishing the extreme cases. It can be seen that the Con-
servative Loss yields higher result (38.1), and obtains more performance gain
(8.7) than the Focal Loss (1.4) based on the cross entropy loss.
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Effect of Homogeneous Losses. As shown in Sect. 3.3, the Conservative Loss
has two properties: (1) when the p; is low, the Conservative Loss enforces the net-
work to learn discriminative features. (2) when the p; is high, the loss enables the
network to learn domain invariant features by gradient ascend method, which
aims to penalize the extremely good cases. There are several losses that also
maintain these two properties, for example the cubic equation. In this experi-
ment, we propose several homogeneous losses to verify the effect of these two
properties, which are given by:

Loss; = — A1 (ps — 0.5)%, (4)
1
Losse = —Aa(p: — 5)3, (5)
—Qax (pt - %)37 pt < %7
Losssz = (6)

B (pe— )% e 2 5

Equations4 and 5 demonstrate the A-balanced cubic equations with different
intersection points, i.e., 0.5 and %, respectively. Equation 6 is a piecewise func-
tion, which is more similar to the Conservative Loss due to these two balanced
factors.

Table 6. Results of homogeneous losses

Loss function | CE |FL | Loss; | Losss | Losss | CL
mloU 34.4/35.8/36.5 |36.7 |37.8 |38.1

We apply the adaptation experiment on GTAV — Cityscapes to verify their
capabilities. The results are reported in Table 6. In order to ensure fairness, all
experiments are performed based on the warm start and those hyper-parameters
(A1, A2, a, B) are chosen by using the cross-validation. We can observe that all
homogeneous losses perform better than the cross entropy loss (34.4) and Focal
Loss (35.8). Therefore, we can find that the exact form of the Conservative Loss
is not crucial, and several homogeneous losses also yield comparable results and
perform better than cross entropy loss and Focal Loss. Generally, we expect any
loss function with similar properties as Conservative Loss to be equally effective.

5 Conclusion

In this paper, we have proposed a novel loss, the Conservative Loss, for the
semantic segmentation adaptation. To enforce the network to learn the discrim-
inative and domain-invariant representations, our loss combines the gradient
descend and gradient ascend method together, in which it penalizes the extreme
cases and encourages moderate cases. We further introduce the adversarial net-
works to our full model for supplementing the domain alignment. Extensive
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experiments demonstrate our model achieves state-of-the-art. Exploratory exper-
iments show that the Conservative Loss has high flexibility without limiting to
exact form.
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