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Abstract. We present an approach named JSFusion (Joint Sequence
Fusion) that can measure semantic similarity between any pairs of mul-
timodal sequence data (e.g. a video clip and a language sentence). Our
multimodal matching network consists of two key components. First, the
Joint Semantic Tensor composes a dense pairwise representation of two
sequence data into a 3D tensor. Then, the Convolutional Hierarchical
Decoder computes their similarity score by discovering hidden hierarchi-
cal matches between the two sequence modalities. Both modules leverage
hierarchical attention mechanisms that learn to promote well-matched
representation patterns while prune out misaligned ones in a bottom-up
manner. Although the JSFusion is a universal model to be applicable to
any multimodal sequence data, this work focuses on video-language tasks
including multimodal retrieval and video QA. We evaluate the JSFusion
model in three retrieval and VQA tasks in LSMDC, for which our model
achieves the best performance reported so far. We also perform multiple-
choice and movie retrieval tasks for the MSR-VTT dataset, on which our
approach outperforms many state-of-the-art methods.

Keywords: Multimodal retrieval · Video question and answering

1 Introduction

Recently, various video-language tasks have drawn a lot of interests in computer
vision research [1–3], including video captioning [4–9], video question answer-
ing (QA) [10,11], and video retrieval for a natural language query [8,12,13]. To
solve such challenging tasks, it is important to learn a hidden join representation
between word and frame sequences, for correctly measuring their semantic simi-
larity. Video classification [14–18] can be a candidate solution, but tagging only
a few labels to a video may be insufficient to fully relate multiple latent events in
the video to a language description. Thanks to recent advance of deep represen-
tation learning, many methods for multimodal semantic embedding (e.g. [19–21])
have been proposed. However, most of existing methods embed each of visual
and language information into a single vector, which is often insufficient espe-
cially for a video and a natural sentence. With single vectors for the two sequence
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modalities, it is hard to directly compare multiple relations between subsets of
sequence data (i.e.matchings between subevents in a video and short phrases
in a sentence), for which hierarchical matching is more adequate. There have
been some attempts to learn representation of hierarchical structure of natural
sentences and visual scenes (e.g. [22,23] using recursive neural networks), but
they require groundtruth parse trees or segmentation labels (Fig. 1).

Fig. 1. The intuition of the Joint Sequence Fusion (JSFusion) model. Given a pair of
a video clip and a language query, Joint Semantic Tensor (in purple) encodes a pair-
wise joint embedding between the two sequence data, and Convolutional Hierarchical
Decoder (in blue) discovers hierarchical matching relations from JST. Our model is
easily adaptable to many video QA and retrieval tasks. (Color figure online)

In this paper, we propose an approach that can measure semantic similarity
between any pairs of multimodal sequence data, by learning bottom-up recur-
sive matches via attention mechanisms. We apply our method to tackle several
video question answering and retrieval tasks. Our approach, named as Joint
Sequence Fusion (JSFusion) model, consists of two key components. First, the
Joint Semantic Tensor (JST) performs dense Hadamard products between frames
and words and encodes all pairwise embeddings between the two sequence data
into a 3D tensor. JST further takes advantage of learned attentions to refine the
3D matching tensor. Second, the Convolutional Hierarchical Decoder (CHD)
discovers local alignments on the tensor, by using a series of attention-based
decoding modules, consisting of convolutional layers and gates. These two atten-
tion mechanisms promote well-matched representation patterns and prune out
misaligned ones in a bottom-up manner. Finally, CHD obtains hierarchical com-
posible representations of the two modalities, and computes a semantic matching
score of the sequence pair.

We evaluate the performance of our JSFusion model on multiple video ques-
tion answering and retrieval tasks on LSMDC [1] and MSR-VTT [2] datasets.
First, we participate in three challenges of LSMDC: multiple-choice test, movie
retrieval, and fill-in-the-blank, which require the model to correctly measure a
semantic matching score between a descriptive sentence and a video clip, or
to predict the most suitable word for a blank in a sentence for a query video.
Our JSFusion model achieves the best accuracies reported so far with signifi-
cant margins for the lsmdc tasks. Second, we newly create multiple-choice and
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movie retrieval annotations for the MSR-VTT dataset, on which our approach
also outperforms many state-of-the-art methods in diverse video topics (e.g. TV
shows, web videos, and cartoons).

We summarize the contributions of this work as follows.

1. We propose the Joint Sequence Fusion (JSFusion) model, consisting of two
key components: JST and CHD. To the best of our knowledge, it is a first
attempt to leverage recursively learnable attention modules for measuring
semantic matching scores between multimodal sequence data. Specifically,
we propose two different attention models, including soft attention in JST
and Conv-layers and Conv-gates in CHD.

2. To validate the applicability of our JSFusion model, especially on video ques-
tion answering and retrieval, we participate in three tasks of LSMDC [1], and
achieve the best performance reported so far. We newly create video retrieval
and QA benchmarks based on MSR-VTT [2] dataset, on which our JSFu-
sion outperforms many state-of-the-art VQA models. Our source code and
benchmark annotations are publicly available in our project page.

2 Related Work

Our work can be uniquely positioned in the context of two recent research direc-
tions: video retrieval and video question answering.

Video Retrieval with Natural Language Sentences. Visual information
retrieval with natural language queries has long been tackled via joint visual-
language embedding models [12,19,24–28]. In the video domain, it is more dif-
ficult to learn latent relations between a sequence of frames and a sequence of
descriptive words, given that a video is not simply a multiple of images. Recently,
there has been much progress in this line of research. Several deep video-language
embedding methods [8,12,13] has been developed by extending image-language
embeddings [20,21]. Other recent successful methods benefit from incorporat-
ing concept words as semantic priors [9,29], or relying on strong representation
of videos like RNN-FV [30]. Another dominant approach may be leveraging
RNNs or their variants like LSTM to encode the whole multimodal sequences
(e.g. [9,12,29,30]).

Compared to these existing methods, our model first finds dense pairwise
embeddings between the two sequences, and then composes higher-level similar-
ity matches from fine-grained ones in a bottom-up manner, leveraging hierarchi-
cal attention mechanisms. This idea improves our model’s robustness especially
for local subset matching (e.g. at the activity-phrase level), which places our
work in a unique position with respect to previous works.

Video Question Answering. VQA is a relatively new problem at the inter-
section of computer vision and natural language research [31–33]. Video-based
VQA is often recognized as a more difficult challenge than image-based one,
because video VQA models must learn spatio-temporal reasoning to answer prob-
lems, which requires large-scale annotated data. Fortunately, large-scale video
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QA datasets have been recently emerged from the community using crowdsourc-
ing on various sources of data (e.g.movies for MovieQA [10] and animated GIFs
for TGIF-QA [11]). Rohrbach et al. [1] extend the LSMDC movie description
dataset to the VQA domain, introducing several new tasks such as multiple-
choice [12] and fill-in-the-blank [34].

The multiple-choice problem is, given a video query and five descriptive sen-
tences, to choose a single best answer in the candidates. To tackle this problem,
ranking losses on deep representation [9,11,12] or nearest neighbor search on the
joint space [30] are exploited. Torabi et al. [12] use the temporal attention on the
joint representation between the query videos and answer choice sentences. Yu
et al. [9] use LSTMs to sequentially feed the query and the answer embedding
conditioned on detected concept words. The fill-in-the-blank task is, given a video
and a sentence with a single blank, to select a suitable word for the blank. To
encode the sentential query sentence on the video context, MergingLSTMs [35]
and LR/RL LSTMs [36] are proposed. Yu et al. [9,29] attempt to detect seman-
tic concept words from videos and integrate them with Bidirectional LSTM that
encodes the language query. However, most previous approaches tend to focus
too much on the sentence information and easily ignore visual cues. On the
other hand, our model focuses on learning multi-level semantic similarity between
videos and sentences, and consequently achieves the best results reported so far
in these two QA tasks, as will be presented in section 4.

3 The Joint Sequence Fusion Model

We first explain the preprocessing steps for describing videos and sentences in
Sect. 3.1, and then discuss the two key components of our JSFusion model in
Sects. 3.2–3.4, respectively. We present the training procedure of our model in
Sect. 3.5, and its applications to three video-language tasks in Sect. 3.6.

3.1 Preprocessing

Sentence Representation. We encode each sentence in a word level. We first
define a vocabulary dictionary V by collecting the words that occur more than
three times in the dataset. (e.g. the dictionary size is |V| = 16, 824 for LSMDC).
We ignore the words that are not in the dictionary. Next we use the pretrained
glove.42B.300d [37] to obtain the word embedding matrix E ∈ Rd×|V| where
d = 300 is the word embedding dimension. We denote the description of each
sentence by {wm}Mm=1 where M is the number of words in the sentence. We limit
the maximum number of words per sentence to be Mmax = 40. If a sentence is
too long, we discard the remaining excess words, because only 0.07% of training
sentences excess this limit, and no performance gain is observed for larger Mmax.
Throughout this paper, we use m for denoting the word index.

Video Representation. We sample a video at five fps, to reduce the frame
redundancy while minimizing information loss. We employ CNNs to encode both
visual and audial information in videos. For visual description, we extract the
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Fig. 2. The architecture of Joint Sequence Fusion (JSFusion) model. Blue paths
indicate the information flows for multimodal similarity matching tasks, while
green paths for the fill-in-the-blank task. (a) JST composes pairwise joint represen-
tation of language and video sequences into a 3D tensor, using a soft-attention mech-
anism. (b) CHD learns hierarchical relation patterns between the sequences, using a
series of convolutional decoding module which shares parameters for each stage. � is
Hadamard product, ⊕ is addition, and ⊗ is multiplication between representation and
attentions described in Eqs. (2)–(4). We omit some fully-connected layers for visualiza-
tion purpose. (Color figure online)

feature map of each frame from the pool5 layer (R2,048) of ResNet-152 [38]
pretrained on ImageNet. For audial information, we extract the feature map
using the VGGish [39] followed by PCA for dimensionality reduction (R128).
We then concatenate both features as the video descriptor {vn}Nn=1 ∈ R

2,156×N

where N is the number of frames in the video. We limit the maximum number
of frames to be Nmax = 40. If a video is too long, we select Nmax equidistant
frames. We observe no performance gain for larger Nmax. We use n for denoting
the video frame index.

3.2 The Joint Semantic Tensor

The Joint Semantic Tensor (JST) first composes pairwise representations
between two multimodal sequences into a 3D tensor. Next, JST applies a self-
gating mechanism to the 3D tensor to refine it as an attention map that discov-
ers fine-grained matching between all pairwise embeddings of the two sequences
while pruning out unmatched joint representations

Sequence Encoders. Give a pair of multimodal sequences, we first repre-
sent them using encoders. We use bidirectional LSTM networks (BLSTM)
encoder [40,41] for word sequence and CNN encoder for video frames. It is often
advantageous to consider both future and past contexts to represent each ele-
ment in a sequence, which motivates the use of BLSTM encoders. {hf

t }Tt=1 and
{hb

t}Tt=1 are the forward and backward hidden states of the BLSTM, respectively:

hf
t = LSTM(xt,h

f
t−1), hb

t = LSTM(xt,hb
t+1), (1)
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where we set hb
t ,h

f
t ∈ R

512, with initializing them as zeros: hb
T+1 = hf

0 = 0.
Finally, we obtain the representation of each modality at each step by con-
catenating the forward/backward hidden states and the input features: xw,t =
[hf

w,t,h
b
w,t,wt] for words. For visual domain, we use 1-d CNN encoder represen-

tation for vt, hcnn ∈ R
2,048 instead, xv,t = [hcnn

v,t ,vt].

Table 1. The detailed setting of layers in the JSFusion model. No padding is used for
each layer. Dk means a fully-connected dense layer, and Convk and ConGk indicate
convolutional and convolutional-gating layer, respectively.

Attention-Based Joint Embedding. We then feed the output of the sequence
encoder into fully-connected (dense) layer [D1] for each modality separately,
which results in D1v(xv),D1w(xw) ∈ R

dD1 , where dD1 is a hidden dimension of
[D1]. We summarize the details of all the layers in our JSFusion model in Table 1.
Throughout the paper, we denote fully-connected layers as Dk and convolutional
layers as Convk.

Next, we compute attention weights α and representation γ, from which we
obtain the JST as a joint embedding between every pair of sequential features:

jnm = αnmγnm, where αnm = σ(wTD2(tnm)), γnm = D4(D3(tnm)), (2)
tnm = D1v(xv,n) � D1w(xw,m). (3)

� is a hadamard product, σ is a sigmoid function, and w ∈ R
dD2 is a learn-

able parameter. Since the output of the sequence encoder represents each frame
conditioned on the neighboring video (or each word conditioned on the whole
sentence), the attention α is expected to figure out which pairs should be more
weighted for the joint embedding among all possible pairs. For example of Fig. 2,
expectedly, α3,6(v3, w6) > α8,6(v8, w6), if w6 is truck, and the third video frame
contains the truck while the eighth frame does not.

From Eqs. (2)–(3), we obtain JST in a form of 3D tensor: J = [jn,m]n=1:Nmax

m=1:Mmax

and J ∈ R
Nmax×Mmax×dD4 .

3.3 The Convolutional Hierarchical Decoder

The Convolutional Hierarchical Decoder (CHD) computes a compatibility score
for a pair of multimodal sequences by exploiting the compositionality in the joint



A Joint Sequence Fusion Model for Video VQA and Retrieval 493

Fig. 3. Attention examples for (a) Joint Semantic Tensor (JST) and (b) Convolutional
Hierarchical Decoder (CHD). Higher values are shown in darker. (a) JST assigns high
weights on positively aligned joint semantics in the two sequence data. Attentions
are highlighted darker where words coincide well with frames. (b) Each layer in CHD
assigns high weights to where structure patterns are well matched between the two
sequence data. For a wrong pair of sequences, a series of Conv-gating (ConvG2) prune
out misaligned patterns with low weights.

vector space of JST. We pass the JST tensor through a series of a convolutional
(Conv) layer and a Conv-gating block, whose learnable kernels progressively find
matched embeddings from those of each previous layer. That is, starting from
the JST tensor, the CHD recursively activates the weights of positively aligned
pairs than negatively aligned ones.

Specifically, we apply three sets of Conv layer and Conv-gating to the JST:

J(k) = Convk(J(k−1)) · σ(ConvGk(J(k−1))) (4)

for k = 1, 2, 3. We initialize J(0) = J from the JST, and [Convk] is the k-th
Conv layer for joint representation, [ConvGk] is the k-th Conv-gating layer for
matching filters, whose details are summarized in Table 1.

We apply mean pooling to J(3) to obtain a single video-sentence vector rep-
resentation Jout (e.g.R17×17×256 → R

1×1×256). Finally, we compute similarity
matching score by feeding Jout into four dense layers [D5,D6,D7,D8]:

score =WD8(D7(D6(D5(Jout)))) + bD8

where Dk(x) = tanh(WDkx + bDk), k = 5, 6, 7. (5)

We use the tanh activation for all dense layers except [D8].

3.4 An Illustrative Example of How the JSFusion Model Works

Figure 3 illustrates with actual examples how the attentions of JST and CHD
work.

Figure 3(a) visualizes the learned attention weights αnm in Eq. (2) of all pairs
between frames in a video and words in a positive and a negative sentence. The
attentions are highlighted with higher values (shown in darker) when the words
coincide better with the content in the frames, dominantly in a positive pair.
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Figure 3(b) shows the output J(k) of each Conv layer and Conv-gating block
in Eq. (4) for the same example. During training, each Conv layer learns to
compose joint embedding from the ones in the lower layer, while the Conv-
gating layer learns frequent matching patterns in the training pairs of videos
and sentences. At test time, when it comes to compute a similarity score, the
Conv-gating layers prune out misaligned patterns; if the pair is negative where
there is no common aligned structure in the two sequences, as shown in the right
of Fig. 3(b), most elements of J(k) have very low values. As a result, the CHD
can selectively filter lower-layer information that needs to be propagated to the
final-layer representation, and the final layer of CHD assigns a high score only
if the jointly aligned patterns are significant between the sequence data.

The motivation behind the JSFusion model is that long sequence data like
videos and sentences are too complicated to compare them in a single vec-
tor space, although most previous approaches depend on single LSTM embed-
ding such as neural visual semantic embedding [19] and previous LSMDC win-
ners [9,30]. Instead, in our approach, JST first composes a dense pairwise 3D
tensor representation between multimodal sequence data, from which CHD then
exploits convolutional gated layers to learn multi-stage similarity matching.
Therefore, our JST model can be more robust for detecting partial matching
between short phrases and subhots.

3.5 Training

We train our JSFusion model using the ranking loss. Each training batch consists
of L video-sentence pairs, including a single positive pair and L − 1 randomly
sampled negative pairs. We use batch shuffling in every training epoch. Finally,
we train the model using a max-margin structured loss objective as follows:

L =
∑

k

L∑

l=1

max(0, Sk,l − Sk,l∗ + Δ) + λ||θ||2 (6)

where l∗ is the answer pair among L candidates, λ is a hyperparameter and θ
denotes weight parameters. This objective encourages a positive video-sentence
pair to have a higher score than a misaligned negative pair by a margin Δ. We
use λ = 0.0005,Δ = 10 in our experiments. We train all of our models using
the Adam optimizer [42], with an initial learning rate in the range of 10−4. For
regularization, we apply batch normalization [43] to every dense layer.

3.6 Implementation of Video-Language Models

We below discuss how the JSFusion model is implemented for three video-
language tasks, video retrieval, multiple-choice test, and fill-in-the-blank. We
apply the same JSFusion model to both video retrieval and multiple-choice test
with slightly different hyperparameter settings. For the fill-in-the-blank, we make
a minor modification in our model to predict a word for a blank in the middle
of the sentence.
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For Retrieval. The retrieval model takes a query sentence and ranks 1,000 test
videos according to the relevance between the query and videos. For training, we
set L = 10 as the size of each training batch. At test, for each query sentence k,
we compute scores {Sk,l}l for all videos l in the test set. From the score matrix,
we can rank the videos for the query. As will be presented in Sects. 4.3 and 4.4,
our method successfully finds hierarchical matching patterns between complex
natural language query and video frames with sounds.

For Multiple-Choice Test. The multiple-choice model takes a video and five
choice sentences among which only one is the correct answer. Since our model
can calculate the compatibility score between the query video and each sentence
choice, we use the same model as the retrieval task. We simply select the choice
with the highest score as an answer. For training, we set L = 10 so that each
training batch contains 10 pairs of videos and sentences, which include only a
single correct sentence, four wrong choices, and 5 randomly selected sentences
from other training data.

For Fill-in-the-Blank. The fill-in-the-blank model takes a video and a sentence
with one blank, and predict a correct word for the blank. Since this task requires
more difficult inference (i.e. selecting a word out of vocabulary V, instead of
computing a similarity score), we make two modifications as follows. First, we
use deeper dimensions for layers: dD1 = dD5 = dD6 = dD7 = 1, 024, dD2 =
dD3 = dD4 = 2, 048, dD8 = |V|, dConv1 1 = dConv2 1 = dConv3 1 = 1, 024,
instead of the numbers in Table 1.

Second, we add a skip-connection part to our model, which is illustrated as
the green paths of Fig. 2. Letting b as the blank position in the query sentence,
we use the BLSTM output from the blank word token BLANK as a sentential
context of the blank position: tb = D1w(wb). We make a summation between
the output of [D7] ∈ R

1,024 and the sentential context tb ∈ R
1,024, and then feed

it into [D8] to predict a word.
For training, we set the batch size as L = 32. We use the different objective,

the cross-entropy loss, because this task is classification rather than ranking:

L = − log p(y) + λ||θ||2 (7)

where θ denotes weight parameters and λ = 0.0005. We use dropout with a rate
of 0.2.

4 Experiments

We report the experimental results of JSFusion models for the three tasks of
LSMDC [1] and two tasks of MSR-VTT [2].

4.1 LSMDC Dataset and Tasks

The LSMDC 2017 consists of four video-language tasks for movie understanding
and captioning, among which we focus on the three tasks in our experiments:
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Table 2. Performance comparison for the movie retrieval task using Recall@k (R@k,
higher is better) and Median Rank (MedR, lower is better). We report the results on
the two datasets of LSMDC [1] (L) and MSR-VTT [2] (M).

Tasks Movie retrieval

Metrics R@1 R@5 R@10 MedR

Dataset L M L M L M L M

LSTM-fusion 3.0 3.0 8.9 9.6 15.9 17.1 95 67

SA-G+SA-FC7 [12] 3.0 3.1 8.8 9.0 13.2 13.4 114 91

LSTM+SA-FC7 [12] 3.3 3.2 10.2 11.1 15.6 15.7 88 69

C+LSTM+SA-FC7 [12] 4.3 4.2 12.6 12.9 18.9 19.9 98 55

VSE-LSTM [19] 3.1 3.8 10.4 12.7 16.5 17.1 79 66

EITanque [30] 4.7 4.7 15.9 16.6 23.4 24.1 64 41

SNUVL [29] 3.6 3.5 14.7 15.9 23.9 23.8 50 44

CT-SAN [9] 4.5 4.4 14.1 16.6 20.9 22.3 67 35

Miech et al. [44] 7.3 – 19.2 – 27.1 – 52 –

JSTfc 4.7 5.1 17.2 21.1 25.2 29.1 52 30

JSTlstm 7.6 9.2 19.2 28.2 27.1 41.1 36 18

JSTmax 6.7 8.8 18.0 29.8 27.2 41.0 39 17

JSTmean 7.5 9.0 20.9 27.2 28.2 40.9 36 18

JSFusion-noattention 6.4 8.7 18.4 27.4 28.4 39.5 41 19

JSFusion-noaudio 9.0 9.2 20.9 28.3 32.1 41.3 39 17

JSFusion 9.1 10.2 21.2 31.2 34.1 43.2 36 13

movie retrieval, multiple-choice test, and fill-in-the-blank. The challenge provides
a subset of the LSMDC dataset, which contains a parallel corpus of 118,114
sentences and 118,081 video clips of about 4–5 s long sampled from 202 movies.
We strictly follow the evaluation protocols of the challenge. We defer more details
of the dataset and challenge rules to [1] and the homepage1.

Multiple-Choice Test. Given a video query and five candidate captions, the
goal is to find the correct one for the query out of five possible choices. The
correct answer is the groundtruth (GT) caption and four other distractors are
randomly chosen from other captions that have different activity-phrase labels
from the correct answer. The evaluation metric is the percentage of correctly
answered test questions out of 10,053 public-test data.

Movie Retrieval. The test set consists of 1,000 video/activity phrase pairs sam-
pled from the LSMDC17 public-test data. Then, the objective is, given a short
query activity-phrase (e.g. answering phone), to find its corresponding video
out of 1,000 test videos. The evaluation metrics include Recall@1, Recall@5,
Recall@10, and Median Rank (MedR). The Recall@k means the percentage of

1 https://sites.google.com/site/describingmovies/lsmdc-2017.

https://sites.google.com/site/describingmovies/lsmdc-2017
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Table 3. Left: Performance comparison for the multiple-choice test using the accuracy
in percentage. We report the results on the two datasets of LSMDC (L) and MSR-VTT
(M). Right: Accuracy comparison (in percentage) for the movie fill-in-the-blank task.

GT videos in the first k retrieved videos, and the MedR indicates the median rank
of GT videos. The challenge winner is determined by the metric of Recall@10.

Movie Fill-in-the-Blank. This track is related to visual question answering.
The task is, given a video clip and a sentence with a blank in it, to predict a single
correct word for the blank. The test set includes 30,000 examples from 10,000
clips (i.e. about 3 blanks per sentence). The evaluation metric is the prediction
accuracy (i.e. the percentage of predicted words that match with GTs).

4.2 MSR-VTT-(RET/MC) Dataset and Tasks

The MSR-VTT [2] is a large-scale video description dataset. It collects 118 videos
per query of 257 popular queries, and filters manually to 7,180 videos. From the
videos, it selects 10 K video clips with 41.2 h and 200 K clip-sentence pairs.

Based on the MSR-VTT dataset, we newly create two video-text matching
tasks: (i) multiple-choice test and (ii) video retrieval. The task objectives for
these tasks are identical to those of corresponding tasks in the LSMDC bench-
mark. To collect annotations for the two tasks, we exactly follow the protocols
that are used in the LSMDC dataset, as described in [12].

Multiple-Choice Test: We generate 2,990 questions in total for the multiple-
choice test, using all the test video clips of MSR-VTT. For each test video, we
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use the associated GT caption for the correct answer, while randomly sampled
descriptions from other test data for four negative choices.

Video Retrieval: For retrieval, we first sample 1,000 pairs of video clips and
description queries from the test set of MSR-VTT We use 1,000 as the size of the
test set, following the LSMDC benchmark. As a result, the retrieval task is to
find out the video that corresponds to the query caption out of 1000 candidates.

4.3 Quantitative Results

Tables 2 and 3 summarize the results of our experiments for the three video-
language tasks. For LSMDC experiments, we report the results in the published
papers and the official leaderboard of LSMDC 20172. For MSR-VTT experi-
ments, we run some participants of LSMDC, including SNUVL, EITanque, VSE-
LSTM, ST-VQA-Sp.Tp and CT-SAN, using the source codes provided by the
original authors. We implement the other baselines by ourselves, only except
Miech et al. that require an additional person tracker, which is unavailable to
use. Other variants of our method will be discussed in details below in the abla-
tion study.

Tables 2 and 3 clearly show that our JSFusion achieves the best performance
with significant margins from all the baselines over the three tasks on both
datasets. That is, the two components of our approach, JST and CHD, indeed
helps measure better the semantic similarity between multimodal sequences than
a wide range of state-of-the-art models, such as a multimodal embedding method
(VSE-LSTM), a spatio-temporal attention-based QA model (ST-VQA-Sp.Tp),
and a language model based QA inference (Text-only BLSTM). Encouragingly,
the JSFusion single model outperforms even the ensemble method of runner-up
(LR/RL LSTMs) in the fill-in-the-blank task.

Among baselines, multimodal low-rank bilinear attention network (MLB)
[45] is competitive. The main differences of our model from (MLB) are two-fold.
First, JSFusion embeds both a video and a sentence to feature sequences, whereas
(MLB) represents the sentence as a single feature. Second, JSFusion uses the
self-gating to generate fine-grained matching between all pairwise embeddings
of the two sequences, while (MLB) uses the attention to find a position in the
visual feature space that best fits for the sentence vector. Moreover, JSFusion
consistently shows better performance than (MLB) in all experiments.

Ablation Study. We conduct ablation experiments on different variants of
our JSFusion model and present the results in Tables 2 and 3. As one naive
variant of our model, we test a simple LSTM baseline (LSTM-fusion) that only
carries out the Hadamard product on a pair of final states of video and language
LSTM encoders. That is, (LSTM-fusion) is our JSFusion model that has neither
JST nor CHD, which are the two main contributions of our model. We train
(LSTM-fusion) in the same way as done for the JSFusion model in Sect. 3.5.

2 FIB: https://competitions.codalab.org/competitions/11691#results.
Multichoice: https://competitions.codalab.org/competitions/11491#results.

https://competitions.codalab.org/competitions/11691#results
https://competitions.codalab.org/competitions/11491#results
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As easily expected, the performance of (LSTM-fusion) is significantly worse than
our JSFusion in all the tasks.

To further validate the contribution of each component, we remove or replace
key components of our model with simpler ones. To understand the effective-
ness of BLSTM encoding, we test two baselines: (JSTfc) that replaces BLSTM
with fully-connected layers and (JSTlstm) that replaces BLSTM with LSTM.
(JSTmax) and (JSTmean) denote our variants that use max pooling and mean
pooling, instead of the Convk convolutional layers in CHD. That is, they use
fixed max/mean pooling operations instead of convolutions with learnable ker-
nels. These comparisons reveal that the proposed CHD is critical to improve
the performance of JSFusion nontrivially on all the tasks on both datasets. We
also compare our model with (JSFusion-noattention) that discards Conv-gating
operations of CHD. (JSFusion-noattention) shows nontrivial performance drops
as MC (acc): 4.1%p, 4.2%p, RET (R@10): 5.7%p, 3.7%p for LSMDC and MSR-
VTT, respectively. Finally, we test our model with using no audio information
denoted by (JSFusion-noaudio), which is also much better than other baselines
but only slightly worse than our original model.

4.4 Qualitative Results

Figure 4 illustrates qualitative results of our JSFusion algorithm with correct
(left) and near-miss (right) examples for each task. In each set, we show natural
language query and sampled frames of a video. We present both groundtruth
(GT), our prediction (Ours).

Movie Retrieval. Figure 4(a) is an example that our model can understand
human behaviors like gaze. Figure 4(b) shows the model’s failure to distinguish
a small motion (e.g. facial expression), and simply retrieve the videos containing
the face of a woman. Figure 4(c) shows that our model successfully catches the
features of horses in both web videos and 3D animation, and correctly select the
highest ranking video by focusing on the word stall. In Fig. 4(d), although the
model can retrieve relevant videos of cooking with bowl, it fails to find out the
answer video that contains the query description of baking mix.

Movie Multiple-Choice Test. Figure 4(e) delivers an evidence that our model
uses the whole sentence for computing matching scores, because the model suc-
cessfully chooses 5© instead of 1© that shares the same phrases (e.g. shakes his
head). Figure 4(f) is an example of focusing on a wrong video subsequence, where
our model chooses the word club by looking at a subsequence with crowded
people, but the answer is related to another subsequence with grandmother.
Figure 4(g) is an example that the model learns words in a phrase. Choice 4©
can be very tempting, since it contains the word kids, tv and show. But our model
successfully choose the right answer by identifying that kids tv show and kids in
tv show mean differently. Figure 4(h) shows that our model fails to distinguish
the details.

Movie Fill-in-the-Blank. In Fig. 4(i), the model successfully finds the answer
by using both structural information of a sentence and a video (e.g. door is a
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Fig. 4. Qualitative examples of the three video-language tasks: movie retrieval on
LSMDC (a)–(b) and MSR-VTT-RET (c)–(d), multiple-choice on LSMDC (e)–(f) and
MSR-VTT-MC (g)–(h), and (i)–(j) fill-in-the-blank on LSMDC. The left column shows
correct examples, while the right column shows near-miss examples. In (b),(d), we show
our retrieval ranks of the GT clips (in the red box). (Color figure online)

likely word after shuts the). Figure 4(j) is an example that the model focuses too
much on the word picture that follows the blank, instead of visual information,
and thus choose a wrong answer framed picture rather than flash picture.

5 Conclusion

We proposed the Joint Sequence Fusion (JSFusion) model for measuring hierar-
chical semantic similarity between two multimodal sequence data. The two key
components of the model, Joint Semantic Tensor (JST) and Convolutional Hier-
archical Decoder (CHD), are easily adaptable in many video-and-language tasks,
including multimodal matching or video question answering. We demonstrated
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that our method significantly improved the performance of video understanding
through natural language description. Our method achieved the best perfor-
mance in challenge tracks of LSMDC, and outperformed many state-of-the-art
models for VQA and retrieval tasks on the MSR-VTT dataset.

Moving forward, we plan to expand the applicability of JSFusion; since our
model is usable to any multimodal sequence data, we can explore other retrieval
tasks of different modalities, such as videos-to-voices or text-to-human motions.
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ments about the model. This research was supported by Brain Research Program by
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