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Abstract. For human drivers, having rear and side-view mirrors is vital
for safe driving. They deliver a more complete view of what is hap-
pening around the car. Human drivers also heavily exploit their mental
map for navigation. Nonetheless, several methods have been published
that learn driving models with only a front-facing camera and without
a route planner. This lack of information renders the self-driving task
quite intractable. We investigate the problem in a more realistic setting,
which consists of a surround-view camera system with eight cameras,
a route planner, and a CAN bus reader. In particular, we develop a
sensor setup that provides data for a 360-degree view of the area sur-
rounding the vehicle, the driving route to the destination, and low-level
driving maneuvers (e.g. steering angle and speed) by human drivers.
With such a sensor setup we collect a new driving dataset, covering
diverse driving scenarios and varying weather/illumination conditions.
Finally, we learn a novel driving model by integrating information from
the surround-view cameras and the route planner. Two route planners
are exploited: (1) by representing the planned routes on OpenStreetMap
as a stack of GPS coordinates, and (2) by rendering the planned routes
on TomTom Go Mobile and recording the progression into a video. Our
experiments show that: (1) 360-degree surround-view cameras help avoid
failures made with a single front-view camera, in particular for city driv-
ing and intersection scenarios; and (2) route planners help the driving
task significantly, especially for steering angle prediction. Code, data and
more visual results will be made available at http://www.vision.ee.ethz.
ch/∼heckers/Drive360.
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Fig. 1. An illustration of our driving system. Cameras provide a 360-degree view of
the area surrounding the vehicle. The driving maps or GPS coordinates generated by
the route planner and the videos from our cameras are synchronized. They are used
as inputs to train the driving model. The driving model consists of CNN networks for
feature encoding, LSTM networks to integrate the outputs of the CNNs over time;
and fully-connected networks (FN) to integrate information from multiple sensors to
predict the driving maneuvers

1 Introduction

Autonomous driving has seen dramatic advances in recent years, for instance
for road scene parsing [1–4], lane following [5–7], path planning [8–11], and
end-to-end driving models [12–15]. By now, autonomous vehicles have driven
many thousands of miles and companies aspire to sell such vehicles in a few years.
Yet, significant technical obstacles, such as the necessary robustness of driving
models to adverse weather/illumination conditions [2–4] or the capability to antic-
ipate potential risks in advance [16,17], must be overcome before assisted driving
can be turned into full-fletched automated driving. At the same time, research on
the next steps towards ‘complete’ driving systems is becoming less and less acces-
sible to the academic community. We argue that this is mainly due to the lack of
large, shared driving datasets delivering more complete sensor inputs.

Surround-View Cameras and Route Planners. Driving is inarguably a
highly visual and intellectual task. Information from all around the vehicle needs
to be gathered and integrated to make safe decisions. As a virtual extension to
the limited field of view of our eyes, side-view mirrors and a rear-view mirror
are used since 1906 [18] and in the meantime have become obligatory. Human
drivers also use their internal maps [19,20] or a digital map to select a route
to their destination. Similarly, for automated vehicles, a decision-making system
must select a route through the road network from its current position to the
requested destination [21–23].
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As said, a single front-view camera is inadequate to learn a safe driving model.
It has already been observed in [24] that upon reaching a fork - and without a
clearcut idea of where to head for - the model may output multiple widely
discrepant travel directions, one for each choice. This would result in unsafe
driving decisions, like oscillations in the selected travel direction. Nevertheless,
current research often focuses on this setting because it still allows to look into
plenty of challenges [6,12,25]. This is partly due to the simplicity of training
models with a single camera, both in terms of available datasets and the com-
plexity an effective model needs to have. Our work includes a surround-view
camera system, a route planner, and a data reader for the vehicle’s CAN bus.
The setting provides a 360-degree view of the area surrounding the vehicle,
a planned driving route, and the ‘ground-truth’ maneuvers by human drivers.
Hence, we obtain a learning task similar to that of a human apprentice, where a
(cognitive/digital) map gives an overall sense of direction, and the actual steer-
ing and speed controls need to be set based on the observation of the local road
situation.

Driving Models. In order to keep the task tractable, we chose to learn the
driving model in an end-to-end manner, i.e. to map inputs from our surround-
view cameras and the route planner directly to low-level maneuvers of the car.
The incorporation of detection and tracking modules for traffic agents (e.g. cars
and pedestrians) and traffic control devices (e.g. traffic lights and signs) is future
work. We designed a specialized deep network architecture which integrates all
information from our surround-view cameras and the route planner, and then
maps these sensor inputs directly to low-level car maneuvers. See Fig. 1 and
the supplemental material for the network’s architecture. The route planner is
exploited in two ways: (1) by representing planned routes as a stack of GPS
coordinates, and (2) by rendering the planned routes on a map and recording
the progression as a video.

Our main contributions are twofold: (1) a new driving dataset of 60 h, featur-
ing videos from eight surround-view cameras, two forms of data representation
for a route planner, low-level driving maneuvers, and GPS-IMU data of the
vehicle’s odometry; (2) a learning algorithm to integrate information from the
surround-view cameras and planned routes to predict future driving maneuvers.
Our experiments show that: (a) 360-degree views help avoid failures made with
a single front-view camera; and (b) a route planner also improves the driving
significantly.

2 Related Work

Our work is relevant for (1) driving models, (2) assistive features for vehicles
with surround view cameras, (3) navigation and maps, and (4) driving scene
understanding.
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2.1 Driving Models for Automated Cars

Significant progress has been made in autonomous driving, especially due to the
deployment of deep neural networks. Driving models can be clustered into two
groups [7]: mediated perception approaches and end-to-end mapping approaches,
with some exceptions like [7]. Mediated perception approaches require the recog-
nition of all driving-relevant objects, such as lanes, traffic signs, traffic lights,
cars, pedestrians, etc. [1,26,27]. Excellent work [28] has been done to integrate
such results. This kind of systems developed by the automotive industry rep-
resent the current state-of-the-art for autonomous driving. Most use diverse
sensors, such as cameras, laser scanners, radar, and GPS and high-definition
maps [29]. End-to-end mapping methods construct a direct mapping from the
sensory input to the maneuvers. The idea can be traced back to the 1980s, when
a neural network was used to learn a direct mapping from images to steering
angles [24]. Other end-to-end examples are [5,12,14,15,25]. In [12], the authors
trained a neural network to map camera inputs directly to the vehicle’s ego-
motion. Methods have also been developed to explain how the end-to-end net-
works work for the driving task [30] and to predict when they fail [17]. Most
end-to-end work has been demonstrated with a front-facing camera only. To
the best of our knowledge, we present the first end-to-end method that exploits
more realistic input. Please note that our data can also be used for mediated
perception approaches. Recently, reinforcement learning for driving has received
increasing attention [31–33]. The trend is especially fueled by the release of
excellent driving simulators [34,35].

2.2 Assistive Features of Vehicle with Surround View Cameras

Over the last decades, more and more assistive technologies have been deployed
to vehicles, that increase driving safety. Technologies such as lane keeping, blind
spot checking, forward collision avoidance, adaptive cruise control, driver behav-
ior prediction etc., alert drivers about potential dangers [36–39]. Research in
this vein recently has shifted focus to surround-view cameras, as a panoramic
view around the vehicle is needed for many such applications. Notable examples
include object detection, object tracking, lane detection, maneuver estimation,
and parking guidance. For instance, a bird’s eye view has been used to monitor
the surrounding of the vehicle in [40]. Trajectories and maneuvers of surround-
ing vehicles are estimated with surround view camera arrays [41,42]. Datasets,
methods and evaluation metrics of object detection and tracking with multiple
overlapping cameras are studied in [43,44]. Lane detection with surround-view
cameras is investigated in [45] and the parking problem in [46]. Advanced driver
assistance systems often use a 3-D surround view, which informs drivers about
the environment and eliminates blind spots [47]. Our work adds autonomous
driving to this list. Our dataset can also be used for all aforementioned prob-
lems; and it provides a platform to study the usefulness of route planners.
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2.3 Navigation and Maps

In-car navigation systems have been widely used to show the vehicle’s current
location on a map and to inform drivers on how to get from the current position
to the destination. Increasing the accuracy and robustness of systems for posi-
tioning, navigation and digital maps has been another research focus for many
years. Several methods for high-definition mapping have been proposed [48,49],
some specifically for autonomous driving [50,51]. Route planning has been exten-
sively studied as well [52–56], mainly to compute the fastest, most fuel-efficient,
or a customized trajectory to the destination through a road network. Yet, thus
far their usage is mostly restricted to help human drivers. Their accessibility as
an aid to learn autonomous driving models has been limited. This work reports
on two ways of using two kinds of maps: a s-o-t-a commercial map TomTom
Maps1 and the excellent collaborative project OpenStreetMaps [57].

While considerable progress has been made both in computer vision and in
route planning, their integration for learning driving models has not received
due attention in the academic community. A trending topic is to combine digital
maps and street-view images for accurate vehicle localization [58–61].

2.4 Driving Scene Understanding

Road scene understanding is a crucial enabler for assisted or autonomous driving.
Typical examples include the detection of roads [62], traffic lights [63], cars and
pedestrians [1,2,64,65], and the tracking of such objects [66–68]. We refer the
reader to these comprehensive surveys [69,70]. Integrating recognition results
like these of the aforementioned algorithms may well be necessary but is beyond
the scope of this paper.

3 The Driving Dataset

We first present our sensor setup, then describe our data collection, and finally
compare our dataset to other driving datasets.

3.1 Sensors

Three kinds of sensors are used for data collection in this work: cameras, a route
planner (with a map), and a USB reader for data from the vehicle’s CAN bus.

Cameras. We use eight cameras and mount them on the roof of the car using a
specially designed rig with 3D printed camera mounts. The cameras are mounted
under the following angles: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315◦ relative
to the vehicle’s heading direction. We installed GoPro Hero 5 Black cameras, due
to their ease of use, their good image quality when moving, and their weather-
resistance. All videos are recorded at 60 frames per second (fps) in 1080p. As a

1 https://www.tomtom.com/en us/drive/maps-services/maps/.

https://www.tomtom.com/en_us/drive/maps-services/maps/
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Fig. 2. The configuration of our cameras. The rig is 1.6 m wide so that the side-view
cameras can have a good view of road surface without the obstruction by the roof of
the vehicle. The cameras are evenly distributed laterally and angularly

matter of fact, a full 360-degree view can be covered by four cameras already.
Please see Fig. 2 for our camera configuration.

Route Planners. Route planners have been a research focus over many
years [53,54]. While considerable progress has been made both in computer vision
and in route planning, their integration for learning to drive has not received
due attention in the academic community. Routing has become ubiquitous with
commercial maps such as Google Maps, HERE Maps, and TomTom Maps, and
on-board navigation devices are virtually in every new car. Albeit available in a
technical sense, their routing algorithms and the underlying road networks are
not yet accessible to the public. In this work, we exploited two route planners:
one based on TomTom Map and the other on OpenStreetMap.

TomTom Map represents one of the s-o-t-a commercial maps for driving
applications. Similar to all other commercial counterparts, it does not provide
open APIs to access their ‘raw’ data. We thus exploit the visual information
provided by their TomTom GO Mobile App [71], and recorded their rendered
map views using the native screen recording software supplied by the smart
phone, an iPhone 7. Since map rendering comes with rather slow updates, we
capture the screen at 30 fps. The video resolution was set to 1280 × 720 pixels.

Apart from the commercial maps, OpenStreetMaps (OSM) [57] has gained
a great attention for supporting routing services. The OSM geodata includes
detailed spacial and semantic information about roads, such as name of roads,
type of roads (e.g. highway or footpath), speed limits, addresses of buildings,
etc. The effectiveness of OSM for Robot Navigation has been demonstrated by
Hentschel and Wagner [72]. We thus, in this work, use the real-time routing
method developed by Luxen and Vetter for OSM data [73] as our second route
planner. The past driving trajectories (a stack of GPS coordinates) are provided
to the routing algorithm to localize the vehicle to the road network, and the GPS
tags of the planned road for the next 300 m ahead are taken as the representation
of the planned route for the ‘current’ position. Because the GPS tags of the road
networks of OSM are not distributed evenly according to distance, we fitted a
cubic smoothing spline to the obtained GPS tags and then sampled 300 data
points from the fitted spline with a stride of 1 m. Thus, for the OSM route
planner, we have a 300 × 2 matrix (300 GPS coordinates) as the representation
of the planned route for every ‘current’ position.
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Human Driving Maneuvers. We record low level driving maneuvers, i.e. the
steering wheel angle and vehicle speed, registered on the CAN bus of the car at
50 Hz. The CAN protocol is a simple ID and data payload broadcasting protocol
that is used for low level information broadcasting in a vehicle. As such, we
read out the specific CAN IDs and their corresponding payload for steering
wheel angle and vehicle speed via a CAN-to-USB device and record them on a
computer connected to the bus.

Vehicle’s Odometry. We use the GoPro cameras’ built-in GPS and IMU mod-
ule to record GPS data at 18 Hz and IMU measurements at 200 Hz while driving.
This data is then extracted and parsed from the meta-track of the GoPro created
video.

3.2 Data Collection

Synchronization. The correct synchronization amongst all data streams is of
utmost importance. For this we devised an automatic procedure that allows for
synchronization to GPS for fast dataset generation. During all recording, the
internal clocks of all sensors are synchronized to the GPS clock. The resulting
synchronization error for the video frames is up to 8.3 ms, i.e. half the frame rate.
If the vehicle is at a speed of 100 km/h, the error due to the synchronization for
vehicle’s longitudinal position is about 23 cm. We acknowledge that a camera
which can be triggered by accurate trigger signals are preferable with respect to
synchronization error. Our cameras, however, provide good photometric image
quality and high frame rates, at the price of moderate synchronization error.
The synchronization error of the maps to our video frame is up to 0.5 s. This is
acceptable, as the planned route (regardless of its representation) is only needed
to provide a global view for navigation. The synchronization error of the CAN
bus signal to our video frames is up to 10 ms. This is also tolerable as human
drivers issue driving actions at a relative low rate. For instance, the mean reaction
times for unexpected and expected human drivers are 1.3 and 0.7 s [74].

Drive360 Dataset. With the sensors described, we collect a new dataset
Drive360. Drive360 is recorded by driving in (around) multiple cities in Switzer-
land. We focus on delivering realistic dataset for training driving models. Inspired
by how a driving instructor teaches a human apprentice to drive, we chose the
routes and the driving time with the aim to maximize the opportunity of expos-
ing to all typical driving scenarios. This reduces the chance of generating a biased
dataset with many ‘repetitive’ scenarios, and thus allowing for an accurate judg-
ment of the performance of the driving models. Drive360 contains 60 h of driving
data.

The drivers always obeyed Swiss driving rules, such as respecting the driving
speed carefully, driving on the right lane when not overtaking a vehicle, leaving
the required amount of distance to the vehicle in front etc. We have a second
person accompanying the drivers to help (remind) the driver to always follow the
route planned by our route planner. We have used a manual setup procedure
to make sure that the two route planners generate the ‘same’ planned route,
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up to the difference between their own representations of the road networks.
After choosing the starting point and the destination, we first generate a driving
route with the OSM route planner. For TomTom route planner, we obtain the
same driving route by using the same starting point and destination, and by
adding a consecutive sequence of waypoints (intermediate places) on the route.
We manually verified every part of the route before each driving to make sure
that the two planned routes are in deed the same. After this synchronization,
TomTom Go Mobile is used to guide our human drivers due to its high-quality
visual information. The data for our OSM route planner is obtained by using
the routing algorithm proposed in [73]. In particular, for each ‘current’ location,
the ‘past’ driving trajectory is provided to localize the vehicle on the originally
planned route in OSM. Then the GPS tags of the route for the next 300 m ahead
are retrieved.

3.3 Comparison to Other Datasets

In comparison to other datasets, see Table 1, ours has some unique characteris-
tics.

Planned Routes. Since our dataset is aimed at understanding and improving
the fallacies of current end-to-end driving models, we supply map data for naviga-
tion and offer the only real-world dataset to do so. It is noteworthy that planned
routes cannot be obtained by post-processing the GPS coordinates recorded by
the vehicle, because planned routes and actual driving trajectories intrinsically
differ. The differences between the two are resulted by the actual driving (e.g.
changing lanes in road construction zones and overtaking a stopped bus), and
are indeed the objectives meant to be learned by the driving models.

Surround Views and Low-Level Driving Maneuvers. Equally important,
our dataset is the only dataset working with real data and offering surround-view
videos with low-level driving maneuvers (e.g. steering angle and speed control).
This is particularly valuable for end-to-end driving as it allows the model to learn

Table 1. Comparison of our dataset to others compiled for driving tasks (cam =
camera)

Datasets Driving

time (h)

# cams fps Maneuvers,

e.g. steering

Route

planner

GPS

IMU

Control of

cam pose

Data type Lidar

Drive360 60 8, 60 ✓ ✓ ✓ ✓ Real ✗

KITTI [26] 1 2, 10 ✗ ✗ ✓ ✓ Real ✓

Cityscapes [1] <100 2, 16 ✗ ✗ ✓ ✓ Real ✗

Comma.ai 7.3 1, 20 ✓ ✗ ✓ N.A. Real ✗

Oxford [75] 214 4, 16 ✗ ✗ ✓ ✓ Real ✓

BDDV [12] 10k 1, 30 ✗ ✗ ✓ ✗ Real ✗

Udacity [76] 1.1 3, 30 ✓ ✗ ✓ N.A. Real ✗

GTA N.A. 1 ✓ ✓ ✗ N.A. Rendered Synthetic ✗
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correct steering for lane changes, requiring ‘mirrors’ when carried out by human
drivers, or correct driving actions for making turns at intersections. Compared
with BDDV [12] and Oxford dataset [75], we offer low level driving maneuvers of
the vehicle via the CAN bus, whereas they only supply the cars ego motion via
GPS devices. This allows us to predict input control of the vehicle which is one
step closer to a fully autonomous end-to-end trained driving model. Udacity [76]
also offers low-level driving maneuvers via the CAN bus. It, however, lacks of
route planners and contains only a few hours of driving data.

Dataset Focus. As shown in Table 1, there are multiple datasets compiled for
tasks relevant to autonomous driving. These datasets, however, all have their
own focuses. KITTI, Cityscapes and GTA focus more on semantic and geomet-
ric understanding of the driving scenes. Oxford dataset focus on capturing the
temporal (seasonal) changes of driving scenes, and thus limited the driving to a
‘single’ driving route. BDDV [12] is a very large dataset, collected from many
cities in a crowd-sourced manner. It, however, only features a front-facing dash-
board camera.

4 Approach

The goal of our driving model is to map directly from the planned route, the
historical vehicle states and the current road situations, to the desired driving
actions.

4.1 Our Driving Model

Let us denote by I the surround-view video, P the planned route, L the vehicle’s
location, and S and V the vehicle’s steering angle and speed. We assume that
the driving model works with discrete time and makes driving decisions every
1/f seconds. The inputs are all synchronized and sampled at sampling rate
f . Unless stated otherwise, our inputs and outputs all are represented in this
discretized form.

We use subscript t to indicate the time stamp. For instance, the current video
frame is It, the current vehicle’s speed is Vt, the kth previous video frame is It−k,
and the kth previous steering angle is St−k, etc. Then, the k recent samples can
be denoted by V[t−k+1,t] ≡ 〈Vt−k+1, ..., Vt〉, S[t−k+1,t] ≡ 〈St−k+1, ..., St〉 and
V[t−k+1,t] ≡ 〈Vt−k+1, ..., Vt〉, respectively. Our goal is to train a deep network
that predicts desired driving actions from the vehicle’s historical states, historical
and current visual observations, and the planned route. The learning task can
be defined as:

F : (S[t−k+1,t],V[t−k+1,t],L[t−k+1,t], I[t−k+1,t], Pt) → St+1 × Vt+1 (1)

where St+1 represents the steering angle space and Vt+1 the speed space for
future time t + 1. S and V can be defined at several levels of granularity. We
consider the continuous values directly recorded from the car’s CAN bus, where
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V = {V |0 ≤ V ≤ 180} for speed and S = {S| − 720 ≤ S ≤ 720} for steering
angle. Here, kilometer per hour (km/h) is the unit of V , and degree (◦) the unit
of S. Since there is not much to learn from the historical values of P, only Pt is
used for the learning. Pt is either a video frame from our TomTom route planner
or a 300 × 2 matrix from our OSM route planner.

Given N training samples collected during real drives, learning to predict the
driving actions for the future time t+1 is based on minimizing the following cost:

L(θ) =
N∑

n=1

(
l(Sn

t+1, Fs(Sn
[t−k+1,t],V

n
[t−k+1,t],L

n
[t−k+1,t], I

n
[t−k+1,t], Pt))

+λl(V n
t+1, Fv(Sn

[t−k+1,t],V
n
[t−k+1,t],L

n
[t−k+1,t], I

n
[t−k+1,t], Pt))

)
,

(2)

where λ is a parameter balancing the two losses, one for steering angle and
the other for speed. We use λ = 1 in this work. F is the learned function
for the driving model. For the continuous regression task, l(.) is the L2 loss
function. Finding a better way to balance the two loss functions constitutes our
future work. Our model learns from multiple previous frames in order to better
understand traffic dynamics.

4.2 Implementation

Our driving system is trained with four cameras (front, left, right, and rear view),
which provide a full panoramic view already. We recorded the data with all eight
cameras in order to keep future flexibility.

This work develops a customized network architecture for our learning prob-
lem defined in Sect. 4.1, which consists of deep hierarchical sub-networks. It
comes with multiple CNNs as feature encoders, four LSTMs as temporal encoders
for information from the four surround-view cameras, a fully-connected network
(FN) to fuse information from all cameras and the map, and finally two FNs to
output future speed and steering angle of the car. The illustrative architecture
is show in Fig. 1.

During training, videos are all resized to 256×256 and we augment our data
by using 227 × 227 crops, without mirroring. For the CNN feature encoder, we
take ResNet34 [77] model pre-trained on the ImageNet [78] dataset. Our net-
work architecture is inspired by the Long-term Recurrent Convolutional Network
developed in [79]. A more detailed description about the network architecture is
provided in the supplementary material.

5 Experiments

We train our models on 80% of our dataset, corresponding to 48 h of driving
time and around 1.7 million unique synchronized sequence samples. Our driving
routes are normally 2 h long. We have selected 24 out of the 30 driving routes
for training, and the other 6 for testing. This way, the network would not overfit



Driving Models with Surround-View Cameras and Route Planners 459

Table 2. MSE of speed prediction and steering angle prediction when a single front-
facing camera is used (previous driving states are given)

CAN-only [25] [12] Ours

Steering 0.869 1.312 0.161 0.134

Speed 0.0147 0.6533 0.0066 0.0030

to any type of specific road or weather. Synchronized video frames are extracted
at a rate of 10 fps, as 60 fps will generate a very large dataset. A synchronized
sample contains four frames at a resolution of 256 × 256 for the corresponding
front, left, right and rear facing cameras, a rendered image at 256 × 256 pixels
for TomTom route planner or a 300 × 2 matrix for OSM route planner, CAN
bus data and the GPS data of the ‘past’.

We train our models using the Adam Optimizer with an initial learning rate
of 10−4 and a batch size of 16 for 5 epochs, resulting in a training time of around
3 days. For the four surround-view cameras, we have used four frames to train
the network: 0.9 s in the past, 0.6 s in the past, 0.3 s in the past, and the current
frame. This leads to a sampling rate of f = 3.33. A higher value can be used at
the price of computational cost. This leads to 4 × 4 = 16 CNNs for capturing
street-view visual scene.

We structure our evaluation into two parts: evaluating our method against
existing methods, and evaluating the benefits of using a route planner and/or a
surround-view camera system.

5.1 Comparison to Other Single-Camera Methods

We compare our method to the method of [12] and [25]. Since BDDV dataset
does not provide data for driving actions (e.g. steering angle) [12], we train
their networks on our dataset and compare with our method directly. For a fair
comparison, we follow their settings, by only using a single front-facing camera
and predicting the driving actions for the future time at 0.3 s.

We use the mean squared error (MSE) for evaluation. The results for speed
prediction and steering angle prediction are shown in Table 2. We include a base-
line reference of only training on CAN bus information (no image information
given). The table shows that our method outperforms [25] significantly and is
slightly better than [12]. [25] does not use a pre-trained CNN; this probably
explains why their performance is a lot worse. The comparison to these two
methods is to verify that our frontal-view driving model represents the state of
the art so that the extension is made to a sensible basis to include multiple-view
cameras and to include route planners.

We note that the baseline reference performs quite well, suggesting that due
to the inertia of driving maneuvers, the network can already predict speed and
steering angle of 0.3 s further into the future quite well, solely based on the
supplied ground truth maneuver of the past. For instance, if one steers the
wheels to the right at time t, then at t + 0.3 s the wheels are very likely to be at
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Table 3. MSE (smaller = better) of speed and steering angle prediction by our method,
when different settings are used. Predictions on full evaluation set and the subset with
human driving maneuver ≤30 km/h

Cameras Route planner Full dataset Subset: GT ≤ 30 km/h

Steering Speed Steering Speed

Front-view None 0.967 0.197 4.053 0.167

TomTom 0.808 0.176 3.357 0.268

OSM 0.981 0.212 4.087 0.165

Surround-view None 0.927 0.257 3.870 0.114

TomTom 0.799 0.200 3.214 0.142

OSM 0.940 0.228 3.917 0.125

a similar angle to the right. In a true autonomous vehicle the past driving states
might not be always correct. Therefore, we argue that the policy employed by
some existing methods by relying on the past ‘ground-truth’ states of the vehicle
should be used with caution. For the real autonomous cars, the errors will be
exaggerated via a feedback loop. Based on this finding, we remove S[t−k+1,t]

and V[t−k+1,t], i.e. without using the previous human driving maneuvers, and
learn the desired speed and steering angle only based on the planned route, and
the visual observations of the local road situation. This new setting ‘forces’ the
network to learn knowledge from route planners and road situations.

5.2 Benefits of Route Planners

We evaluate the benefit of a route planner by designing two networks using
either our visual TomTom, or our numerical OSM guidance systems, and com-
pare these against our network that does not incorporate a route planner. The
results of each networks speed and steering angle prediction are summarized
in Table 3. The evaluation shows that our visual TomTom route planner signifi-
cantly improves prediction performance, while the OSM approach does not yield
a clear improvement. Since, the prediction of speed is easier than the prediction
of steering angle, using a route planner will have a more noticeable benefit on
the prediction of steering angles.

Why the Visual TomTom Planner Is Better? It is easy to think that GPS
coordinates contain more accurate information than the rendered videos do, and
thus provide a better representation for planned routes. This is, however, not
case if the GPS coordinates are used directly without further, careful, process-
ing. The visualization of a planned route on navigation devices such as TomTom
Mobile Go makes use of accurate vehicle localization based on vehicle’s mov-
ing trajectories to provide accurate procedural knowledge of the routes along
the driving direction. The localization based on vehicle’s moving trajectories
is tackled under the name map-matching, and this, in itself, is a long-standing
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research problem [80–82]. For our TomTom route planner, this is done with
TomTom’s excellent underlying map-matching method, which is unknown to
the public though. This rendering process converts the ‘raw’ GPS coordinates
into a more structural representation. Our implemented OSM route planner,
however, encodes more of a global spatial information at a map level, making
the integration of navigation information and street-view videos more challeng-
ing. Readers are referred to Fig. 3 for exemplar representations of the two route
planners.

In addition to map-matching, we provide further possible explanations: (1)
raw GPS coordinates are accurate for locations, but fall short of other high-level
and contextual information (road layouts, road attributes, etc.) which is ‘visible’
in the visual route planner. For example, raw GPS coordinates do not distinguish
‘highway exit’ from ‘slight right bend’ and do not reveal other alternative roads in
an intersection, while the visual route planner does. It seems that those semantic
features optimized in navigation devices to assist human driving are useful for
machine driving as well. Feature designing/extraction for the navigation task of
autonomous driving is an interesting future topic. (2) The quality of underlying
road networks are different from TomTom to OSM. OSM is crowdsourced, so
the quality/accuracy of its road networks is not always guaranteed. It is hard to
make a direct comparison though, as TomTom’s road networks are inaccessible
to the public.

5.3 Benefits of Surround-View Cameras

Surround-view cameras offer a modest improvement for predicting steering angle
on the full evaluation set. They, however, appear to reduce the overall perfor-
mance for speed prediction. Further investigation has shown that surround-view
cameras are especially useful for situations where the ego-car is required to give
the right of way to other (potential) road users by controlling driving speed.
Notable examples include (1) busy city streets and residential areas where the
human drives at low velocity; and (2) intersections, especially those without traf-
fic lights and stop signs. For instance, the speed at an intersection is determined
by whether the ego-car has a clear path for the planned route. Surround-view
cameras can see if other cars are coming from any side, whereas a front cam-
era only is blind to many directions. In order to examine this, we have explicitly
selected two specific types of scenes across our evaluation dataset for a more fine-
grained evaluation of front-view vs. surround-view: (1) low-speed (city) driving
according to the speed of human driving; and (2) intersection scenarios by human
annotation. The evaluation results are shown in Tables 3 and 4, respectively. The
better-performing TomTom route planner models are used for the experiments in
Table 4. Surround-view cameras significantly improve the performance of speed
control in these two very important driving situations. For ‘high-speed’ driv-
ing on highway or countryside road, surround-view cameras do not show clear
advantages, in line with human driving – human drivers also consult non-frontal
views less frequently for high-speed driving.
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Table 4. MSE (smaller = better) of speed prediction by our Front-view+TomTom and
Surround-view+TomTom driving models. Evaluated on manually annotated intersec-
tion scenarios over a 2-h subset of our evaluation dataset. Surround-view significantly
outperforms front-view in intersection situations

Cameras ≤10 km/h ≤20 km/h ≤30 km/h ≤40 km/h ≤50 km/h

Front-view 0.118 0.150 0.158 0.157 0.148

Surround-view 0.080 0.127 0.145 0.146 0.143

As a human driver, we consult our navigation system mostly when it comes
to multiple choices of road, namely at road intersections. To evaluate whether
route planning improves performance specifically in these scenarios, we select
a subset of our test set for examples with a low speed by human, and report
the results in this subset also in Table 3. Results in Table 3 supports our claim
that route planning is beneficial to a driving model, and improves the driving
performance especially for situations where a turning maneuver is performed.
In future work, we plan to select other interesting situations for more detailed
evaluation.

Qualitative Evaluation. While standard evaluation techniques for neural net-
works such as mean squared error, do offer global insight into the performance
of models, they are less intuitive in evaluating where, at a local scale, using sur-
round view cameras or route planning improves prediction accuracy. To this end,
we use our visualization tool to inspect and evaluate the model performances for
different ‘situations’.

Figure 3 shows examples of three model comparisons (TomTom, Surround,
Surround+TomTom) row-wise, wherein the model with additional information
is directly compared to our front-camera-only model, shown by the speed and
steering wheel angle gauges. The steering wheel angle gauge is a direct map of
the steering wheel angle to degrees, whereas the speed gauge is from 0 km/h
to 130 km/h. Additional information a model might receive is ‘image framed’
by the respective color. Gauges should be used for relative model comparison,
with the front-camera-only model prediction in orange, model with additional
information in red and human maneuver in blue. Thus, for our purposes, we
define a well performing model when the magnitude of a model gauge is identical
(or similar) to the human gauge. Column-wise we show examples where: (a)
both models perform well, (b) model with additional information outperforms,
(c) both models fail.

Our qualitative results, in Fig. 3(1, b) and (3, b), support our hypothesis
that a route planner is indeed useful at intersections where there is an ambiguity
with regards to the correct direction of travel. Both models with route planning
information are able to predict the correct direction at the intersection, whereas
the model without this information predicts the opposite. While this ‘wrong’
prediction may be a valid driving maneuver in terms of safety, it nonetheless is
not correct in terms of arriving at the correct destination. Our map model on
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Fig. 3. Qualitative results for future driving action prediction, to compare three cases
to the front camera-only-model: (1) learning with TomTom route planner, (2) learning
with surround-view cameras (3) learning with TomTom route planner and surround-
view cameras. TomTom route planer and surround-view images shown in red box, while
OSM route planner in black box. Better seen on screen (Color figure online)

the other hand is able to overcome this. Figure 3(2, b) shows that surround-view
cameras are beneficial at predicting the correct speed. The frontal view supplied
could suggest that one is on a country road where the speed limit is significantly
higher than in the city, as such, our front-camera-only model predicts a speed
much greater than the human maneuver. However, our surround-view system
can pick up on the pedestrians on the right of the car, thus adjusts the speed
accordingly. The surround-view model thus has a more precise understanding of
its surroundings.

Visualization Tool. To obtain further insights into where current driving mod-
els perform well or fail, we have developed a visual evaluation tool that lets users
select scenes in the evaluation set by clicking on a map, and then rendering the
corresponding 4 camera views, the ground truth and predicted vehicle maneuver
(steering angle and speed) along with the map at that point in time. These eval-
uation tools along with the dataset will be released to the public. In particular,
visual evaluation is extremely helpful to understand where and why a driving
model predicted a certain maneuver, as sometimes, while not coinciding with
the human action, the network may still predict a safe driving maneuver.
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6 Conclusion

In this work, we have extended learning end-to-end driving models to a more
realistic setting from only using a single front-view camera. We have presented
a novel task of learning end-to-end driving models with surround-view cameras
and rendered maps, enabling the car to ‘look’ to side, rearward, and to ‘check’
the driving direction. We have presented two main contributions: (1) a new driv-
ing dataset, featuring 60 h of driving videos with eight surround-view cameras,
low-level driving maneuvers recorded via car’s CAN bus, two representations
of planned routes by two route planners, and GPS-IMU data for the vehicle’s
odometry; (2) a novel deep network to map directly from the sensor inputs to
future driving maneuvers. Our data features high temporary resolution and 360◦

view coverage, frame-wise synchronization, and diverse road conditions, making
it ideal for learning end-to-end driving models. Our experiments have shown that
an end-to-end learning method can effectively use surround-view cameras and
route planners. The rendered videos outperforms a stack of raw GPS coordinates
for representing planned routes.
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13. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning (2018)

14. Chen, Y., et al.: LiDAR-video driving dataset: learning driving policies effectively.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018

15. Maqueda, A.I., Loquercio, A., Gallego, G., Garca, N., Scaramuzza, D.: Event-based
vision meets deep learning on steering prediction for self-driving cars. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

16. McAllister, R., et al.: Concrete problems for autonomous vehicle safety: advan-
tages of Bayesian deep learning. In: International Joint Conference on Artificial
Intelligence (2017)

17. Hecker, S., Dai, D., Van Gool, L.: Failure prediction for autonomous driving models.
In: IEEE Intelligent Vehicles Symposium (IV) (2018)

18. The Automobile (weekly), Thursday, 27 December 1906
19. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)
20. Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S.J., Frith, C.D.,

O’Keefe, J.: Knowing where and getting there: a human navigation network. Sci-
ence 280(5365), 921–924 (1998)

21. Urmson, C., et al.: Autonomous driving in urban environments: Boss and the
urban challenge. J. Field Robot. Spec. Issue 2007 DARPA Urban Chall. Part I
25(8), 425–466 (2008)

22. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms.
In: IEEE Intelligent Vehicles Symposium (IV) (2011)

23. Luettel, T., Himmelsbach, M., Wuensche, H.J.: Autonomous ground vehicles—
concepts and a path to the future. Proc. IEEE 100, 1831–1839 (2012)

24. Pomerleau, D.A.: NIPS (1989)
25. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316 (2016)
26. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI

dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
27. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network

for autonomous driving. In: CVPR (2017)
28. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3D traffic scene under-

standing from movable platforms. IEEE Trans. Pattern Anal. Mach. Intell. 36(5),
1012–1025 (2014)

29. Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., Oluwatola,
T.A.: Autonomous Vehicle Technology: A Guide for Policymakers. RAND Corpo-
ration, Santa Monica (2016)

30. Bojarski, M., et al.: Explaining how a deep neural network trained with end-to-end
learning steers a car. CoRR (2017)

31. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

32. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295 (2016)

33. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1610.03295


466 S. Hecker et al.

34. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and
Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-67361-5 40

35. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)
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