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Abstract. Recent capture technologies and methods allow not only to
retrieve 3D model sequence of moving people in clothing, but also to
separate and extract the underlying body geometry, motion component
and the clothing as a geometric layer. So far this clothing layer has only
been used as raw offsets for individual applications such as retarget-
ing a different body capture sequence with the clothing layer of another
sequence, with limited scope, e.g. using identical or similar motions. The
structured, semantics and motion-correlated nature of the information
contained in this layer has yet to be fully understood and exploited. To
this purpose we propose a comprehensive analysis of the statistics of
this layer with a simple two-component model, based on PCA subspace
reduction of the layer information on one hand, and a generic parame-
ter regression model using neural networks on the other hand, designed
to regress from any semantic parameter whose variation is observed in
a training set, to the layer parameterization space. We show that this
model not only allows to reproduce previous retargeting works, but gen-
eralizes the data generation capabilities to other semantic parameters
such as clothing variation and size, or physical material parameters with
synthetically generated training sequence, paving the way for many kinds
of capture data-driven creation and augmentation applications.

Keywords: Clothing motion analysis · 3D garment capture
Capture data augmentation and retargeting

1 Introduction

Sequences showing the dense 3D geometry of dressed humans in motion are used
in many 3D content creation applications. Two main approaches may be used
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to generate them, namely through physical simulation and by dense 3D motion
capture. Physical simulators allow to generate realistic motions and cloth folding
patterns based on given 3D models of the actor and the clothing, along with
actor motion and cloth material parameters [7,9,17]. Dense 3D motion capture
of human models has recently become possible at high spatial and temporal
resolution, e.g. using multi-camera systems [4,10,23]. While the captured data is
unstructured, recent processing algorithms allow to track the captured geometry
over time and to separate the actor’s body from the clothing [21,38,40].

While these works allow for the generation of accurate dense 3D motion
sequences of human models with clothing, the content creation is expensive.
Motion capture of the dense 3D geometry requires calibrated acquisition set-
ups and the processing of the captured geometry requires heavy computation.
Physical simulation requires artist generated models of actor and clothing and
is typically computationally expensive.

In this work, we propose to leverage existing 3D motion sequences of dressed
humans by performing a statistical analysis of the dynamically deforming cloth-
ing layer in order to allow for efficient synthesis of 3D motion. Performing sta-
tistical analysis on the clothing deformation is challenging for two main reasons.
First, the motion of the clothing is influenced by numerous factors including the
body shape and the motion of the underlying human as well as the cloth mate-
rial. To allow for controlled synthesis of these effects, they must be explicitly
modeled. Second, the geometry of the person with clothing may be significantly
different from that of the underlying human body, e.g. in case of a dress, and
the clothing may slide w.r.t. the human skin. Hence, computing assignments
between the clothing layer and the body is complicated, especially across differ-
ent subjects who wear the same type of clothing (e.g. shorts and T-shirt).

Two existing lines of work analyze the clothing layer to allow for synthesis.
The first one analyzes multiple subjects wearing the same type of clothing based
on simulated cloth deformations as training data [15,37]. While these works allow
for efficient synthesis, they can only be applied to simulated clothing, where
the geometry is free of noise and explicit geometric correspondence information
is available across all training data. Hence, the realism of the resulting cloth
synthesis is limited by the quality of the cloth simulator used during training.
The second line of work addresses this problem by analyzing the deformation of
the clothing layer based on dense 3D motion capture data [21]. This work can
handle noisy and unstructured data and the resulting model allows to change
the body shape and motion under the clothing. However, the model can only be
trained on one specific actor wearing a fixed outfit, and can hence not be used
to synthesize changes in the clothing itself (e.g. changes of fit or materials).

This work combines the advantages of both methods by enabling to train
from various motion data that can either be simulated or captured. To this
end, we perform statistical analysis to model the geometric variability of the
clothing layer. Our main contribution is that the proposed analysis is versatile
in the sense that it can be used to train and regress on semantic parameters,
thereby allowing to control e.g. clothing fit or material parameters of the synthe-
sized sequences. Our statistical analysis models the deformation of the clothing
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layer w.r.t. the deformation behaviour of the underlying human actor repre-
sented using a statistical model of 3D body shape. For the analysis, we consider
two fairly straightforward models. First, we model the layer variations with a
linear subspace. Second, we model the variation of the clothing layer using a
statistical regression model, in order to capture some of the underlying causal
dynamics in relatively simple form. Our experiments show the validity of the rep-
resentation with qualitative and quantitative captured sequence reconstruction
experiments based on these parameterizations. We further qualitatively demon-
strate the value of our approach for three applications. First, following [21], we
train from multiple sequences of the same actor in the same clothing acquired
using dense 3D motion capture and use this to exchange body shape and motion.
Second, following [15], we train from multiple simulated sequences showing the
same actor in clothing of different materials and use this to change the material
of the clothing. Third, to demonstrate the novelty of our approach, we train
from multiple sequences of different actors in the same type of clothing acquired
using dense 3D motion capture and use this to change the fit of the clothing.

2 Related Work

This section reviews work on modeling the clothing layer. Furthermore, in case
of captured 3D data, the models need to be processed to establish temporal
coherence and to extract the clothing layer, and we provide a brief review of
related literature.

Simulation-Based Modeling of Clothing Layer. To model the deformation of the
clothing layer, a possible solution is direct physics-based simulation, for example
with mass-spring systems [7,9], continuum mechanics [34], or individual yarn
structures [17]. The physical simulation models are complex and rely on numer-
ous control parameters. Those parameters can be tuned manually, estimated
from captures [32] or learned from perceptual experiments [30]. One line of
works trains models on physics-based simulations using machine learning tech-
niques, which subsequently allow for more efficient synthesis of novel 3D motion
sequences of dressed humans [2,15,37]. In particular, these methods learn a
regression from the clothing deformation to low-dimensional parameters repre-
senting body motion. These methods allow to modify the body shape, motion,
and to alter the clothing. But the main disadvantage is that the methods are
limited by the quality of the simulated synthetic training data. Since the simula-
tion of complex clothing with multiple layers remains a challenging problem, this
limitation restricts the model to relatively simple clothing. Our work addresses
this problem by allowing to train from both simulated and captured sequences.

Capture-Based Modeling of Clothing Layer. Thanks to laser scanners, depth cam-
eras, and multi-camera system, it is now possible to capture and reconstruct 3D
human motion sequences as raw mesh sequences [4,10,23], and recent process-
ing algorithms (reviewed in the following) allow to extract semantic information
from the raw data. A recent line of work leverages this rich source of data by
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using captured sequences to learn the deformation of the clothing layer [22,25].
Neophytou and Hilton [22] propose a method that trains from a single sub-
ject in fixed clothing and allows to change the body shape and motion after
training. Pons-Moll et al. [25] extract the body shape and individual pieces
of clothing from a raw capture sequence and use this information to transfer
the captured clothing to new body shapes. These methods allow to learn from
complex deformations without requiring a physical model of the observations.
The main disadvantage is that the model does not allow the modification of
the clothing itself, such as the fit of the clothing and the cloth material. Our
work addresses this problem by exploiting self-redundancies of the deformation
to build a regression model from semantic sizing or material parameters to the
clothing layer.

Processing Raw Dense 3D Motion Captures for Human Modeling. When cap-
tured 3D human motion sequences are used as input to our method, they first
need to be processed to compute alignments and estimate the body under cloth-
ing. Recently, many solutions have been proposed for these challenging problems.

First approaches to process raw dense 3D motion captures of humans aimed
to track human pose by fitting a 3D generic kinematic body-part model to cap-
tured 2D [28,29,31] or 3D data of the person [41]. To handle variation in body
shape, some of these models adapt the size of rigid components of the skeleton
or, taking this one step further, estimate shape parameters based on a human
statistical shape space [5,20,21]. This accounts for the morphology of the cap-
tured human, for a closer data fit and a more accurate body estimate. Apart
from such model fitting methods, other methods try to estimate the body shape
by using convolutional neural networks [11–13]. Since all of these approaches
assume tight clothing, they typically lead to inflation of the body estimate in
the presence of wider clothing. To address this problem, recent methods pro-
pose to explicitly include wider clothing in the modeling. Instead of fitting a
body shape as close as possible to the observation, the human body shape under
clothing is captured by fitting the human model within the observed clothing
contour from images [6,8,26] or the 3D clothing surfaces [16,36,38,40]. These
methods extract both the underlying body shape morphology and pose, as well
as an explicit relative mesh representation of the clothing layer.

Aligning the clothing layer of a moving human is challenging because of the
high deformation variability due to both the human pose and the non-rigidity of
the cloth. To solve this problem some works combine reconstruction and tracking
by deforming a detailed 3D model, typically obtained from a laser scan, to fit the
capture data [3,14,18,33]. These methods are usually applied to scenarios where
captures are not dense enough to create a high-quality reconstruction, such as
multi-camera systems with only few cameras. To prevent vertex drifting along
the surface, some works exploit surface features to guide the template deforma-
tion [39]. Another line of works uses the estimated underlying body shape to
align the clothed surface [25,27,40]. Our work leverages these recent processing
methods for captured data to extract body shape estimations and alignments of
the surface of the dressed person from given raw captured sequences.
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3 Methodology

We propose a general framework to study the deformation of the clothing layer.
First, we estimate the human body shape and extract the offset clothing layer
in a way that is robust to situations where the geometry of the dressed person
differs significantly from the geometry of the human body, as in the case of a
dress. A fuzzy vertex association from the clothing surface to the body surface is
established, so that we can represent the clothing deformation as an offset mesh
based on the body surface. Second, we use statistical analysis to analyze the
geometric variability of the clothing layer to greatly reduce self-redundancies.
Third, we show how to capture some of the underlying causal dynamics in rela-
tively simple form, by modeling the variation of this clothing layer as a function
of body motion as well as semantic variables using a statistical regression model.

The input to our method is a set of 3D sequences showing the dense geometry
of a human in clothing performing a motion. These sequences may have been
generated using physical simulation or motion capture set-ups. Before further
processing, we require for each sequence an estimate of the underlying body
shape and motion and an alignment of the clothing layer. Note that the clothing
layer may optionally include the geometry of the body itself, i.e. show the body
with clothing. If the sequences were generated using physical simulation, this
information is typically readily available. For captured data, any of the previ-
ously reviewed methods may be used to compute this information. In this work,
we estimate the underlying body shape using a recent method that explicitly
takes wide clothing into account [38] and compute alignments of the complete
deforming surface (i.e. the human in clothing) using an embedded deformation
model based on Li et al. [18] without refining the deformation graph.

In the following, we denote the aligned sequences of the clothing layer by
C1, . . . ,Cn and the corresponding sequences of underlying body shape estimates
by B1, . . . ,Bn. Furthermore, let Ci,k and Bi,k denote the k-th frames of Ci and
Bi, respectively. Thanks to the alignment, Ci,k has the same number of corre-
sponding vertices as Cj,l. Similarly, Bi,k has the same number of corresponding
vertices as Bj,l. While sequences Ci and Cj (and similarly Bi and Bj) may con-
sist of different numbers of frames, Ci and Bi contain corresponding clothing
layer and body estimate and therefore consist of the same number of frames.

The body estimates in sequence Bi can be expressed using a generative
statistical body model that decouples the influence of identity and posture vari-
ation [20,21,24]. This allows to represent Bi using one vector βi for identity
information and a vector θi,k per frame for pose information. These generative
models allow for two important modifications. First, the body shape of the actor
can be changed while keeping the same motion by modifying βi. Second, the
body motion can be changed by modifying θi,k for each frame.

In this work, we use S-SCAPE as generative model [24], which uses the A-pose
as standard pose θ0. S-SCAPE combines a linear space learned using principal
component analysis (PCA) to represent variations due to identity with a linear
blend skinning (LBS) model to represent variations in pose. Consider the j-th
vertex vB

i,k,j of frame Bi,k. This vertex is generated by transforming the j-th
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vertex μB
j of the mean body shape in standard pose θ0 as vB

i,k,j =
Tj(θi,k)Tj(βi)μB

j , where Tj(θi,k) and Tj(βi) are (homogeneous) transforma-
tion matrices applying the transformations modeled by LBS and learned by
PCA. We can hence use S-SCAPE to define an operation called unposing in the
following. This operation changes the pose of Bi,k to the standard pose θ0 while
maintaining body shape by replacing vertex vB

i,k,j for all j by

ṽB
i,k,j = (Tj(θi,k))

−1
vB
i,k,j . (1)

3.1 Offset Clothing Layer Extraction

We model the clothing layer as an offset from the body. To this end, we need to
find corresponding vertices on the body mesh for each clothing vertex. Because
C1, . . . ,Cn and B1, . . . ,Bn are temporally coherent, respectively, we can estab-
lish this correspondence on a single pair of frames (Ci,k,Bi,k) and propagate this
information to all sequences. In practice, a pair of frames with few concavities
is preferred because it enhances the robustness of the sparse association when
created using a ray shooting method (see next paragraph). However to prove the
generality of our approach, in our experiments, the association is simply esti-
mated on the first frame of the first sequence. Since the following description is
limited to a single pair of frames (C1,1,B1,1), for simplicity, we will drop frame
and sequence index in this subsection.

C and B usually consist of a different number of vertices and have possibly
significantly different geometry. Hence, a bijective association is in general not
achievable. As our final goal is to model the deformation of the clothing layer
using the body layer, our main interest is to find one or more corresponding
vertices on B for each vertex on C. We achieve this by computing a sparse
correspondence that is subsequently propagated to each vertex on C using a
probabilistic geodesic diffusion method. Note that unlike Pons-Moll et al. [25],
our method works for difficult geometries such as skirts without manual inter-
vention.

Sparse Association. For each vertex vB
j on B we shoot a ray along the surface

normal outwards the body. If there is an intersection pC
j with C and the distance

between vB
j and pC

j is within a threshold of 15 cm, we search for the vertex vC
i on

C closest to pC
j . Such pairs

(
vC
i ,vB

j

)
are considered to be associated. If multiple

body vertices are associated with the same clothing vertex, we only keep one pair
per clothing vertex to put the same weight to each sparsely associated vC

i . The
pairs

(
vC
i ,vB

j

)
are defined as sparse association.

Fuzzy Dense Association. We now propagate the sparse association to every
clothing vertex. Intuitively, if a clothing vertex vC

i is associated to a body vertex
vB
j then there is a high probability that the neighboring vertices of vC

i should
be associated to the neighboring vertices of vB

j . Based on this idea, for any
pair

(
vC
k ,vB

l

) ∈ C × B we initialize the association probability P
(
vC
k ,vB

l

)
to
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be 0. Then we loop on all the sparse association pairs
(
vC
i ,vB

j

)
and update the

association probability of any vertex pair
(
vC
k ,vB

l

)
according to:

P
(
vC
k ,vB

l

)
= P

(
vC
k ,vB

l

)
+ exp

(− (
r
(
vC
k ,vC

i

)
+ r

(
vB
l ,vB

j

))
/σ2

)
, (2)

where r(, ) computes the squared geodesic distance between two vertices. In
our implementation we set σ to 1 cm. To simplify the computation we only
consider vertices vC

k and vB
l that lie within 3 cm geodesic distance from vC

i

and vB
j . For the dense association, for each vertex on C we choose a constant

number nf of vertices on S that have the highest association probability values
as associated vertices. We normalize the association probability to form fuzzy
association weights, and store the indices of the nf associations in a list I. This
step does not only compute body vertex matches for previously unassociated
clothing vertices but can also correct wrong matches from the sparse association
and make the association more meaningful in situations where C and B differ
significantly. This is illustrated in the case of a skirt on the right of Fig. 1 (see
also Sect. 4.1 for a discussion).

Offset Representation of Clothing Layer. Since we have established correspon-
dence between C and B, we can now get the offset clothing layer by subtracting
B from C. However, this Euclidean offset depends on the human pose and the
global rotation. To account for this, we first unpose both B and C. The body
estimate B is unposed using Eq. 1, and the clothing layer C is unposed with the
help of the fuzzy dense association by replacing vertex vC

j for all j by

ṽC
j =

( nf∑

i=1

ωiTIj [i](θ)

)−1

vC
j , (3)

where ωi are the fuzzy association weights and Ij [i] denotes the i-th entry of the
index list I associated with vertex vC

j . The offset of each clothing vertex is then
obtained as:

di,j = ṽC
i − ṽB

j , di,j ∈ R
3, (4)

where
(
ṽC
i , ṽB

j

)
form a fuzzily associated pair. We stack all the di,j from one

frame pair (C,B) to form a single vector denoted by d ∈ R
3×nf×nv , where nv

is the number of vertices in C.

3.2 Clothing Layer Deformation Space Reduction

The deformation of the offset clothing layer is now encoded in d. To reduce the
self-redundancies in d, we perform PCA on d from all frame pairs (Ci,k,Bi,k).
This allows for the clothing deformation to be represented by PCA coefficients
αk. Note we do not assume dk to form a Gaussian distribution. The purpose of
PCA is only to reduce the dimensionality of the space, not to sample from it.

We would like to learn a mapping from semantic parameters of interest,
denoted by γ,to the clothing layer deformation. After obtaining a low dimen-
sional representation, this is equivalent to finding a mapping from γ to α.
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The PCA representation of the offsets successfully gets rid of self-redundancies
in clothing layer. Furthermore, in PCA space, we can choose the number of
principal components to use in order to balance the speed, storage, and quality.

3.3 Neural Network for Regression

To allow control of the offset clothing layer deformation, we study the relation-
ship between its variation and semantic parameters γ, where γ can be body
motion, clothing style, clothing material and so on. We treat this as a regression
problem that learns the mapping from γ to α. Due to the nonlinearity of the
problem itself and the potentially large sample size, we choose a fully connected
two-hidden-layer neural network to train the regression, with the size of input
layer equal to the dimensionality of the semantic parameters and the size of out-
put layer equal to the number of principal component used. The sizes of the first
and second hidden layers are 60 and 80, respectively. In our implementation,
the neural network is implemented with OpenNN [1]. For each experiment, we
set 20% of the frames from training data as validation frames. We choose mean
square error as loss function, quasi-Newton method as optimization strategy,
and stop the training once validation error starts to increase.

4 Method Validation

To validate each step of our method, we train on small training sets consisting
of a single sequence each (n = 1) using ten existing sequences of the Adobe [33]
and Inria [38] datasets showing fast, large-scale motion in ample clothing as this
is especially challenging to model. In all following experiments, body motion is
parameterized by global speed, joint angles and joint angular speed. For offset
clothing layer extraction, we show that we can extract the entire clothing layer
regardless of the clothing geometry. Then we validate our PCA step to show that
it greatly reduces the deformation space with acceptable reconstruction error.
Finally, we validate the neural network regression by showing that both training
error and testing error are satisfying.

4.1 Offset Clothing Layer Extraction

We model the offset by first constructing a sparse correspondence between cloth-
ing and body, and then propagating the correspondence to each clothing vertex.
Figure 1 (left) shows an example of the sparse and fuzzy association. Note that if
we only use sparse association to store the information about clothing deforma-
tion, the information of the lower part of the dress is not recorded sufficiently.

The geometry of the clothing layer and the underlying human body differs
significantly in the case of a skirt. Hence, nf = 1 may not be meaningful and
robust enough as having a single associated vertex is prone to form a seam in
the middle of the front and the back faces of the skirt as some vertices around
those areas are associated to the left thigh while neighboring ones are associated
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sparse association fuzzy association vertex on cloth nf = 1 nf = 4 nf = 16

Fig. 1. Left: associations of clothing and body layer (nf = 1), where color indicates
the association. Right: a blue vertex on the skirt is associated to body vertices with
different nf . The intensity of the blue color is proportional to the association weight.
(Color figure online)

Fig. 2. Comparison to [25]. From left to right: original acquisition, transferred clothing
layer with our method, and with [25]. Both methods produce very similar results.

to the right thigh. Using higher nf , such a skirt vertex is associated to both legs,
therefore preventing seams. This is illustrated in Fig. 1 (right).

We use our fuzzy association to directly transfer the offset clothing layer on
data from Pons-Moll et al. [25]. Compared with their work, our method achieves
similar results, shown in Fig. 2, without the need for manual intervention.

4.2 PCA Deformation Space Reduction

In our experiments, the dimension of the offset clothing layer vector generally
varies from 20,000 to 80,000. To reduce this dimensionality, we perform PCA
on the extracted offset of the clothing layer. To analyze how many PCs to keep,
we reconstruct the sequence with different numbers of PCs. We compare the
reconstruction against the original sequence by computing the average vertex
position error. Table 1 gives errors per sequence for different numbers of principal
components. Figure 3 visualizes the effect of increasing the number of PCs for
one example. Such an analysis allows to choose the number of PCs to satisfy
requirements on accuracy, speed or memory usage. In all following experiments,
when training on a single subject with fixed clothing, we use 40 PCs, and when
training on multiple subjects or multiple clothings, we use 100PCs as we found
these datasets to contain more variation
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Table 1. Reconstruction error (mm) using different numbers of principal components.

Seq Bounc. Crane Mar. 1 Squat 1 Samba Swing s1 m. w. s1 w. w. s6 m. w. s6 w. w.

1 PC 32.48 26.53 22.95 46.33 24.05 30.42 27.24 23.92 28.20 26.38

5 PC 22.52 14.87 13.94 18.94 14.75 19.68 13.73 13.28 12.94 12.25

40 PC 6.49 3.08 2.68 2.67 2.40 3.62 2.17 2.30 1.38 1.94

All PC 0.10 0.11 0.11 0.09 0.10 0.09 0.13 0.12 0.09 0.13

Fig. 3. Left: curve shows that the average reconstruction error drops when more prin-
cipal components are used. Right: one example frame from bouncing sequence with the
first row showing PCA reconstruction and the second row showing the error in color.
From left to right 1 PC, 5 PCs and 40 PCs. Blue = 0mm, red >= 50mm.

4.3 Neural Network Regression

We validate our neural network by regressing 40 PCA coefficients to human body
motion. Each sequence consists of 95–275 frames. We choose 20% of the frames
from each sequence as testing data and the remaining 80% to be the training
data. After training, we feed the motion parameters for all frames to the network
and get 40 PCA coefficients for each frame to reconstruct the sequence. This
reconstruction is then compared against the ground truth. Table 2 shows the
quantitative error of the regression. The training error and the prediction error
are generally low and close to the reconstruction error when using 40 principal
components, which means our neural network regression is accurate and does
not overfit the training data. Figure 4 shows the visual result of some examples
of the regression error. Both training and prediction error are almost always low.

Table 2. Reconstruction error based on regression for each sequence.

Seq Bounc. Crane Mar. 1 Squat 1 Samba Swing s1 m. w. s1 w. w. s6 m. w. s6 w. w.

Etrain 9.95 4.71 3.54 6.57 4.27 7.72 10.87 9.09 7.71 5.97

Epred 10.27 4.28 3.93 4.31 7.44 5.95 8.57 9.21 8.19 4.82
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Fig. 4. Regression on two sequences. First row shows reconstruction. Second row shows
vertex error on ground truth meshes. The two columns in the red box are predictions
from testing frames; others are from training frames. Blue = 0 mm, red >= 50 mm.
(Color figure online)

5 Applications

This section shows the virtue of the proposed method by applying it to three
scenarios. The first trains from multiple sequences of the same actor in the
same clothing and uses this to synthesize similar clothing on new body shapes
and under new motions. The second trains from multiple simulated sequences
showing the same actor in clothing of different materials and uses this to change
the material of the clothing. The third application trains from multiple sequences
of different actors in the same type of clothing and uses this to change the fit of
the clothing. This entirely new way of synthesizing clothing is possible thanks to
our regression to semantic parameters. For better visualizations of the results,
refer to the supplemental material.

5.1 Clothing Dynamics Modeling

Change body shape After extracting the offset of the clothing layer, we can add
this offset to any body shape under normalized pose and update the pose of
the body with clothing using the relations of Eqs. 3 and 4. Figure 5 shows two
examples of changing the body shape of a given motion sequence.

Change Clothing Dynamics. In this part, we trained our regression model from
multiple sequences of the same actor in the same clothing acquired using dense
3D motion capture. We use the regression model to learn the mapping from
the body motion parameters to the PCA coefficients of the offset vectors. To
synthesize new sequences, we feed new motion parameters to the model. Figure 6
shows examples of the resulting changes in the clothing dynamics. Note that
realistic wrinkling effects are synthesized.
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Fig. 5. Change body shape. From left to right: original clothing mesh, estimated body,
changed body, new clothing mesh.

Fig. 6. Examples of changing clothing dynamics. The brighter gray meshes are not in
the training data but generated by feeding the motion parameters of the darker gray
meshes to the neural network trained on sequences containing the brighter gray clothes.

5.2 Clothing Material Modeling

This section shows how to model material parameters using our method. As
material parameters are not readily available for captured data, we train from
synthetic data generated using a state-of-art physical simulator [19]. For train-
ing, we simulate 8 sequences of the same garment pattern, worn by the same
actor in a fixed motion, with varying materials. We choose a detailed garment
pattern with garment-to-garment interaction during motion as this generates
rich wrinkles that are challenging to model. The materials were generated using
39 parameters [35], and to allow for easier control of the parameters, we reduced
their dimensionality to 4 using PCA before regressing from material parameter
space to offset space. We used 7 materials to train our regression model, and left
1 material for testing. To avoid over-fitting to these 7 material points, we added
a Gaussian random noise to the material parameters for all frames when training
the regression. After training, we predicted the clothing layer from the motion
parameters and new material parameters. Since for simulated data, segmented
and aligned clothing and body meshes are available for each frame, our method
uses this information. That is, we use the clothing layer directly and fit the
S-SCAPE model to the mesh of the undressed body model used for simulation.

Figure 7 shows the comparison between our prediction and the ground truth
for the test sequence. Note that a globally correct deformation is predicted even
though the cloth deformation is far from the body shape. In spite of the glob-
ally correct deformation, our prediction lacks some detailed wrinkles. We sus-
pect this detailed loss is due to dimension reduction on both material space and
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deformation space, as well as the limitation of the training data size. For qualita-
tive validation, we randomly sampled material parameters in the PCA subspace
and used them to synthesize new sequences. Figure 8 shows some examples. Note
that visually plausible sequences are synthesized.

Fig. 7. Comparison to ground truth. First row: our predicted clothing deformation.
Second row: ground truth colored with per-vertex error. Blue = 0 cm, red = 10 cm.
(Color figure online)

Fig. 8. Two synthesized sequences with new material parameters.

5.3 Clothing Fit Modeling

The proposed analysis is versatile in terms of the parameters of interest we
wish to regress to. This allows for entirely new applications if sufficient training
data is available. We demonstrate this by explicitly modeling the clothing size
variation from acquisition data, which has not been done to be best of our
knowledge. For training, we use 8 sequences of an extended version of the Inria
dataset [38] of different subjects (4 male and 4 female) wearing different shorts
and T-shirts while walking. These sequences are tracked with a common mesh
topology. For each sequence, we manually assign a three dimensional vector
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to describe the size of the clothing, containing the width and length of the
shorts and the size of the T-shirt. To model relative fit rather than absolute size,
the sizes are expressed as ratio to corresponding measurements on the body.
During training, to avoid over-fitting to these 8 sizing points, we add a Gaussian
random noise to each size measurement. The regression learns a mapping from
the body motion and size parameters to the PCA of the offsets. After training,
new size parameters along with a motion allow to synthesize new sequences.
Figure 9 shows modifications of the clothing fit on one frame of a sequence. Note
that although our method learned certain clothing size variations, the three
dimensions of our measurements are not completely separated, as e.g. the “large
T-shirt” also introduces wider shorts. We believe this is caused by the limited
size of training data. Since the regression also models body motion, our method
not only captures size variation, but also dynamic deformation caused by motion.
Figure 10 shows examples of this.

original wide shorts tight shorts long shorts short shorts large T-shirt small T-shirt

Fig. 9. Change the clothing fit shown on one frame of a sequence.

Fig. 10. Our approach captures dynamics caused by both clothing fit and body motion.

6 Conclusion

In this paper we have presented a statistical analysis and modeling of the cloth-
ing layer from sets of dense 3D sequences of human motion. Our analysis shows
PCA to be a suitable tool to compress the geometric variability information con-
tained in the clothing layer. The regression component of our model is shown to
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properly capture the relation between layer variations and semantic parameters
as well as the underlying motion of the captured body. This allows predictions of
the clothing layer under previously unobserved motions, with previously unob-
served clothing materials or clothing fits. Our model opens a large number of
future possibilities. First, it can be extended to include more variability under
different clothing worn by a large number of subjects. Second, more elaborate
regression and clothing layer motion subspace models could be devised. Third,
several semantic regression groups could be simultaneously considered.
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