
Fast Light Field Reconstruction
with Deep Coarse-to-Fine Modeling

of Spatial-Angular Clues

Henry Wing Fung Yeung1, Junhui Hou2(B), Jie Chen3, Yuk Ying Chung1,
and Xiaoming Chen4

1 School of Information Technologies, University of Sydney, Sydney, Australia
2 Department of Computer Science, City University of Hong Kong,

Kowloon, Hong Kong
jh.hou@cityu.edu.hk

3 School of Electrical and Electronics Engineering, Nanyang Technological
University, Singapore, Singapore

4 School of Information Science and Technology,
University of Science and Technology of China, Hefei, China

Abstract. Densely-sampled light fields (LFs) are beneficial to many
applications such as depth inference and post-capture refocusing. How-
ever, it is costly and challenging to capture them. In this paper, we
propose a learning based algorithm to reconstruct a densely-sampled LF
fast and accurately from a sparsely-sampled LF in one forward pass. Our
method uses computationally efficient convolutions to deeply character-
ize the high dimensional spatial-angular clues in a coarse-to-fine manner.
Specifically, our end-to-end model first synthesizes a set of intermediate
novel sub-aperture images (SAIs) by exploring the coarse characteristics
of the sparsely-sampled LF input with spatial-angular alternating con-
volutions. Then, the synthesized intermediate novel SAIs are efficiently
refined by further recovering the fine relations from all SAIs via guided
residual learning and stride-2 4-D convolutions. Experimental results on
extensive real-world and synthetic LF images show that our model can
provide more than 3 dB advantage in reconstruction quality in average
than the state-of-the-art methods while being computationally faster by
a factor of 30. Besides, more accurate depth can be inferred from the
reconstructed densely-sampled LFs by our method.

Keywords: Light field · Deep learning
Convolutional neural network · Super resolution · View synthesis

1 Introduction

Compared with traditional 2-D images, which integrate the intensity of the light
rays from all directions at a pixel location, LF images separately record the light
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ray intensity from different directions, thus providing additional information
on the 3-D scene geometry. Such information is proportional to the angular
resolution, i.e. the number of directions of the light rays, captured by the LF
image. Densely sampled LF, with high resolution in the angular domain, contains
sufficient information for accurate depth inference [1–4], post-capture refocusing
[5] and 3D display [6,7].

LF images [8,9] can be acquired in a single shot using camera arrays [10]
and consumer hand-held LF cameras such as Lytro [11] and Raytrix [12]. The
former, due to the large number of sensors, can capture LF with higher spatial
resolution while being expensive and bulky. Through multiplexing the angular
domain into the spatial domain, the later is able to capture LF images with a
single sensor, and thus are cheaper and portable. However, due to the limited
sensor resolution, there is a trade-off between spatial and angular resolution. As
a result, these cameras cannot densely sample in both the spatial and angular
domains.

Reconstruction of a densely-sampled LF from a sparsely-sampled LF input is
an on-going problem. Recent development in deep learning based LF reconstruc-
tion models [13,14] have achieved far superior performance over the traditional
approaches [1–4]. Most notably, Kalantari et al. [13] proposed a sequential con-
volutional neural network (CNN) with disparity estimation and Wu et al. [14]
proposed to use a blur-deblur scheme to counter the problem of information
asymmetry between angular and spatial domain and a single CNN is used to map
the blurred epipolar-plane images (EPIs) from low to high resolution. However,
both approaches require heavy pre- or post-processing steps and long runtime,
making them impractical to be applied in consumer LF imaging system.

In this paper, we propose a novel learning based model for fast reconstruction
of a densely-sampled LF from a very sparsely-sampled LF. Our model, an end-to-
end CNN, is composed of two phases, i.e., view synthesis and refinement, which
are realized by computationally efficient convolutions to deeply characterize the
spatial-angular clues in a coarse-to-fine manner. Specifically, the view synthe-
sis network is designed to synthesize a set of intermediate novel sub-aperture
images (SAIs) based on the input sparsely-sampled LF and the view refinement
network is deployed for further exploiting the intrinsic LF structure among the
synthesized novel SAIs. Our model does not require disparity warping nor any
computationally intensive pre- and post-processing steps. Moreover, reconstruc-
tion of all novel SAIs are performed in one forward pass during which the intrinsic
LF structural information among them is fully explored. Hence, our model fully
preserves the intrinsic structure of reconstructed densely-sampled LF, leading to
better EPI quality that can contribute to more accurate depth estimation.

Experimental results show that our model provides over 3 dB improvement
in the average reconstruction quality while requiring less than 20 s on CPU,
achieving over 30× speed up, compared with the state-of-the-art methods in
synthesizing a densely-sampled LF from a sparsely-sampled LF. Experiment also
shows that the proposed model can perform well on large baseline LF inputs and
provides substantial quality improvement of over 3 dB with extrapolation. Our
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algorithm not only increases the number of samples for depth inference and
post-capture refocusing, it can also enable LF to be captured with higher spatial
resolution from hand-held LF cameras and potentially be applied in compression
of LF images.

2 Related Work

Early works on LF reconstruction are based on the idea of warping the given SAIs
to novel SAIs guided by an estimated disparity map. Wanner and Goldluecke
[1] formulated the SAI synthesis problem as an energy minimization problem
with a total variation prior, where the disparity map is obtained through global
optimisation with a structure tensor computed on the 2-D EPI slices. Their app-
roach considers disparity estimation as a separate step from SAI synthesis, which
makes the reconstructed LF heavily dependent on the quality of the estimated
disparity maps. Although subsequent research [2–4] has shown significantly bet-
ter disparity estimations, ghosting and tearing effects are still present when the
input SAIs are sparse.

Kalantari et al. [13] alleviated the drawback of Wanner and Goldluecke [1] by
synthesizing the novel SAIs with two sequential CNNs that are jointly trained
end-to-end. The first CNN performs disparity estimation based on a set of depth
features pre-computed from the given input SAIs. The estimated disparities are
then used to warp the given SAIs to the novel SAIs for the second CNN to
perform color estimation. This approach is accurate but slow due to the com-
putation intensive depth features extraction. Furthermore, each novel SAI is
estimated at a separate forward pass, hence the intrinsic LF structure among
the novel SAIs is neglected. Moreover, the reconstruction quality depends heav-
ily upon the intermediate disparity warping step, and thus the synthesized SAIs
are prone to occlusions.

Advancement in single image super-resolution (SISR) is recently made pos-
sible by the adoption of deep CNN models [15–18]. Following this, Yoon et al.
[19,20], developed a CNN model that jointly super-resolves the LF in both the
spatial and angular domain. This model concatenates at the channel dimension
a subset of the spatially super-resolved SAIs from a CNN that closely resembles
the model proposed in [15]. The concatenated SAIs are then passed into a sec-
ond CNN for angular super-resolution. Their approach is designed specificity for
scale 2 angular super-resolution and can not flexibly adapt to perform on very
sparsely-sampled LF input.

Recently, Wu et al. [14] developed a CNN model that inherits the basic
architecture of [15] with an addition residual learning component as in [16]. Using
the idea of SISR, their model focuses on recovering the high frequency details of
the bicubic upsampled EPI while a blur-deblur scheme is proposed to counter
the information asymmetry problem caused by sparse angular sampling. Their
model is adaptable to different devices. Since each EPI is a 2-D slice in both the
spatial and angular domains of the 4-D LF, EPI based model can only utilize
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Fig. 1. LF captured with a single sensor device. The angular information of an LF
is captured via the separation of light rays by the micro-lens array. The resulting LF
can be parameterized by the spatial coordinates and the angular coordinates, i.e. the
position of the SAI.

SAIs from the same horizontal or vertical angular coordinate of the sparsely-
sampled LF to recover the novel SAIs in between, thus severely restricting the
accessible information of the model. For the novel SAIs that do not fall within
the same horizontal or vertical angular coordinate as the input SAIs, they are
reconstructed based on the previously estimated SAIs. As a result, these SAIs
are biased due to input errors. Moreover, due to the limitation in the blurring
kernel size and bicubic interpolation, this method cannot be applied to sparsely-
sampled LF with only 2 × 2 SAIs or with disparity larger than 5 pixels.

3 The Proposed Approach

3.1 4-D Light Field and Problem Formulation

4-D LF can be represented using the two-plane parameterization structure, as
illustrated in Fig. 1, where the light ray travels and intersects the angular plane
(s, t) and the spatial plane (x, y) [21]. Let I ∈ R

W×H×M×N×3 denote an LF
with M ×N SAIs of spatial dimension W ×H × 3, and I(:, :, s, t, :) ∈ R

W×H×3

be the (s, t)-th SAI (1 ≤ s ≤ M , 1 ≤ t ≤ N).
Densely-sampled LF reconstruction aims to construct an LF I ′ ∈

R
W×H×M ′×N ′×3 including a large number of SAIs, from an LF I containing

a small number of SAIs , where M ′ > M and N ′ > N . Since the densely-
sampled LF I ′ also contains the set of input SAIs, denoted as K, the SAIs to
be estimated is therefore reduced to the set of (M ′ × N ′ − M × N) novel SAIs,
denoted as N .

Efficient modelling of the intrinsic structure of LF , i.e. photo-consistency,
defined as the relationship of pixels from different SAIs that represent the
same scene point, is crucial for synthesising high quality LF SAIs. However,
real-world scenes usually contain factors such as occlusions, specularities and
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Fig. 2. The workflow of reconstructing a densely-sampled LF with 8 × 8 SAIs from a
sparsely-sampled LF with 2×2 SAIs. Our proposed model focuses on reconstructing the
luma components (Y) of the novel SAIs, while angular bilinear interpolation recovers
the other two chrominance components (Cb and Cr). Note that the reshape operations
in the view synthesis network are included for understanding of the data flow and are
not required in actual implementation.

non-Lambertian lighting, making it challenging to characterize this structure
accurately. In this paper, we propose a CNN based approach for efficient char-
acterisation of spatial-angular clues for high quality reconstruction of densely
sampled LFs.

3.2 Overview of Network Architecture

As illustrated in Fig. 2, we propose a novel CNN model to provide direct end-
to-end mapping between the luma component of the input SAIs, denoted as
KY , and that of the novel SAIs, denoted as ̂NY . Our proposed network consists
of two phases: view synthesis and view refinement. The view synthesis network,
denoted as fS(.), first synthesizes the whole set of intermediate novel SAIs based
on all input SAIs. The synthesized novel SAIs are then combined with the input
SAIs to form a 4-D LF structure using a customised reshape-concat layer. This
intermediate LF is then fed into the refinement network, denoted as fR(.), for
recovering the fine details. At the end, the estimated fine details are added
to the intermediate synthesized SAIs in an pixel-wise manner to give the final
prediction of the novel SAIs ̂NY . The relations between the inputs and outputs
of our model is represented as:

̂NY = fS(KY ) + fR(fS(KY ),KY ). (1)
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Note that the full color novel SAIs ̂N are obtained from combining ̂NY with
angular bilinear interpolation of the other two chrominance components, i.e.,
Cb and Cr. Contrary to the previous approaches that synthesize a particular
novel SAI at a each forward pass [13], and an EPI of a row or column of novel
SAIs at each forward pass [14], our approach is capable of jointly producing all
novel SAIs at one pass to preserve the intrinsic LF structure among them. Our
network is full 4-D convolutional and uses Leaky Relu with the parameter of 0.2
for activation. Table 1 provides a summary of the network architecture.

3.3 View Synthesis Network

The view synthesis network estimates a set of intermediate novel SAIs by uncov-
ering the coarse spatial-angular clues carried by the limited number of SAIs of
the input sparsely-sampled LF. This step takes in all input SAIs from the given
LF for the estimation of novel SAIs, and thus it can make full use of avail-
able information on the structural relationship among SAIs. For achieving this,
it is necessary to perform convolution on all both the spatial and the angular
dimensions of the input LF.

4-D convolution is a straightforward choice for this task. However, for this
particular problem, the computational cost required by 4-D convolution makes
training such a model impossible in a reasonable amount of time. Pseudo filters
or separable filters, which reduce model complexity by approximating a high
dimensional filter with filters of lower dimension, have been applied to solve
different computer vision problems, such as image structure extraction [22], 3-D
rendering [23] and video frame interpolation [24]. This is recently adopted in
[25] for LF material classification, which verifies that the pseudo 4-D filters can
achieve similar performance as 4-D filters.

For preventing potential overfitting and long training time from the use of
full 4-D filter while characterizing 4-D information of LF, we adopt the pseudo
4-D filter which approximates a single 4-D filtering step with two 2-D filters
that perform convolution on the spatial and the angular dimensions of the LF
in an alternating manner. Such a design requires only the computation of 2/n2

of a 4-D convolution while still utilizing all available information from the input
SAIs.

In the synthesis network, spatial-angular alternating convolutions are
adopted only for intermediate feature extraction. For the initial feature extrac-
tion step and the novel SAIs synthesis step, 4-D convolution is applied since the
computational complexity is less. Such a design obtains a significant reduction in
parameter size as well as computational cost. Moreover, the low computational
cost also benefits from that feature extraction is performed at the coarse angular
resolution of M × N as opposed to [14] at the fine level of M ′ × N ′.
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Table 1. Model specification for reconstructing a densely-sampled LF with 8× 8 SAIs
from a sparsely-sampled LF with 2 × 2 SAIs on the luma component. The first two
dimensions of the filters, input and output data tensor correspond to the spatial dimen-
sion whereas the third and the forth dimension correspond to the angular dimension.
The fifth dimension of the output tensor denotes the number of feature maps in the
intermediate convolutional layers while representing the number of novel SAIs at the
final layer. Stride and Paddings are given in the form of (Spatial/Angular). All con-
volutional layers contain biases. Note that the intermediate LF reconstruction step is
performed with reshape and concatenation operations to enable back-propagation of
loss from the view refinement network to the view synthesis network.

Filter size/operation Input Size Output Size Stride Pad

sparsely-sampled LF input - - (64, 64, 2, 2, 1) - -

View synthesis netowrk

Feature extraction (3, 3, 3, 3, 1, 64) (64, 64, 2, 2, 1) (64, 64, 2, 2, 64) 1/1 1/1

Alternating filtering (×L)

Spatial Sl, l ∈ {1, ..., L} (3, 3, 1, 1, 64, 64) (64, 64, 2, 2, 64) (64, 64, 2, 2, 64) 1/1 1/0

Angular Al, l ∈ {1, ..., L} (1, 1, 3, 3, 64, 64) (64, 64, 2, 2, 64) (64, 64, 2, 2, 64) 1/1 0/1

Novel SAIs synthesis (3, 3, 2, 2, 64, 60) (64, 64, 2, 2, 64) (64, 64, 1, 1, 60) 1/1 1/0

Intermediate LF Reshape & concat (64, 64, 2, 2, 1) (64, 64, 8, 8, 1) - -

Reconstruction (64, 64, 1, 1, 60)

View refinement network

Angular Dim. Reduction 1 (3, 3, 2, 2, 1, 16) (64, 64, 8, 8, 1) (64, 64, 4, 4, 16) 1/2 1/0

Angular Dim. Reduction 2 (3, 3, 2, 2, 16, 64) (64, 64, 4, 4, 16) (64, 64, 2, 2, 64) 1/2 1/0

Fine details recovery (3, 3, 2, 2, 64, 60) (64, 64, 2, 2, 64) (64, 64, 1, 1, 60) 1/1 1/0

Novel SAIs reconstruction Element-wise sum (64, 64, 1, 1, 60) (64, 64, 1, 1, 60) - -

(64, 64, 1, 1, 60)

3.4 View Refinement Network

In the view synthesis phase, novel SAIs are independently synthesized, and the
relationship among them is not taken into account. Therefore, a view refinement
network is designed to further exploit the relationship among the synthesized
novel SAIs from the intermediate LF, which is expected to contribute positively
to the reconstruction quality of the densely-sampled LF. This can be considered
as a regularizer that imposes the LF structure on the synthesized SAIs.

Inspired by the success of residual learning on image reconstruction [14,16–
18], we equip our view refinement network with guided residual learning that
is specifically designed for the LF data structure. Typical residual learning
attempts to learn a transformation R(·) to recover the residual R(I ′) for the
input data I ′, i.e. the intermediate LF, as shown in Eq. (2). However, the input to
the refinement network consists of a set of SAIs KY ⊂ I ′ from the given sparsely-
sampled LF, which is absolutely correct, i.e. R(KY ) = 0, and a set of synthesized
SAIs N ′

Y = fS(KY ) ⊂ I ′, which is erroneous. Hence, residual learning on KY

is unnecessary. Guided residual learning can be formulated as a typical residual
learning on N ′

Y with the guidance from the additional input, KY , as shown in
Eq. (3).

̂IY = I ′ + R(I ′) (2)
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̂NY = N ′
Y + R(N ′

Y |KY ) (3)

Guided residual learning has the following benefits: (i) KY , as a set of ground-
truth SAIs, offers correct complementary information of the scene; (ii) learning
0 residuals for KY is not performed; and (iii) By placing KY and N ′

Y in the
form of I ′, a densely sampled intermediate LF, for input to the second stage
refinement network, it encourages the first stage, i.e., view synthesis network,
to generate SAIs that preserve the LF structure exhibiting in the EPI shown in
Fig. 1(d).

Since the angular dimension increases significantly from M × N to M ′ × N ′

after the view synthesis processes, alternating convolution will incur a substan-
tially higher computation cost that increases linearly in angular dimension. For
reducing the computation to a manageable level, stride-2 4-D convolution is used
for efficient angular dimension reduction while the feature map number is set
to increase gradually. Note that to allow back-propagation, an intermediate 4-D
LF is reconstructed from the previously synthesized novel SAIs and the input
SAIs via a customised reshape-concat layer. The refinement details of all novel
SAIs are independently estimated at the final 4-D convolution layer and are
added to the previously synthesized intermediate novel SAIs to give the final
reconstructed novel SAIs.

3.5 Training Details

The training objective is to minimise the L2 distance between all reconstructed
novel SAIs ̂NY and their respective ground-truth NY :

L2(NY , ̂NY ) =
∑

x

∑

y

∑

s

∑

t

(

̂NY (x, y, s, t) − NY (x, y, s, t)
)2

.

We trained a model for each task on the training set with 100 scenes provided
by Kalantari et al. [13]1. All images were taken with a Lytro Illum camera and
were decoded to 14 × 14 SAIs with spatial resolution 376 × 541. Since the three
SAIs from each side are usually black, we only adopted the middle 8 × 8 SAIs
for training and testing as done in [13].

Training LFs were spatially cropped to 64×64 patches with stride 1, giving a
maximum of approximately 15,000,000 training samples. Moreover, we adopted
stochastic gradient descent to optimize the model, and the batch size was set to
1. The spatial resolution of the model output is kept unchanged at 64 × 64 with
padding of zeros.

We implemented the model with the MatConvNet toolbox [26] in MATLAB
and trained it with the GTX 1080 Ti GPU. Random filter weights under the
MSRA method [27] were used to initialize our model, while biases were initial-
ized to 0. Throughout training, momentum parameter was set to 0.9. Depending

1 http://cseweb.ucsd.edu/∼viscomp/projects/LF/papers/SIGASIA16.

http://cseweb.ucsd.edu/~viscomp/projects/LF/papers/SIGASIA16
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Fig. 3. Illustration of inputs (red blocks) and outputs (yellow blocks) for different
tasks. From left to right: (a) 3× 3 – 7× 7, (b) 3× 3 – 9× 9, (c) 2× 2 – 8× 8, (d) 2× 2
– 8 × 8 extrapolation-1, (e) 2 × 2 – 8 × 8 extrapolation-2. (Color figure online)

on model depth, a learning rate between 1e−6 to 2e−5 was applied without
weight decay, and epoch number was set between 8000 to 12000 each with 1000
iterations. Training time increases linearly with the number of alternating con-
volutions, ranging from around 1 day for model with 1 alternating convolution
and 10 days for model with 16 alternating convolutions.

4 Experimental Results

Our model was compared with two state-of-the-art CNN based methods that
are specifically designed for densely-sampled LF reconstruction, i.e., Kalantari
et al. [13] and Wu et al. [14]. Comparisons were performed over three different
tasks, shown in Fig. 3: 3 × 3 – 7 × 7, 3 × 3 – 9 × 9 and 2 × 2 – 8 × 8. Task
M ×N −M ′ ×N ′ stands for reconstructing densely-sampled LFs with M ′ ×N ′

SAIs from sparsely-sampled LFs with M × N SAIs. Moreover, we investigated
the effect of the positions of SAIs involved in the sparsely-sampled LF input on
the reconstruction quality via task 2 × 2 – 8 × 8.

Both quantitative and qualitative results will be shown in the following sub-
sections. Reconstruction quality is measured with PSNR and SSIM, averaged
over all synthesised novel SAIs. Due to limited space, we only report the average
result for all data entries in each dataset. The (5, 5)-th SAI of the reconstructed
densely-sampled LF is chosen for display. Both training and testing codes are
publicly available2.

4.1 3 × 3 – 7 × 7 Light Field Reconstruction

For the task 3 × 3 – 7 × 7, we compared with Kalantari et al. [13] and Wu et al.
[14]. We set the number of spatial-angular alternating convolutional layers to 4.
Comparisons were performed on the 30 Scenes dataset [13], the reflective-29 and
occlusion-16 LFs from the Stanford Lytro Lightfield Archive [28] and Neurons
20× from the Stanford Light Field microscope dataset [29]. The reconstruction

2 https://github.com/angularsr/LightFieldAngularSR.

https://github.com/angularsr/LightFieldAngularSR
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Table 2. Quantitative comparisons of the reconstruction quality of the proposed model
and the state-of-the-art methods under the task 3 × 3 – 7 × 7.

Algorithm 30 scenes Reflective-29 Occlusions-16 Neurons 20× Average

Wu et al. [14] 41.02/0.9875 46.10/0.9929 38.86/0.9852 29.34/0.9378 40.75/0.9861

Kalantari et al. [13] 43.73/0.9891 46.54/0.9953 37.97/0.9827 28.45/0.9274 43.18/0.9872

Ours 4L 44.53/0.9900 47.85/0.9960 39.53/0.9873 30.69/0.9518 44.06/0.9889

Table 3. Quantitative comparisons of reconstruction quality of the proposed model,
Kalantari et al. and Wu et al. over Buddha and Mona from the HCI dataset.

Algorithm Buddha Mona Average

Wu et al. [14]/SC 41.67/0.9975 42.39/0.9973 42.03/0.9974

Wu et al. [14]/SRCNN 41.50/0.9971 42.64/0.9976 42.07/0.9974

Wu et al. [14] 43.20/0.9980 44.37/0.9982 43.79/0.9981

Kalantari et al. [13] 42.73/0.9844 42.42/0.9858 42.58/0.9851

Ours 8L 43.77/0.9872 45.67/0.9920 44.72/0.9896

quality measured in PSNR and SSIM is shown in Table 2. For each LF, the results
are the average of the luma component of all 40 novel SAIs. Our proposed model
performs better for all datasets than the two comparing methods: with 0.88 dB
and 3.31 dB reconstruction advantage over Kalantari et al. [13] and Wu et al.
[14], respectively. A 2.3 dB advantage for the Neurons 20× dataset shows that
the proposed LF reconstruction model generalizes well to different LF capturing
devices.

4.2 3 × 3 – 9 × 9 Reconstruction on Large Disparity Light Field

To demonstrate that our model can work on LFs with larger disparities, the
proposed model was modified for task 3 × 3 – 9 × 9 and was trained with LFs
from the HCI dataset [30], which are created with Blender software [31], with
larger disparities compared with Lytro Illum captures. The LFs Budda and Mona
are used for testing and the rest are used for training. For this task, we set the
number of spatial-angular alternating convolution layers to 8. Due to limited
number of training images, data augmentation was applied for obtaining more
data training samples.

Comparison results with [14] are reported in Table 3. Using only 7 training
LFs, our proposed method provides superior reconstruction quality on the luma
component, averaged across all 72 novel SAIs.

4.3 2 × 2 – 8 × 8 Light Field Reconstruction

We carried out comparison with the method by Kalantari et al. [13] retrained
with the same training dataset as ours. The method by Wu et al. [14] cannot
be compared since their approach requires 3 views in each angular dimension
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Table 4. Quantitative comparisons of reconstruction quality of the proposed model
and Kalantari et al. under task 2 × 2 – 8 × 8 over 222 real-world LFIs.

Algorithm 30 Scenes EPFL Reflective Occlusions Average

Kalantari et al. [13] 38.21/0.9736 38.70/0.9574 35.84/0.9416 31.81/0.8945 36.90/0.9452

Ours 16L 39.22/0.9773 39.57/0.9637 36.47/0.9472 32.68/0.9061 37.76/0.9521

to provide enough information for the bicubic interpolation step. Our testing
dataset contains 30 test scenes from [13] (See footnote 1) and 118 LFs from the
EPFL dataset [32]3 with diversified real-world scenes. To further evaluate the
robustness of the algorithms, we also included the Refractive and Reflective Sur-
faces and the Occlusions categories from the Stanford Lytro Lightfield Archive
[28], which contain 31 and 43 LFs, respectively. Note that the 8 LFs from the
Occlusions category and 1 LF from the Refractive and Reflective Surfaces cat-
egory were removed from testing as they were used for training. This test set
contains 222 LFs which is sufficient to provide objective evaluation of model
performance.

Reconstruction quality is measured with PSNR and SSIM averaged over the
RGB channels, and over all 60 novel SAIs. As shown in Table 4, our proposed
model with 16 alternating convolutions in the synthesis network obtains an aver-
age of 37.76 dB, 0.86 higher than that of Kalantari et al. [13].

Figure 4 further visually demonstrates that our algorithm is able to obtain
better reconstruction quality compare with the state-of-the-art. As shown in
the error maps, Kalantari et al. produces artifacts near the boundaries of the
foreground objects. In most cases, thin edges cannot be reconstructed correctly,
leaving blurred and overlapped regions between occluders and the background.
Moreover, since our method fully explores the relationship among all SAIs in the
reconstruction process, the LF structure is well preserved, leading to better EPI
quality that can contribute to more accurate depth estimation.

4.4 2 × 2 – 8 × 8 Light Field Reconstruction with Extrapolation

Figures 5(a) and (b) show the average quality of each novel SAIs by Kalantari et
al. [13] and the proposed approach under the task 2 × 2 – 8 × 8, where it can be
observed that reconstruction quality of the center SAIs has significantly worse
quality compared with the novel SAIs near the input SAIs. The central view is
furthest away from any of the input SAIs, therefore it poses greatest challenge to
correctly infer the details. Based on this analysis, we investigated the possibility
of combing interpolation and extrapolation for the LF reconstruction, which can
make the average distances from all novel SAIs shorter to the input SAIs.

3 https://jpeg.org/plenodb/lf/epfl/.

https://jpeg.org/plenodb/lf/epfl/
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Fig. 4. Visual comparison of our proposed approach with Kalantari et al. [13] on the
(5, 5)-th synthesised novel SAI for the task 2 × 2 – 8 × 8. Selected regions have been
zoomed on for better comparison. Digital zoom-in is recommended for more visual
details.

We trained two models with the exact same network architecture as Ours 8L,
however, with different input view position configurations as shown in Fig. 3(d)
and (e), which we name as Ours Extra. 1 and Ours Extra. 2, respectively.
Note that for the first model, 1 row and column of SAIs are extrapolated while
for the second model, 2 rows and columns of SAIs are extrapolated.

As shown in Table 5, when our model combines interpolation and extrapo-
lation, an average of 2.5 dB improvement can be achieved for all novel SAIs on
the 222 LFs dataset. Figures 5(c) and (d) also show the average quality of each
novel SAIs by Ours Extra. 1 and Ours Extra. 2, respectively. The significant
gain in reconstruction quality indicates the potential for the proposed algorithm
to be applied on LF compression [33,34].
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Table 5. Quantitative comparisons of reconstruction quality of Ours, Ours Extra.
1, Ours Extra. 2 and Kalantari et al. over 222 real-world LFs. For the proposed
models, the number of spatial-angular alternating convolutions is set to 8.

Algorithm 30 Scenes EPFL Reflective Occlusions Average

Kalantari et al. [13] 38.21/0.9736 38.70/0.9574 35.84/0.9416 31.81/0.8945 36.90/0.9452

Ours 38.88/0.9750 39.29/0.9611 36.52/0.9466 32.58/0.9019 37.55/0.9495

Ours Extra. 1 40.79/0.9820 41.25/0.9705 40.16/0.9667 35.54/0.9275 39.93/0.9632

Ours Extra. 2 40.93/0.9827 41.46/0.9717 40.02/0.9651 35.79/0.9246 40.09/0.9631

Fig. 5. Each subfigure displays the average reconstruction quality measured as PSNR
at different SAI position under the task 2 × 2 – 8 × 8 of different models. The white
blocks indicate the input SAIs. From left to right: (a) Kalantari et al. [13], (b) Ours,
(c) Ours Extra. 1 and (d) Ours Extra. 2.

4.5 Depth Estimation

To verify that the densely-sampled LF generated from our proposed model not
only produces high PSNR for each SAIs, but also well preserves the 3-D geomet-
ric structures among the SAIs, we further applied the depth estimation algorithm
[3] on the reconstructed densely-sampled LF with 8 × 8 SAIs generated from a
sparsely-sampled LF with 2×2 SAIs. Figure 6 shows in each row the depth maps
based on the sparsely-sampled LFs, the densely-sampled LFs from Kalantari et
al., the densely-sampled LFs from our model and the ground-truth densely-
sampled LFs. It can be observed that the depth maps from Ours Extra. 1 are
more accurate than those by Kalantari et al.

4.6 Runtime and Reconstruction Quality vs. Model Depth

The runtime and performance trade-off of our proposed model with different
numbers of alternating convolutions are shown in Fig. 7. We can observe that
the reconstruction quality by our model increases rapidly with the number of
alternating convolutions increasing. Furthermore, the adoption of extrapolation
leads to a significant improvement in reconstruction with a runtime of around
11 s, over 30× speed up compared with Kalantari et al. [13], on an Intel i7-6700K
CPU @ 4.00 GHz without GPU acceleration. Moreover, the scalable structure
in the synthesis network enables a trade-off between the reconstruction quality
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Fig. 6. Visual comparison of the depth estimation results from a sparsely-sampled LF,
reconstructed densely-sampled LF from our proposed approach and Kalantari et al.
[13] and a ground-truth densely-sampled LF.

and speed. For task 2 × 2 – 8 × 8, our model with 16 alternating convolutions
needs approximately 20 s. If speed is of priority, at similar reconstruction quality
to Kalantari et al., our model with 1 alternating convolution can provide over
130× speed up, taking only 3.15 s to process an LF.
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Fig. 7. The trade-off between runtime and reconstruction quality at different model
depth. Execution time in seconds were calculated as the average of 50 tests performed
on an Intel i7-6700K CPU @ 4.00 GHz without GPU acceleration.

5 Conclusion and Future Work

We have presented a novel learning based framework for densely-sampled LF
reconstruction. To characterize the high-dimensional spatial-angular clues within
LF data accurately and efficiently, we have designed an end-to-end trained CNN
that extensively employs spatial-angular alternating convolutions for fast fea-
ture transformation and stride-2 4-D convolutions for rapid angular dimension
reduction. Moreover, our network synthesizes novel SAIs in a coarse-to-fine man-
ner by first reconstructing a set of intermediate novel SAIs synthesized at the
coarse angular dimension, then applying guided residual learning to refine the
intermediate views at a finer level.

Extensive evaluations on real-world and synthetic LF scenes show that our
proposed model is able to provide over 3 dB reconstruction quality in average
than the state-of-the-art methods while being over 30× faster. Especially, our
model can handle complex scenes with serious occlusions well. Moreover, our
model is able to perform well under LFs with larger disparities, and more accu-
rate depth can be inferred from the reconstructed densely-sampled LFs by our
method. Considering the efficiency and effectiveness of the proposed CNN model
in processing LF data, we believe such a design has great potential on LF com-
pression, as well as a wide range of LF image processing tasks, including but
not limited to LF spatial super-resolution, temporal super-resolution and depth
estimation.
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