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Abstract. We study the problem of building models that can transfer
selected attributes from one image to another without affecting the other
attributes. Towards this goal, we develop analysis and a training method-
ology for autoencoding models, whose encoded features aim to disentan-
gle attributes. These features are explicitly split into two components:
one that should represent attributes in common between pairs of images,
and another that should represent attributes that change between pairs
of images. We show that achieving this objective faces two main chal-
lenges: One is that the model may learn degenerate mappings, which
we call shortcut problem, and the other is that the attribute representa-
tion for an image is not guaranteed to follow the same interpretation on
another image, which we call reference ambiguity. To address the short-
cut problem, we introduce novel constraints on image pairs and triplets
and show their effectiveness both analytically and experimentally. In the
case of the reference ambiguity, we formally prove that a model that
guarantees an ideal feature separation cannot be built. We validate our
findings on several datasets and show that, surprisingly, trained neural
networks often do not exhibit the reference ambiguity.

1 Introduction

One way to simplify the problem of classifying or regressing attributes of interest
from data is to build an intermediate representation, a feature, where the infor-
mation about the attributes is better separated than in the input data. Better
separation means that some entries of the feature vary only with respect to one
and only one attribute. In this way, classifiers and regressors would not need to
build invariance to many nuisance attributes. Instead, they could devote more
capacity to discriminating the attributes of interest, and possibly achieve better
performance. We call this task disentangling factors of variation, and we speak
interchangeably of attributes and factors. In addition to facilitating classifica-
tion and regression, this task is beneficial to image synthesis. One could build
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Fig. 1. Illustration of the challenges of attribute transfer. Consider a feature split into
two parts, one representing the viewpoint, the other the car type. For all subfigures,
the viewpoint feature is taken from the leftmost column and the car type feature is
taken from the topmost row. (a) Ideal solution: the viewpoint and the car type are
transferred correctly. (b) Shortcut problem: the car type is not transferred. The car
type information from the image on the top row is ignored. (c) Reference ambiguity:
the blue car has a different viewpoint orientation interpretation compared to the other
car types.

a model to transfer attributes between images by rendering images where some
elements of the input vary only one attribute of the output at a time.

When labeling is possible and available, supervised learning can be used to
solve this task. In general, however, some attributes may not be easily quantifi-
able (e.g. style). Therefore, we consider using weak labeling, where we only know
what attribute has changed between two images, although we do not know by
how much. This type of labeling may be readily available in many cases without
manual annotation. For example, objects in image pairs from a stereo system
are automatically labeled with an unknown viewpoint change. A practical model
that can learn from these labels is an autoencoder (i.e., an encoder-decoder pair)
subject to a reconstruction constraint. In this model the weak labels can be used
to define similarities between subsets of the feature obtained from two input
images. However, training such a model faces two fundamental challenges: one
is that it may learn degenerate encodings, which we call the shortcut problem,
and the other is that attributes extracted from one image must be interpreted
in the same way on another image (e.g., the attribute about the viewpoint of a
car may be mapped to different angles in different car models), which we call
the reference problem. These challenges are illustrated in Fig. 1.

Our contributions can be summarized as follows: (1) We introduce a novel
adversarial training of autoencoders to solve the disentangling task when only
weak labels are available. The discriminator network in the adversarial training
takes image pairs as input. In contrast to [15], our discriminator is not condi-
tioned on class labels, so the number of parameters in our model can be kept
constant; (2) We show analytically and experimentally that our training method
fully addresses the shortcut problem, where all the information is encoded only
in one part of the feature (see Fig. 1b); (3) We show analysis on the reference
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ambiguity, and prove that it is unavoidable in the disentangling task when only
weak labels are used. In Fig. 1c images are characterized by two car attributes:
the viewpoint and the type. In this case, the reference ambiguity means that the
viewpoint extracted from one image can have a different meaning than that of
a different car type. Surprisingly, this ambiguity seems to occur rarely, typically
only when the data dependence on the attribute of interest is complex.

2 Related Work

In this paper we use autoencoders as the main model to build features and to
synthesize new data. Therefore, we briefly review methods related to autoen-
coders. Since we train our model with an adversarial scheme, we also give a brief
overview of some of the recent developments in this area. Finally, we discuss
prior work on disentangling factors of variation that closely relates to our aims.

Autoencoders. Autoencoders [1,2,9] learn to reconstruct the input data as
x = Dec(Enc(x)), where Enc(x) is the internal image representation (the
encoder) and Dec (the decoder) reconstructs the input of the encoder. Varia-
tional autoencoders [10] use instead a generative model p(x, z) = p(x|z)p(z),
where x is the observed data (images), and z are latent variables. The encoder
estimates the parameters of the posterior, Enc(x) = p(z|x), and the decoder esti-
mates the conditional likelihood, Dec(z) = p(x|z). Transforming autoencoders
[8] are trained with transformed image input pairs. The relative transforma-
tion parameters are also fed to the network. Because the internal representation
explicitly represents the objects presence and location, the network can learn
their absolute position. One important aspect of the autoencoders, which we
exploit, is that they encourage latent representations to keep as much informa-
tion about the input as possible.

GAN. Generative Adversarial Nets [7] learn to sample realistic images with two
competing neural networks. The generator Dec creates images x = Dec(z) from
a random noise sample z and tries to fool a discriminator Dsc, which has to
decide whether the image is sampled from the generator pg or from real images
preal. After a successful training the discriminator cannot distinguish real from
generated samples. Adversarial training is often used to enforce (implicit) con-
straints on random variables as we do. For instance, BIGAN [6] learns a fea-
ture representation with adversarial nets by training an encoder Enc, such that
Enc(x) is Gaussian, when x ∼ preal. CoGAN [13] learns the joint distribution of
multi-domain images by having generators and discriminators in each domain,
and sharing their weights. They can transform images between domains without
being given correspondences. InfoGan [4] learns a subset of factors of variation
by reproducing parts of the input vector with the discriminator.

Disentangling Factors of Variation. Many recent methods use neural net-
works for disentangling factors of variation. A lot of them are fully supervised
[11,16,18,19,22], i.e., they use labels for all factors they aim to disentangle. For
example, Peng et al. [16] disentangle the face identities and poses using multiple
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source of labels including identity, pose and landmarks. With identity and pose
labels Tran et al. [22] can learn pose invariant features and synthesize frontal-
ized faces from any pose. In deep visual analogy making [19] the supervisory
signal is an image. The feature representation is split into two parts to repre-
sent different factors. The combination of these parts from different inputs are
fed to the decoder, which has to reconstruct the target image. We also use the
same feature swapping technique as in [19], but we do not need the ground truth
target image for our training. Semi-supervised methods use labels of only part
of the data samples. Siddharth et al. [21] propose a hybrid generative model to
combine structured graphical models and unstructured random variables, thus
enabling semi-supervised disentanglement. Our main focus is weakly supervised
learning, where not all attributes come with labels. Shu et al. [20] disentangle
intrinsic image factors (albedo and normal map) by modeling the physics of the
image formation in their network. They use a 3D morphable model prior to guide
the training. DrNet [5] disentangles the pose and content from videos. Assum-
ing that the subsequent frames contain the same object, they can eliminate the
content information from the pose, using an adversarial term on the features.
Mathieu et al. [15] also use the feature swapping as in [19]. They use a GAN
to avoid using the ground truth target images. In our work we do not use any
prior information like in [20]. Compared to [5], our adversarial term allows for
higher dimensional features, and unlike [15], we do not condition our GAN on
class labels, thus we can keep the number of parameters constant. Moreover,
with our adversarial term we can provably avoid the shortcut problem.

3 Disentangling Attributes

We are interested in the design and training of two models. One should map
a data sample (e.g., an image) to a feature that is explicitly partitioned into
subvectors, each associated with a specific attribute. The other model should
map this feature back to an image. We call the first model the encoder and
the second one the decoder. For example, given the image of a car as input we
would like the encoder to output a feature with two subvectors: one related
to the car viewpoint, and the other to the car type. This separation should
simplify classification or regression of the attributes (the car viewpoint and type
in the example). It should also be very useful for the advanced editing of images
through the decoder. For example, the transfer of the viewpoint or car types from
an image to another can be achieved by swapping the corresponding subvectors.
Next, we introduce our model of the data and the definitions of our encoder and
decoder (see Fig. 2).

Data Model. We assume that observed data x is generated through an unknown
deterministic invertible and smooth process f that depends on the factors v and
c, so that x = f(v, c). In our earlier example, x is an image, v is a viewpoint,
c is a car type, and f is the rendering engine. It is reasonable to assume that f
is invertible, as for most cases the factors are readily apparent from the image.
f is smooth, because we assume that a small change in the factors results in a
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Fig. 2. Learning to disentangle factors of variation. The scheme above shows how the
encoder (Enc), the decoder (Dec) and the discriminator (Dsc) are trained with input
triplets. The components with the same name share weights.

small change in the image and vice versa. We denote the inverse of the rendering
engine as f−1 = [f−1

v , f−1
c ], where the subscript refers to the recovered factor.

Weak Labeling. In the training we are given pairs of images x1 and x2, which
differ in v (varying factor), but have the same c (common factor). We also assume
that the two varying factors and the common factor are sampled independently,
v1 ∼ pv, v2 ∼ pv and c ∼ pc. The images are generated as x1 = f(v1, c) and
x2 = f(v2, c). We call this labeling weak, because we do not know the absolute
values of either the v or c factors or even relative changes between v1 and v2.
All we know is that the image pairs share the same common factor c.

The Encoder. Let Enc be the encoder that maps images to features. For sim-
plicity, we consider features split into only two column subvectors, Nv and Nc,
one associated to the varying factor v and the other associated to the common
factor c. Then, we have that Enc(x) = [Nv(x), Nc(x)]. Ideally, we would like to
find the inverse of the image formation function, [Nv, Nc] = f−1, which separates
and recovers the factors v and c from data samples x, i.e.,

Nv(f(v, c)) = v Nc(f(v, c)) = c. (1)

In practice, these equations are not usable because all our constraints include the
decoder, which can undo any bijective transformation of v and c and produce
the same output x. Therefore, we aim to find Nv and Nc that satisfy

Rv(Nv(f(v, c))) = v Rc(Nc(f(v, c))) = c, (2)

which we call the feature disentangling properties, for all v, c, and some bijective
functions Rv and Rc, so that Nv is invariant to c and Nc is invariant to v.

The Decoder. Let Dec be the decoder that maps features to images. The
sequence encoder-decoder is constrained to form an autoencoder, so

Dec(Nv(x), Nc(x)) = x, ∀x. (3)
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To use the decoder to synthesize images, where different factors are transferred
from different images, we can define the combined image as

x1⊕2 � Dec(Nv(x1), Nc(x2)). (4)

The ideal decoder should satisfy for all x1 and x2 the data disentangling prop-
erties

f−1
v (x1⊕2) = f−1

v (x1) f−1
c (x1⊕2) = f−1

c (x2) (5)

In the next section we describe our training method for disentangling. We intro-
duce a novel adversarial term that does not need to be conditioned on the com-
mon factor, but rather uses only image pairs, so the number of model parame-
ters are constant. Then, we address the two main challenges of disentangling, the
shortcut problem and the reference ambiguity. We discuss which disentanglement
properties can be provably achieved by our, or any other, method.

3.1 Model Training

In our training procedure we use two terms in the objective function: an autoen-
coder loss and an adversarial loss. We describe these losses in functional form,
however the components are implemented using neural networks. In all our terms
we use the following sampling of independent factors

c1, c3 ∼ pc, v1,v2,v3 ∼ pv. (6)

The images are formed as x1 = f(v1, c1), x2 = f(v2, c1) and x3 = f(v3, c3). The
images x1 and x2 share the same common factor, and x1 and x3 are independent.
In our objective functions, we use either pairs or triplets of the above images.

Autoencoder Loss. In this term, we use images x1 and x2 with the same
common factor c1. We feed both images to the encoder. Since both images share
the same c1, we impose that the decoder should reconstruct x1 from the encoder
subvectors Nv(x1) and Nc(x2). Similarly x2 is reconstructed from Nv(x2) and
Nc(x1). The autoencoder loss is thus defined as

LAE � Ex1,x2

[∣∣x1 − Dec(Nv(x1), Nc(x2))
∣∣2 +

∣∣x2 − Dec(Nv(x2), Nc(x1))
∣∣2].

(7)

Adversarial Loss. We introduce an adversarial training where the generator is
our encoder-decoder pair and the discriminator Dsc is a neural network, which
takes image pairs as input. The discriminator learns to distinguish between real
image pairs [x1,x2] and fake ones [x1,x3⊕1], where x3⊕1 � Dec(Nv(x3), Nc(x1)).
The generator learns to fool the discriminator, so that x3⊕1 looks like the random
variable x2 (the common factor is c1 and the varying factor is independent of
v1). The adversarial loss function is then defined as

LGAN � Ex1,x2

[
log(Dsc(x1,x2))

]
+ Ex1,x3

[
log(1 − Dsc(x1,x3⊕1))

]
. (8)
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Composite Loss. Finally, we optimize the weighted sum of the two losses
L = LAE + λLGAN ,

min
Dec,Enc

max
Dsc

LAE(Dec,Enc) + λLGAN (Dec,Enc,Dsc) (9)

where λ regulates the relative importance of the two losses.

3.2 The Shortcut Problem

Ideally, at the global minimum of LAE , Nv relates only to the factor v and Nc

only to c. However, the encoder may map a complete description of its input
into Nv and the decoder may completely ignore Nc. We call this challenge the
shortcut problem. When this occurs, the decoder is invariant to its second input,
thus the data disentanglement property for c Eq. (5) does not hold, and we have

Dec(Nv(x3), Nc(x1)) = x3. (10)

The shortcut problem can be addressed by reducing the dimensionality of Nv, so
that the encoder cannot build a complete representation of all input images. This
also forces the encoder and decoder to make use of Nc for the common factor.
However, this strategy may not be convenient as it leads to a time consuming
trial-and-error procedure to find the correct dimensionality, which is unknown. In
the next proposition we show that a better way to address the shortcut problem
is instead to use adversarial training through the losses (8) and (9).

Proposition 1. Let x1, x2 and x3 be data samples satisfying (6), where
the factors c1, c3,v1,v2,v3 are jointly independent, and let x3⊕1 �
Dec(Nv(x3), Nc(x1)). When the global optimum of the composite loss (9) is
reached, the c factor has been disentangled, i.e., f−1

c (x3⊕1) = c1.

Proof. At the global optimum of (9), the distributions of [x1,x2] and [x1,x3⊕1]
image pairs are identical. We compute statistics of the inverse of the common
factor f−1

c on the data. For the images x1 and x2 we obtain

Ex1,x2

[
|f−1

c (x1) − f−1
c (x2)|2

]
= Ec1

[
|c1 − c1|2

]
= 0 (11)

by construction (of x1 and x2). For the images x1 and x3⊕1 we obtain

Ex1,x3

[
|f−1

c (x1) − f−1
c (x3⊕1)|2

]
= Ev1,c1,v3,c3

[
|c1 − c3⊕1|2

]
≥ 0, (12)

where c3⊕1 = f−1
c (x3⊕1). We achieve equality if and only if c1 = c3⊕1 for all

samples (in the support of pc). ��
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3.3 The Reference Ambiguity

When the varying attribute (e.g., the viewpoint) is transferred from an image to
another, the numerical value of the varying attribute is interpreted in a reference
frame, and the reference frame can depend on the common attribute (car type).
Let us consider a practical example, where v ∼ U [−π, π] is the (continuous)
viewpoint (the azimuth angle) and c ∼ B(1/2) is the car type, where U denotes
the uniform distribution and B(1/2) the Bernoulli distribution with probability
pc(c = 0) = pc(c = 1) = 1/2 (i.e., there are only 2 car types). We can define a
function T (v, c) = v(2c− 1) so that the mapping of v is mirrored as we change
the car type. By construction T (v, c) ∼ U [−π, π] for any c and T (v, c1) �=
T (v, c2) for v �= 0 and c1 �= c2. The encoder Nv(f(v, c)) = T (v, c) is feasible
and reverses the ordering of the azimuth of car 1 with respect to car 0. Each car
has its own reference system, and thus it is not possible to transfer the viewpoint
from one system to the other, as illustrated in Fig. 1c. Below we prove that it is
possible to disentangle c, but not v, as the task itself gives rise to this ambiguity.

Let us consider the ideal case where we observe the space of all images.
Given the weak labels, we also know what images x1 and x2 share the same
c factor (e.g., which images have the same car). This labeling is equivalent to
defining the probability density function pc and the joint px1,x2 . In the following
proposition, we show that the labeling allows a learning algorithm to satisfy the
feature disentangling property (2) for c, but in Proposition 3 we show that this
is not true for v (the reference ambiguity holds). The key step is that weak labels
allow one to impose stricter constraints on Nc, than on Nv.

Proposition 2. Given weak labels, the data is sampled according to [x1,x2] ∼
px1,x2 . Then, the feature disentangling property (2), for c, can be satisfied.

Proof. For any [x1,x2] ∼ px1,x2 , one can impose Nc(x1) = Nc(x2), which implies
that Nc is invariant to v. Thus, ∀c let us define C(c) � Nc(x1) as a function that
depends only on c. One can impose f−1

c (xa⊕b) = f−1
c (xb) (see Proposition 1),

then images with the same v, but different c must also result in different features,
C(ca) = Nc(f(v, ca)) �= Nc(f(v, cb)) = C(cb). Then, there exists a bijective
function Rc = C−1 such that property (2) is satisfied for c. ��
We now introduce a definition that we need to formalize the reference ambiguity.

Definition 1. We say that a function g reproduces the data distribution, when
it generates samples [y1,y2], where y1 = g(v1, c) and y2 = g(v2, c), that have
the same distribution as the data [x1,x2]. Formally, [y1,y2] ∼ px1,x2 , where the
latent factors are independent, i.e., v1 ∼ pv, v2 ∼ pv and c ∼ pc.

The next proposition illustrates the second main result in this paper: The ref-
erence ambiguity of the varying factor v occurs when a decoder reproduces the
data without satisfying the disentangling properties. This implies that we cannot
provably disentangle all the factors of variation from weakly labeled data, even
if we had access to all the data and knew the distributions pv and pc.
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Proposition 3. Let pv assign the same probability value to at least two different
instances of v. Then, there exists a decoder that reproduces the data distribution,
but does not satisfy the disentangling properties for v in Eqs. (2) and (5).

Proof. Let us choose Nc � f−1
c , the inverse of the rendering engine. Now we

look at defining Nv and the decoder. Let us denote with va �= vb two varying
factors such that pv(va) = pv(vb). Then, let the encoder for v be defined as

Nv(f(v, c)) �

⎧
⎪⎨
⎪⎩

v if v �= va,vb or c ∈ C
va if v = vb and c /∈ C
vb if v = va and c /∈ C

(13)

and C is a subset of the domain of c, where
∫

C pc(c)dc /∈ {0, 1}. Therefore,
Nv(f(v, c)) ∼ pv and Nv(f(v, c1)) �= Nv(f(v, c2)) for v ∈ {va,vb}, c1 ∈ C, and
c2 /∈ C. Finally, we define the decoder as

Dec(v, c) �

⎧
⎪⎨
⎪⎩

f(v, c) if v �= va,vb or c ∈ C
f(va, c) if v = vb and c /∈ C
f(vb, c) if v = va and c /∈ C.

(14)

Notice that Nv(f(v, c)) depends on c functionally, but is statistically indepen-
dent from it. In fact, because pv(va) = pv(vb) we have

pNv,c(v, c) = pNv|c(v|c)pc(c) (15)
= [1C(c)pv(v) + 1C(c) [δ(v − va)pv(vb) + δ(v − vb)pv(va)]] pc(c)
= [1C(c)pv(v) + 1C(c) [δ(v − va)pv(va) + δ(v − vb)pv(vb)]] pc(c)
= pv(v)pc(c).

Thus, no statistical constraint on the encoded factors Nv, Nc will allow dis-
tinguishing them from the original factors v, c. Finally, we can substitute in
[Dec(Nv(x1), Nc(x1)),Dec(Nv(x2), Nc(x2))] and reproduce the data distribu-
tion, i.e., [Dec(v1, c),Dec(v2, c)] ∼ px1,x2 . The feature disentanglement property
is not satisfied because Nv(f(va, c1)) = va �= vb = Nv(f(va, c2)), when c1 ∈ C
and c2 �∈ C. Similarly, the data disentanglement property does not hold, because
f−1
v (Dec(Nv(f(va, c1)), c1)) �= f−1

v (Dec(Nv(f(va, c1)), c2)). ��

3.4 Implementation

In our implementation we use convolutional neural networks for all the mod-
els. We denote with θ the parameters associated to each network. Then, the
optimization of the composite loss can be written as

θ̂Dec, θ̂Enc, θ̂Dsc = arg minθDec,θEnc maxθDsc L(θDec, θEnc, θDsc). (16)

We choose λ = 1 and also add regularization to the adversarial loss so that each
logarithm has a minimum value. We define logε Dsc(x1,x2) = log(ε+Dsc(x1,x2))
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Table 1. Network architectures. In the encoder and discriminator we used convolu-
tional layers with a kernel size 4 and stride 2. After each convolutional layer we added
normalization and a leaky ReLU layer with a leak coefficient of 0.2. In the decoder
we used deconvolutional layers with kernel size 4 and stride 2 followed by a ReLU. c
stands for convolutional, d for deconvolutional and f for fully connected layers, and
the numbers indicate the number of channels.

ShapeNet, CelebA, CUB MNIST Sprites

Enc c64-c128-c256-c512-c512-f c64-c128-c256-f c64-c128-c256-c512-f

Dec f-d512-d512-d256-d128-d3 f-d512-d256-d128-d3 f-d512-d256-d128-d3

Dsc c64-c128-c256-c512-f c64-c128-c256-f c64-c128-c256-c512-f

Table 2. Nearest neighbor classification on viewpoint and car type features using
different normalization techniques on ShapeNet cars. The performance is measured in
mean average precision.

Normalization Viewpoint Car type

None 0.47 0.13

Batch 0.50 0.08

Instance 0.50 0.20

(and similarly for the other logarithmic term) and use ε = 10−12. The main
components of our neural network are shown in Fig. 2. The architecture of the
encoder, decoder and the discriminator were taken from DCGAN [17], with slight
modifications. We added fully connected layers at the output of the encoder and
to the input of the decoder. As the input to the discriminator is an image pair,
we concatenate them along the color channels. The details of the architecture is
described in Table 1 for all datasets we experimented on.

Normalization. In our architecture both the encoder and the decoder net-
works use blocks with a convolutional layer, a nonlinear activation function
(ReLU/leaky ReLU) and a normalization layer, typically, batch normalization
(BN). As an alternative to BN we consider instance normalization (IN) [23].
The main difference between BN and IN is that the latter just computes the
mean and standard deviation across the spatial domain of the input and not
along the batch dimension. Thus, the shift and scaling for the output of each
layer is the same at every iteration for the same input image. We compared the
different normalization choices for the ShapeNet dataset in Table 2, where we
report the performance on the nearest neighbor classification task. The feature
dimensions were fixed at 1024 for both Nv and Nc in all normalization cases.
We can see that both batch and instance normalization perform equally well on
viewpoint classification and no normalization is slightly worse. For the car type
classification instance normalization is clearly better.
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Fig. 3. Attribute transfer on ShapeNet. (a) Synthesized images with LAE , where the
top row shows images from which the car type is taken. The second, third and fourth
row show the decoder renderings using 2, 16 and 128 dimensions for the feature Nv.
(b) Images synthesized with LAE + LGAN . The setting for the inputs and feature
dimensions are the same as in (a).

4 Experiments

We tested our method on the MNIST, Sprites, CelebA, CUB and ShapeNet
datasets and performed ablation studies on the shortcut problem using ShapeNet
cars. We focused on the effect of the feature dimensionality and having the
adversarial term (i.e., LAE + LGAN ) or not (i.e., only LAE). We also show that
in most cases the reference ambiguity does not arise in practice (MNIST, Sprites,
CelebA, CUB, ShapeNet cars and motorcycles), we can only observe it when the
data is more complex (ShapeNet chairs and vessels).

The Shortcut Problem. The ShapeNet dataset [3] contains 3D objects than
we can render from different viewpoints. We consider only one category (cars)
and a set of fixed viewpoints. Cars have high intraclass variability and they
do not have rotational symmetries. We used approximately 3K car types for
training and 300 for testing. We rendered 24 possible viewpoints around each
object in a full circle, resulting in 80K images in total. The elevation was fixed
to 15 degrees and azimuth angles were spaced 15 degrees apart. We normalized
the size of the objects to fit in a 100 × 100 pixel bounding box, and placed it
in the middle of a 128 × 128 pixel image. Figure 3 shows the attribute transfer
on the ShapeNet cars. We compare the methods LAE and LAE + LGAN with
different feature dimension of Nv. The size of the common feature Nc was fixed
to 1024 dimensions. We can observe that the transferring performance degrades
for LAE , when we increase the feature size of Nv. This illustrates the shortcut
problem, where the autoencoder tries to store all the information into Nv. The
model LAE+LGAN instead renders images without loss of quality, independently
of the feature dimension. In Fig. 4 we visualize the t-SNE embeddings of the
Nv features for several models using different feature sizes. For the 2D case,
we do not modify the data. We can see that both LAE with 2 dimensions and
LAE+LGAN with 128 dimensions separate the viewpoints well, but the lone LAE

with 128 dimensions does not separate the viewpoints well due to the shortcut
problem. We investigate the effect of dimensionality of the Nv features on the
nearest neighbor classification task. The performance is measured by the mean
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Fig. 4. The effect of dimensions and objective function on Nv features. (a), (b), (c)
t-SNE embeddings on Nv features. Colors correspond to the ground truth viewpoint.
The objective functions and the Nv dimensions are: (a) LAE 2 dim, (b) LAE 128
dim, (c) LAE + LGAN 128 dim. (d) Mean average precision curves for the viewpoint
prediction from the viewpoint feature using different models and dimensions for Nv.

average precision. For Nv we use the viewpoint as ground truth. Figure 4 also
shows the results on LAE and LAE + LGAN models with different Nv feature
dimensions. The dimension of Nc was fixed to 1024 for this experiment. One can
now see quantitatively that LAE is sensitive to the size of Nv, while LAE +LGAN

is not. LAE + LGAN also achieves a better performance.

The Reference Ambiguity. We rendered the ShapeNet chairs, vessels and
motorcycles with the same settings (viewpoints, image size) as the cars. There
are 3500 chair, 1500 vessel and 300 motorcycle types for training, which provide
between 7K and 84K images for each category. We trained our network with
the full objective LAE + LGAN and with the same settings as in the case of
ShapeNet cars. In Fig. 5 we show the attribute transfer results. We can see that
the object type is transferred correctly in all cases, and we can observe the
reference ambiguity in two out of four categories. Some of the rendered chairs
are flipped. The most interesting case is the vessel category, where the viewpoint
angle is interpreted in two different ways depending on the boat type. We may
be inclined to conclude that objects with a similar shape tend to share the same
reference for the varying attribute (in the case of vessels, large boats seem to
transfer the viewpoint between each other, but not with thinner boats).

MNIST Evaluation. The MNIST dataset [12] contains handwritten grayscale
digits of size 28 × 28 pixel. There are 60K images of 10 classes for training and
10K for testing. The common factor is the digit class and the varying factor is the
intraclass variation. We take image pairs that have the same digit for training,
and use our full model LAE +LGAN with dimensions 64 for Nv and 64 for Nc. In
Fig. 6(a) and (b) we show the transfer of varying factors. Qualitatively, both our
method and [15] perform well. We observe neither the reference ambiguity nor
the shortcut problem in this case, probably due to the high similarity of objects
within the same category.

Sprites Evaluation. The Sprites dataset [19] contains 60 pixel color images of
animated characters (sprites). There are 672 sprites, 500 for training, 100 for
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Fig. 5. Attribute transfer on ShapeNet categories. For all subfigures the object type is
taken from the topmost row and the viewpoint is taken from the leftmost column.

testing and 72 for validation. Each sprite has 20 animations and 178 images,
so the full dataset has 120K images in total. There are many changes in the
appearance of the sprites, they differ in their body shape, gender, hair, armour,
arm type, greaves, and weapon. We consider character identity as the common
factor and the pose as the varying factor. We train our system using image
pairs of the same sprite and do not exploit labels on their pose. We train the
LAE + LGAN model with dimensions 64 for Nv and 448 for Nc. Figure 6(c) and
(d) show results on the attribute transfer task. Both our method and [15] transfer
the identity of the sprites correctly, the reference ambiguity does not arise.

CUB Evaluation. The CUB birds dataset [24] contains 12K images of 200 bird
species. In our model we choose the bird species as the common factor and used
the same settings as for ShapeNet. The results on attribute transfer can be seen
on Fig. 7a.
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Fig. 6. Renderings of transferred features. In all figures the varying factor is transferred
from the left column and the common factor from the top row. (a) MNIST [15]; (b)
MNIST (ours); (c) Sprites [15]; (d) Sprites (ours).

Fig. 7. Attribute transfer on CUB and CelebA datasets. (a) CUB birds, where the
pose is taken from the leftmost column and the species is taken from the topmost row.
(b) CelebA, the first row shows the original image and each subsequent row shows the
change of the following attributes: gender, glasses, mouth-open.

CelebA Evaluation. The CelebA dataset [14] contains 200K face images. It
contains labelled binary attributes such as male/female, old/young and so on.
We used the same settings as for ShapeNet, and trained separate models, where
the common attribute was one of the labelled ones. The results on attribute
transfer can be seen in Fig. 7b.

5 Conclusions

In this paper we studied two fundamental challenges of disentangling factors
of variation: the shortcut problem and the reference ambiguity. The shortcut
problem occurs when all information is stored in only one feature subvector,
while the other is ignored. The reference ambiguity means that the reference
in which a factor is interpreted, may depend on other factors. This makes the
attribute transfer ambiguous. We introduced a novel training of autoencoders to
solve disentangling using image triplets. We showed theoretically and experimen-
tally how to avoid the shortcut problem through adversarial training. Moreover,
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our method allows using arbitrarily large feature dimensions, which simplifies
the design of the autoencoder model. We proved that the reference ambigu-
ity is inherently present in the disentangling task when weak labels are used.
Most importantly this can be stated independently of the learning algorithm.
We demonstrated that training and transfer of factors of variation may not be
guaranteed. However, in practice we observe that some trained models work well
on many datasets and exhibit good attribute transfer capabilities.
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