
In the Eye of Beholder: Joint Learning
of Gaze and Actions in First Person Video

Yin Li1, Miao Liu2(B), and James M. Rehg2

1 Carnegie Mellon University, Pittsburgh, USA
yinl2@andrew.cmu.edu

2 College of Computing and Center for Behavioral Imaging,
Georgia Institute of Technology, Atlanta, USA

{mliu328,rehg}@gatech.edu

Abstract. We address the task of jointly determining what a person is
doing and where they are looking based on the analysis of video captured
by a headworn camera. We propose a novel deep model for joint gaze
estimation and action recognition in First Person Vision. Our method
describes the participant’s gaze as a probabilistic variable and models its
distribution using stochastic units in a deep network. We sample from
these stochastic units to generate an attention map. This attention map
guides the aggregation of visual features in action recognition, thereby
providing coupling between gaze and action. We evaluate our method on
the standard EGTEA dataset and demonstrate performance that exceeds
the state-of-the-art by a significant margin of 3.5%.

1 Introduction

Our daily interaction with objects is guided by a sequence of carefully orches-
trated fixations. Therefore, “where we look” reveals important information about
“what we do.” Consider the examples in Fig. 1, where only small regions around
the first person’s point of gaze are shown. What is this person doing? We can
easily identify the actions as “squeeze liquid soap into hand” and “cut tomato,”
in spite of the fact that more than 80% of the pixels are missing. This is pos-
sible because egocentric gaze serves as an index into the critical regions of the
video that define the action. Focusing on these regions eliminates the potential
distraction of irrelevant background pixels, and allows us to focus on the key
elements of the action.

There have been several recent works that use human gaze for action recog-
nition [7,24,31]. Only our previous effort [7] attempted to model attention and
action simultaneously. This paper is focused on the joint modeling of gaze esti-
mation and action recognition in First Person Vision (FPV), where gaze, action
and video are aligned in the same egocentric coordinate system. In this case,
attention is naturally embodied in the camera wearer’s actions. Thus, FPV pro-
vides the ideal vehicle for studying the joint modeling of attention and action.
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Fig. 1. Can you tell what the person is doing? With only 20% of the pixels visible,
centered around the point of gaze, we can easily recognize the camera wearer’s actions.
The gaze indexes key regions containing interactions with objects. We leverage this
intuition and develop a model to jointly infer gaze and actions in First Person Vision.

A major challenge for the joint modeling task is the uncertainty in gaze mea-
surements. Around 25% [11] of our gaze within daily actions are saccades—rapid
gaze jumps during which our vision system receives no inputs [3]. Within the gaze
events that remain, it is not clear what portion of the fixations correspond to
overt attention and are therefore meaningfully-connected to actions [14]. In addi-
tion, there are small but non-negligible measurement errors in the eye-tracker
itself [10]. It follows that a joint model of attention and actions must account for
the uncertainty of gaze. What model should we use to represent this uncertainty?

Our inspiration comes from the observation that gaze can be characterized
by a latent distribution of attention in the context of an action, represented as an
attention map in egocentric coordinates. This map identifies image regions that
are salient to the current action, such as hands, objects, and surfaces. We model
gaze measurements as samples from the attention map distribution. Given gaze
measurements obtained during the production of actions, we can directly learn
a model for the attention map, which can in turn guide action recognition. Our
action recognition model can then focus on action-relevant regions to determine
what the person is doing. The attention model is tightly coupled with the recog-
nition of actions. Building on this intuition, we develop a deep network with a
latent variable attention model and an attention mechanism for recognition.

To this end, we propose a novel deep model for joint gaze estimation and
action recognition in FPV. Specifically, we model the latent distribution of gaze
as stochastic units in a deep network. This representation allows us to sample
attention maps. These maps are further used to selectively aggregate visual
features in space and time for action recognition. Our model thus both encodes
the uncertainty in gaze measurement, and models visual attention in the context
of actions. We train the model in an end-to-end fashion using action labels and
noisy gaze measurements as supervision. At testing time, our model receives only
an input video and is able to infer both gaze and action.

We test our model on the EGTEA dataset—the largest public benchmark
for FPV gaze and actions [19]. As a consequence of jointly modeling gaze and
actions, we obtain results for action recognition that outperform state-of-the-art
deep models by a significant margin (3.5%). Our gaze estimation accuracy is also
comparable with strong baseline methods. To the best of our knowledge, this is
the first work to model uncertainty in gaze measurements for action recognition,
and the first deep model for joint gaze estimation and action recognition in FPV.
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2 Related Works

First Person Vision. The advent of wearable cameras has led to growing
interest in First Person Vision (FPV)—the automatic analysis of first person
videos (see a recent survey in [1]). Here we focus on gaze and actions in FPV.

• FPV Gaze. Gaze estimation is well studied in computer vision [2]. Recent
works have addressed egocentric gaze estimation. Our previous work [18] esti-
mated egocentric gaze using hand and head cues. Zhang et al. [47] predicted
future gaze by estimating gaze from predicted future frames. Park et al. [25]
considered 3D social gaze from multiple camera wearers. However, these works
did not model egocentric gaze in the context of actions.

• FPV Actions. FPV action has been the subject of many recent efforts.
Spriggs et al. [37] proposed to segment and recognize daily activities using
a combination of video and wearable sensor data. Kitani et al. [17] used
a global motion descriptor to discover egocentric actions. Fathi et al. [6]
presented a joint model of objects, actions and activities. Pirsiavash and
Ramanan [27] further advocated for an object-centric representation of FPV
activities. Other efforts included the modeling of conversations [5] and reac-
tions [46] in social interactions. Several recent works have developed deep
models for FPV action recognition. Ryoo et al. [30] developed a novel pool-
ing method for deep models. Poleg et al. [28] used temporal convolutions on
motion fields for long-term activity recognition. In contrast to our approach,
these prior works did not consider the exploitation of egocentric gaze for
action recognition.

• FPV Gaze and Actions. There have been a few works that incorpo-
rated egocentric gaze for FPV action recognition. For example, our previous
work [19] showed the benefits of gaze-indexed visual features in a comprehen-
sive benchmark. Both Singh et al. [35] and Ma et al. [22] explored the use
of multi-stream networks to capture egocentric attention. These works have
clearly demonstrated the advantage of using egocentric gaze for FPV actions.
However, they all model FPV gaze and actions separately rather than jointly,
and they do not address the uncertainty in gaze. Moreover, these methods
require side information in addition to the input image at testing time, e.g.,
hand masks [19,35] or object information [22]. In contrast, our method jointly
models gaze and action, captures the uncertainty of gaze, and requires only
video inputs during testing.

Our previous work [7] presented a joint model for egocentric gaze and actions.
This work extends [7] in multiple aspects: (1) we propose an end-to-end deep
model rather than using hand crafted features; (2) we explicitly model “noise” in
gaze measurements while [7] did not; (3) we infer gaze and action jointly through
a single pass during testing while [7] used iterative inference. In a nutshell, we
model gaze as a stochastic variable via a novel deep architecture for joint gaze
estimation and action recognition. Our model thus combines the benefits of latent
variable modeling with the expressive power of a learned feature representation.
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Consequently, we show that our method can outperform state-of-the-art deep
models [4] for FPV action recognition.

Action Recognition. There is a large body of literature on action recognition
(see [41] for a survey). We discuss relevant work that targets the development
of deep models and the use of attentional cues for recognizing actions.

• Deep Models for Actions. Deep models have demonstrated recent success
for action recognition. Simonyan and Zisserman [34] proposed two-stream
networks that learn to recognize an action from both optical flow and RGB
frames. Wang et al. [44] extended two-stream networks to model multiple
temporal segments within the video. Tran et al. [40] replaced 2D convolution
with spatiotemporal convolution and trained a 3D convolutional network for
action recognition. Carreira and Zisserman further proposed two-stream 3D
networks for action recognition [4]. A similar idea is also explored in [42]. Our
model builds on the latest development of two-stream 3D convolutional net-
works [4] to recognize actions in FPV. Our technical novelty is to incorporate
stochastic units to model egocentric gaze.

• Attention for Actions. Human gaze provides useful signals for the loca-
tion of actions, and this intuition has been explored for action recognition in
domains outside of FPV. Mathe and Sminchesescu [24] proposed to recognize
actions by sampling local descriptors from a predicted saliency map. Shapo-
valova et al. [31] presented a method that uses human gaze for learning to
localize actions. However, these methods did not use deep models. Recently,
Sharma et al. [32] incorporated soft attention into a deep recurrent network
for recognizing actions. However, their notion of attention is defined by dis-
criminative image regions that are not derived from gaze measurements, and
therefore they can’t support the joint inference of egocentric gaze and actions.

Our method shares a key intuition with [24,31]: the use of predicted gaze
to select visual features. However, our attention model is built within a deep
network and trained from end-to-end. Our model is similar to [32] in that we
also design a attention mechanism that facilitates end-to-end training. However,
attention is modeled as stochastic units in our network and receives supervision
from noisy human gaze measurements.

3 Method

We denote an input first person video as x = (x1, ..., xt) with its frames xt

indexed by time t. Our goal is to predict the action category y for x. We assume
egocentric gaze measurements g = (g1, ..., gt) are available during training yet
need to be inferred during testing. gt are measured as a single 2D gaze point at
time t defined on the image plane of xt. For our model, it is helpful to reparam-
eterize gt as a 2D saliency map gt(m,n), where the value of the gaze position
are set to one and all others are zero. And thus Σm,ngt(m,n) = 1. In this case,
gt(m,n) defines a proper probabilistic distribution of 2D gaze.
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Fig. 2. Overview of our model. Our network takes multiple RGB and flow frames as
inputs, and outputs a set of parameters defining a distribution of gaze in the middle
layers. We then sample a gaze map from this distribution. This map is used to selectively
pool visual features at higher layers of the network for action recognition. During
training, our model receives action labels and noisy gaze measurement. Once trained,
the model is able to infer gaze and recognize actions in FPV. We show that this network
builds a probabilistic model that naturally accounts for the uncertainty of gaze and
captures the relationship between gaze and actions in FPV.

Figure 2 presents an overview of our model. We’d like to draw an analogy
between our model and the well-known R-CNN framework for object detec-
tion [9,29]. Our model takes a video x as input and outputs the distribution of
gaze q as an intermediate result. We then sample the gaze map g from this pre-
dicted distribution. g encodes location information for actions and thus can be
viewed as a source of action proposals—similar to the object proposals generated
in R-CNN. Finally, we use the attention map to select features from the network
hierarchy for recognition. This can be viewed as Region of Interest (ROI) pooling
in R-CNN, where visual features in relevant regions are selected for recognition.

3.1 Modeling Gaze with Stochastic Units

Our main idea is to model g(m,n) as a probabilistic variable to account for its
uncertainty. More precisely, we model the conditional probability of p(y|x) by

p(y|x) =
∫

g

p(y|g, x)p(g|x)dg. (1)

Intuitively, p(g|x) estimates gaze g given the input video x. p(y|g, x) further uses
the predicted gaze g to select visual features from input video x to predict the
action y. Moreover, we want to use high capacity models, such as deep networks,
for both p(g|x) and p(y|g, x). While this model is appealing, the learning and
inference tasks are intractable for high dimensional video inputs x.

Our solution, inspired by [16,36], is to approximate the intractable posterior
p(g|x) with a carefully designed qπ(g|x). Specifically, we define q(m,n) on a 2D
image plane of the same size M × N as x. q is parameterized by πm,n, where
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q(m,n) = q(gm,n = 1|x) =
πm,n∑

m,n πm,n
. (2)

π = qψ(X) is the output from a deep neural network qψ. q(g|x) thus models the
probabilistic distribution of egocentric gaze. Thus, our deep network creates a
2D map of πm,n. π defines an approximation qπ to the distribution of the latent
attention map. Specifically, q(m,n) can be viewed as the expectation of the gaze
g at position (m,n). We can then sample the gaze map g̃ from qπ for recognition.

Given a sampled gaze map g̃, our attention mechanism will selectively aggre-
gate visual features φ(x) defined by network φ. In our model, this is simply a
weighted average pooling, where the weights are defined by the gaze map g̃. We
then send pooled features to the recognition network f . We further constrain
f to have the form of a linear classifier, followed by a softmax function. This
design is important for approximate inference. Now we have

p(y|g, x) = f(Σm,ng̃m,nφ(x)m,n) = softmax
(
WT

f (Σm,ng̃m,nφ(x)m,n)
)
. (3)

The sum operation is equivalent to spatially re-weighting individual feature chan-
nels. By doing so, we expect that the network will learn to attend to discrimi-
native regions for action recognition. Note that this is a soft attention mecha-
nism that allows back-propagation. Thus, top-down modulation of gaze can be
achieved through gradients from action labels.

Our model thus includes three sub-networks: qψ(x) that outputs parameters
for the attention map, φ(x) that extracts visual representations for x, and f(g, x)
that pools features and recognizes actions. All three sub-networks share the same
backbone network with their separate heads, and thus our model is realized as
a single feed forward deep network. Due to the sampling process introduced in
modeling, learning the parameters of the network is challenging. We overcome
this challenge by using variational learning and optimizing a lower bound. We
now present our training objective and inference method.

3.2 Variational Learning

During training, we make use of the input video x, its action label y and human
gaze measurements g sampled from a distribution p(g|x). Intuitively, our learning
process has two major goals. First, our predicted gaze distribution parameter-
ized by qψ(x) should match the noisy observations of gaze. Second, the final
recognition error should be minimized. We achieve these goals by maximizing
the lower bound of log p(y|x), given by

log p(y|x) ≥ −L = Eg∼q(g|x)[log p(y|g, x)] − KL[q(g|x)||p(g|x)], (4)

where KL(p||q) is the Kullback–Leibler (KL) divergence between distribution p
and q, and E denotes the expectation.

Noise Pattern of Egocentric Gaze. Computing KL(p||q) requires the prior
knowledge of p(g|x). In our case, given x, we observe gaze g drawn from p(g|x).
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Thus, p(g|x) is the noise pattern of the gaze measurement g. We adapt a simple
noise model of gaze. For all tracked fixation points, we assume a 2D isotropic
Gaussian noise, where the standard deviation of the Gaussian is selected based
on the average tracking error of modern eye trackers. When the gaze point is a
saccade (or is missing), we set p(g|x) to the 2D uniform distribution, allowing
attention to be allocated to any location on the image plane.

Loss Function. Given our noise model of gaze p(g|x), we now minimize our
loss function as the negative of the empirical lower bound, given by

− ∑
g log p(y|g, x) + KL[q(g|x)||p(g|x)]. (5)

During training, we sample the gaze map g̃ from the predicted distribution
q(g|x), apply the map for recognition (p(y|g̃, x) = f(g̃, x)) and compute its nega-
tive log likelihood—the same as the cross entropy loss for a categorical variable y.
Our objective function thus has two terms: (a) the negative log likelihood term
as the cross entropy loss between the predicated and the ground-truth action
labels using the sampled gaze maps; and (b) the KL divergence between the
predicted distribution q(g|x) and the gaze distribution p(g|x).

Reparameterization. Our model is fully differentiable except for the sampling
of g̃. To allow end-to-end back propagation, we re-parameterize the discrete dis-
tribution q(m,n) using the Gumbel-Softmax approach as in [15,23]. Specifically,
instead of sampling from q(m,n) directly, we sample the gaze map g̃ via

g̃m,n ∼ exp((log πm,n + Gm,n)/τ)∑
m,n exp((log πm,n + Gm,n)/τ)

, (6)

where τ is the temperature that controls the “sharpness” of the distribution. We
set τ = 2 for all of our experiments. The softmax normalization ensures that∑

m,n g̃(m,n) = 1, such that it is a proper gaze map. G follows the Gumbel
distribution G = − log(− log U), where U is the uniform distribution on [0, 1).
This Concrete distribution separates out the sampling into a random variable
from a uniform distribution and a set of parameters π, and thus allows the direct
back-propagation of gradients to π.

3.3 Approximate Inference

During testing, we feed an input video x forward through the network to esti-
mate the gaze distribution q(g|x). Ideally, we should sample multiple gaze maps
g̃ from q, pass them into our recognition network f(g, x), and average all predic-
tions. This is, however, prohibitively expensive. Since f(g, x) is nonlinear and g
has hundreds of dimensions, we will need many samples g̃ to approximate the
expectation Eg[f(g, x)], where each sample requires us to recompute f(g̃, x). We
take a shortcut by feeding qπ into f to avoid the sampling. We note that qπ is
the expectation of g̃, and thus our approximation is Eg[f(g, x)] ≈ f(E[g], x).
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This shortcut does provide a good approximation. Recall that our recognition
network f is a softmax linear classifier. Thus, f is convex (even with the weight
decay on Wf ). By Jensen’s Inequality, we have Eg[f(g, x)] ≥ f(E[g], x). Thus,
our approximation f(E[g], x) is indeed a lower bound for the sample averaged
estimate of Eg[f(g, x)]. Using this deterministic approximation during testing
also eliminates the randomness in the results due to sampling. We have empiri-
cally verified the effectiveness of our approximation.

3.4 Discussions

For further insights, We connect our model to the technique of Dropout and the
model of Conditional Variational AutoEncoder (CVAE).

Connection to Dropout. Our sampling procedure during learning can viewed
as an alternative to Dropout [38], and thus helps to regularize the learning. In
particular, we sample the gaze map g̃ to re-weight features. This map will have
a single peak and many close-to-zero values due to the softmax function. If a
position (m,n) has a very small weight, the features at that position are “dropped
out”. The key difference is that our sampling is guided by the predicted gaze
distribution of qψ instead of random masking used by Dropout.

Connection to Conditional Variational Autoencoder. Our model is also
connected to CVAE [36]. Both models use stochastic variables for discrimina-
tive tasks. Yet these two models are different: (1) our stochastic unit—the 2D
gaze distribution, is discrete. In contrast, CVAE employs a continuous Gaussian
variable, leading to a different reparameterization technique. (2) our stochas-
tic unit—the gaze map is physically meaningful and receives supervision during
training, while CVAE’s is latent. (3) our model approximates the posterior with
qψ(x) and uses one forward pass for approximated inference, while CVAE models
the posterior as a function of both x and y and thus requires recurrent updates.

3.5 Network Architecture

Our model builds on two-stream I3D networks [4]. Similar to its base Inception
network [39], I3D has 5 convolutional blocks and the network uses 3D convolu-
tions to capture the temporal dynamics of videos. Specifically, our model takes
both RGB frames and optical flow as inputs, and feeds them into an RGB or a
flow stream, respectively. We fuse the two streams at the end of the 4th convo-
lutional block for gaze estimation, and at the end of the 5th convolutional block
for action recognition. The fusion is done using element-wise summation as sug-
gested by [8]. We used 3D max pooling to match the predicted gaze map to the
size of the feature map at the 5th convolutional block for weighted pooling.

Our model takes the inputs of 24 frames, outputs action scores and a gaze
map at a temporal stride of 8. Our output gaze map will have the spatial reso-
lution of 7 × 7 (downsampled by 32x). During testing, we average the clip-level
actions scores to recognizing actions in a video.
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4 Experiments

We now present our experiments and results. We first introduce the dataset,
the evaluation criteria and implementation details for FPV gaze estimation and
action recognition. We then present our experiments on gaze and actions. Our
main results are divided into three parts. First, we present an ablation study of
our model. Second, we demonstrate our main results on FPV action recognition
and compare our results to several state-of-the-art methods. Finally, we show
results on gaze estimation and compare to a set of strong baselines. Our model
achieves strong results for both action recognition and gaze estimation.

4.1 Dataset and Benchmark

Dataset. We use the Extended GTEA Gaze+ dataset.1 This dataset contains
29 h of first person videos from 86 unique sessions. These sessions come from 32
subjects performing 7 different meal preparation tasks in a naturalistic kitchen
environment. The videos have a resolution of 1280 × 960 at 24 Hz with gaze
tracking at every frame. The dataset also comes with action annotations of
10321 instances from 106 classes with an average duration of 3.2 s.

EGTEA poses a challenge of fine grained action recognition in FPV. Example
action categories include “Move Around pot”, “Spread condiment (on) bread
(using) eating utensil”. Moreover, these action instances follow a long-tailed
distribution. The frequent classes, such as “open fridge” have a few hundred
samples and the classes on the tail, such as “crack egg” have only around 30
samples. We use the first split (8299 for training, 2022 for testing) of the dataset
and evaluate the performance of gaze estimation and action recognition.

Evaluation Metric. We use standard metrics for both gaze and actions.

• Gaze: We consider gaze estimation as binary classification. We evaluate all
fixation points and ignore untracked gaze or saccade in action clips. We report
the Precision and Recall values and their corresponding F1 score.

• Action: We treat action recognition as multi-class classification. We report
mean class accuracy at the clip level (24 frames) and at the video level.

Note that our gaze output is down-sampled both spatially (x32) and tempo-
rally (x8). When evaluating gaze, we aggregate fixation points within 8 frames
and project them into a downsampled 2D map. This time interval (300 ms) is
equal to the duration of a fixation (around 250 ms) and thus this temporal aggre-
gation should preserve the location of gaze.

Implementation Details. We downsample all video frames to 320 × 256 and
compute optical flow using FlowNet V2 [12]. We empirically verify that FlowNet
V2 gives satisfactory motion estimation in egocentric videos. The flow map is
1 Available at http://cbi.gatech.edu/fpv.

http://cbi.gatech.edu/fpv
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truncated in the range of [−20, 20] and rescaled to [0, 255] as [34,44]. During
training, we randomly crop 224 × 224 regions from 24 frames. We then feed the
RGB frames and flow maps into our networks. We also perform random horizon-
tal flip and color jittering for data augmentation. For testing, we send the frames
with a resolution of 320 × 256 and their flipped version. For action recognition,
we average pool scores of all clips within a video. For gaze estimation, we flip
back the gaze map and take the average.

Training Details. All our models are trained using SGD with momentum
of 0.9 and weight decay of 0.00004. The initial weights for 3D convolutional
networks are restored from Kinectcs pre-trained models [4]. For training two
stream-networks, we use a batch size of 40, paralleled over 4 GPUs. We use a
initial learning rate of 0.032, which matches the same learning rate from [4]. We
decay the learning rate by a factor of 10 at 40th epoch and end the training at
60 epochs. We enable batch normalization [13] during training and set the decay
rate for its parameters to 0.9, allowing faster aggregation of dataset statistics.
By default, dropout with rate of 0.7 is attached for fully connected layer during
training, as suggested in [44]. We disable dropout for our proposed model.

Table 1. Ablation study on backbone networks and probabilistic modeling. We show
F1 scores for gaze estimation and mean class accuracy for action recognition.

Networks
Action Acc

(Clip)
Action Acc

(Video)
I3D RGB 43.69 47.26
I3D Flow 32.08 38.31

I3D Fusion N/A 48.84
I3D Joint 46.42 49.79

(a) Backbone Network: We compare
RGB, Flow, late fusion and joint train-
ing of I3D for action recognition. Joint
training works the best.

Methods
Gaze
F1

Action
Acc

I3D Joint N/A 49.79
Gaze MLE 24.68 51.12
Soft-Atten 10.27 50.30

Ours (Prob.) 32.97 53.30
Ours w. Dropout 32.66 52.12

(b) Probabilistic Modeling: We
compare our model to its deter-
ministic version (Gaze MLE). We
also study the effect of Dropout.

4.2 Ablation Study

We start with a comprehensive study of our model on the EGTEA Gaze dataset.
Our model consists of (1) the backbone network for feature presentation; (2)
the probabilistic modeling; and (3) the attention guided action recognition. We
separate out these components and test them independently.

Backbone Network: RGB vs. Flow. We evaluate different network architec-
tures on EGTEA dataset for FPV action recognition. Our goal is to understand
which network performs the best in the egocentric setting. Concretely, we tested
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RGB and flow streams of I3D [4], the late fusion of two streams, and the joint
training of two streams [8]. The results are summarized in Table 1a. Overall,
EGTEA dataset is very challenging, even the strongest model has an accuracy
below 50%. To help calibrate the performance, we note that the same I3D model
achieved 36% on Charades [33,45], 74% on Kinetics and 99% on UCF [4].

Unlike Kinetics or UCF, where flow stream performs comparably to RGB
stream, the performance of I3D flow stream on EGTEA is significantly lower
than its RGB counterpart. This is probably because of the frequent motion of
the camera in FPV. It is thus more difficult to capture motion cues. Finally, the
joint training of RGB and flow streams performs the best in the experiment.
Thus, we choose this network as our backbone for the rest of our experiments.

Modeling: Probabilistic vs. Deterministic. We then test the probabilistic
modeling part of our method. We focus on the key question: “What is the benefit
of probabilistic modeling of gaze?” To this end, we present a deterministic version
of our model that uses maximum likelihood estimation for gaze. We denote this
model as Gaze MLE. Instead of sampling, this model learns to directly output
a gaze map, and apply the map for recognition. During training, the gaze map
is supervised by human gaze using a pixel-wise sigmoid cross entropy loss. We
keep the model architecture and the training procedure the same as our model.
And we disable the loss for gaze when fixation is not available.

We compare our model with Gaze MLE for gaze and actions, and present the
results in Table 1b. Our probabilistic model outperforms its deterministic version
by 2.2% for action recognition and 8.3% for gaze estimation. We attribute this
significant gain to the modeling. If the supervisory signal is highly noisy, allowing
the network to adapt the stochasticity will facilitate the learning.

Regularization: Sampling vs. Dropout. To further test our probabilistic
component, we compare our sampling of gaze map to the dropout of features. As
we discussed in Sect. 3.4, the sampling procedure in our model can be viewed as
a way of “throwing away” features. Thus, we experiment with enabling Dropout
directly after the attention pooled feature map in the model. Specifically, we
compare two models with the same architecture, yet one trained with Dropout
and one without. The results are in Table 1b. When Dropout is disabled, the
network performs slightly better for action recognition (+1.2%) and gaze esti-
mation (+0.3%). In contrast, removing Dropout from the backbone I3D will
slightly decrease the accuracy [44]. We postulated that with regularization from
our sampling, further dropping out the features will hurt the performance.

Attention for Action Recognition. Finally, we compare our method to a
soft attention model (Soft-Atten in Table 1b) using the same backbone networks.
Similar to our model, this method fuses the two streams at the end of the 4th
and 5th conv blocks. Soft attention map is produced by 1x1 convolution with
Sigmoid activations from the fused features at the 4th conv block. This map is
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further used to pool the fused features (by weighted averaging) at the 5th conv
block for recognition. Thus, this soft attention map receives no supervision of
gaze. A similar soft attention mechanism was used in a concurrent work [20].

For action recognition, Soft-Atten is worse than gaze supervised models by
0.8–3%, yet outperforms the base I3D model by 0.5%. These results suggest
that (1) soft attention helps to improve action recognition even without explicit
supervision of gaze; and (2) adding human gaze as supervision provides a signif-
icant performance gain. For gaze estimation, Soft-Atten is worse (−14%) than
any gaze supervised models, as it does not receive supervision of gaze.

4.3 FPV Action Recognition

We now describe our experiments on FPV action recognition. We introduce our
baselines and compare their results to our full model. These results discussed.

Table 2. Action Recognition and Gaze Estimation. For action recognition, we
report mean class accuracy at both clip and video level. For gaze estimation, we show
F1 scores and their corresponding precision and recall scores.

Methods Clip Acc Video Acc
EgoIDT+Gaze† [19] N/A 46.50

I3D+Gaze† 46.77 51.21
EgoConv+I3D [35] N/A 48.93

Gaze MLE 47.41 51.12
Our Model 47.71 53.30

(a) Action Recognition Results: Our
method outperforms previous methods by
at least 3.5%, and even beats the deep
model that uses human gaze at test time
(I3D+Gaze) by 2.1%. †: methods use human
gaze during testing.

Methods F1 Prec Recall
EgoGaze [18] 16.63 16.63 16.63*
Simple Gaze 30.10 25.14 37.48

Deep Gaze [47] 33.51 28.04 41.62
Gaze MLE† 24.68 18.55 36.86
Our Model† 32.97 27.01 42.31

(b) Gaze Estimation Results: Our
model is comparable to the state-of-
the-art methods. †: methods jointly
model gaze and actions. This joint
modeling does not benefit gaze estima-
tion. *: see Sec 4.4 for discussions.

Baselines. We consider a set of strong baselines for FPV action recognition.

• EgoIDT+Gaze [19] combines egocentric features with dense trajectory
descriptors [43]. These features are further selected by gaze points, and
encoded using Fisher vectors [26] for action recognition.

• I3D+Gaze is inspired by [7,19], where the ground truth human gaze is
used to pool features from the last convolutional outputs of the network. For
this method, we use the same I3D joint backbone and the same attention
mechanism as our model, yet use human gaze for pooling features. When
human gaze is not available, we fall back to average pooling.

• EgoConv+I3D [35] adds a stream of egocentric cues for FPV action recog-
nition. This egocentric stream encodes head motion and hand masks, and its
outputs are fused with RGB and flow streams. We use Fully Convolutional
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Network (FCN) [21] for hand segmentation, and late fuse the score of ego-
centric stream with I3D for a fair comparison. This model is trained from
scratch.

• Gaze MLE is the same model in our ablation study, where the gaze is
estimated using maximum likelihood. It provides a simple baseline of multi-
task learning of gaze and actions within a single deep network.

Unfortunately, we are unable to compare against relevant methods in [7,22].
These methods require additional object annotations for training, which is not
presented in EGTEA dataset. And we do want to emphasis that our method
does not need object or hand information for training or testing.

Results. Our results for action recognition are shown in Table 2a. Not surpris-
ingly, all deep models outperform EgoIDT+Gaze [19], which uses hand crafted
features. Moreover, EgoConv+I3D only slightly improves the I3D late fusion
results (+0.1%). This is because [35] was designed to capture actions defined by
“gross body motion”, such as “take” vs. “put”. And our setting requires fine
grained recognition of actions, e.g., “take cup” vs. “take plate”.

Surprisingly, even using human gaze at test time, I3D+Gaze is only slightly
better than Gaze MLE (+0.1%). And finally, our full model outperforms all
baseline methods by a significant margin, including those use human gaze during
testing. Our model reaches the accuracy of 53.30%. We argue that these results
provide a strong evidence to our modeling of uncertainty in gaze measurements.
A model must learn to account for this uncertainty to avoid misleading gaze
points, which will distract the model to action irrelevant regions.

Predicted: Cut Cucumber GT: Cut Cucumber Predicted: Turn on Faucet  GT: Turn on Faucet Predicted: Open Fridge  GT: Open Fridge

Predicted: Take Plate   GT: Put Eating Utensil Predicted: Open Drawer   GT: Open Cabinet Predicted: Cut Bell Pepper  GT: Cut Cucumber

Fig. 3. Visualization of our gaze estimation and action recognition. For each 24-frame
snippet, we plot the output gaze heat map at a temporal stride of 8 frames. We also
print the predicted action labels and ground-truth labels above the images. Both suc-
cessful (first row) and failure cases (second row) are presented.

Analysis and Discussion. Going beyond the scores, we provide more results
to help understand our model. Specifically, we compare the confusion matrix
of our model with backbone I3D Joint network and second best I3D+Gaze in
Fig. 4. Our model achieves the highest accuracy among the three for 31 out of 106
classes. These classes include actions where the temporal sequencing is critical,
such as “take/turn on object” vs “put/turn off object”. These actions have been
previously considered challenging in FPV setting [19].
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Finally, we visualize the outputs of gaze estimation and action labels from
our model in Fig. 3. Our gaze outputs often attend to foreground objects that
the person is interacting with. We believe this is why the model is able to better
recognize egocentric actions. Moreover, we find these visualizations helpful for
diagnosing the error of action recognition. A good example is the first failure
case in the second row of Fig. 3, where our model outputs the action of “take
plate” when the actually action has not happened yet. Another example is the
last failure case in Fig. 3, where the recognition model is confused due to the
appearance similarity between cucumbers and bell peppers.

4.4 FPV Gaze Estimation

We now present our baselines and results for FPV gaze estimation.

Fig. 4. Confusion matrix for action recognition. We compare our model (right) with
I3D Joint (left) and I3D+Gaze (middle). Among the three methods, our method
achieves the best accuracy of 31 out of 106 classes, including the challenging cases
that require distinguishing actions like “turn on faucet” vs. “turn off faucet”.

Baselines. We compare our model to the following baseline methods.

• EgoGaze [18] makes use of hand crafted egocentric features, such as head
motion and hand position, to regress gaze points. For a fair comparison, we
use the FlowNet V2 for motion estimation and hand masks from FCN for
hand positions (same as our method). EgoGaze outputs a single gaze point
per frame. With a single ground-truth gaze, EgoGaze will have equal numbers
of false positives and false negative. Thus, its precision, recall and F1 scores
are the same.

• Simple Gaze is a deep model inspired by our previous work [7]. Specifically,
we directly estimate the gaze map using maximum likelihood (sigmoid cross
entropy loss). We use the same backbone network (I3D Joint) as our model
and keep the output resolution the same.

• Deep Gaze [47] is the FPV gaze prediction module from [47], where a 3D
convolutional network is combined with a KL loss. Again, we use I3D Joint as
the backbone network and keep the output resolution. Note that this model
can be considered as a special case of our model by removing the sampling,
the attention mechanism and the recognition network.

• Gaze MLE is the deterministic version of our joint model.



Joint Learning of Gaze and Actions in First Person Video 653

Results. Our gaze estimation results are shown in Table 2b. We report F1
scores and their corresponding precision and recall values. Again, deep models
outperform hand crafted features by a large margin. We also observe that models
with KL loss are consistently better than those use cross entropy loss. This
impact is more significant for joint modeling, mostly likely due to the difficulty
in balancing between the losses for two tasks. Moreover, the joint models slightly
decrease the gaze estimation performance when compared to gaze-only models.

Discussion. Our results suggest that the top-down, task-relevant attention is
not captured in these models, even though the top-down modulation can be
achieved via back-propagation. This is thus an interesting future direction for
the community to explore. Finally, we note that the benchmark of gaze estima-
tion uses noisy human gaze as ground truth. We argue that even though these
gaze measurements are noisy, they largely correlate with the underlie signal of
attention. And thus the results of the benchmark are still meaningful.

5 Conclusion

We presented a novel deep model for jointly estimating gaze and recognizing
actions in FPV. Our core innovation is to model the noise in human gaze mea-
surement using stochastic units embedded in a deep neural network. Our model
predicts a probabilistic representation of gaze, and uses it to select features
for recognition. The method thus learns to account for the uncertainty within
the supervisory signal of human gaze. We provide extensive experiments that
demonstrate the effectiveness of our method. Our results surpass state-of-the-
art methods for FPV action recognition and remain on par with strong baselines
for gaze estimation. Going beyond FPV, our method provides a novel means of
encoding the uncertainty present in training signals. We believe this capability
is an important step in developing more expressive probabilistic deep models.
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