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Abstract. 3D Convolutional Neural Networks are sensitive to transfor-
mations applied to their input. This is a problem because a voxelized
version of a 3D object, and its rotated clone, will look unrelated to
each other after passing through to the last layer of a network. Instead,
an idealized model would preserve a meaningful representation of the
voxelized object, while explaining the pose-difference between the two
inputs. An equivariant representation vector has two components: the
invariant identity part, and a discernable encoding of the transformation.
Models that can’t explain pose-differences risk “diluting” the representa-
tion, in pursuit of optimizing a classification or regression loss function.

We introduce a Group Convolutional Neural Network with linear
equivariance to translations and right angle rotations in three dimen-
sions. We call this network CubeNet, reflecting its cube-like symmetry. By
construction, this network helps preserve a 3D shape’s global and local
signature, as it is transformed through successive layers. We apply this
network to a variety of 3D inference problems, achieving state-of-the-art
on the ModelNet10 classification challenge, and comparable performance
on the ISBI 2012 Connectome Segmentation Benchmark. To the best of
our knowledge, this is the first 3D rotation equivariant CNN for voxel
representations.
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1 Introduction

Convolutional neural networks (CNNs) are the go-to model for most prediction-
based computer vision problems. However, most popularized CNNs are treated
as black-boxes, lacking interpretability and simple properties concerning the data
domains they act on. For instance, in 3D object recognition, we know that object
categories are invariant to object pose, but convolutional neural network fil-
ters are orientation, scale, reflection, and parity (point reflection) selective. This
means that every activation in any intermediate layer is sensitive to local pose,
and ultimately the global output of the network is too. A simple solution to
obtain this sought-after invariance is to augment the input data with transformed
copies, spanning all possible variations, to which we seek to be invariant [2]. This
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method is simple and effective, but relies on an efficient and realistic data aug-
mentation pipeline. There is also the argument, why should we bother learning
these invariances, if we can enforce them a priori? If successful, we would not
need as much training data [8,50]. Indeed, convolutional neural networks already
have (i) filter locality and (ii) translational weight-tying built directly into their
architectures, which arguably could be learned using a multilayer perceptron
with a enough computational budget and training data.

We introduce a CNN architecture, which is linearly equivariant (a general-
ization of invariance defined in the next section) to 3D rotations about patch
centers. To the best of our knowledge, this paper provides the first example of
a group-CNN [8] with linear equivariance to 3D rotations and 3D translations
of voxelized data. By exploiting the symmetries of the classification task, we are
able to reduce the number of trainable parameters using judicious weight tying.
We also need less training and test time data augmentation, since some aspects of
3D geometry are already ‘hard-baked’ into the network. We demonstrate state-
of-the-art and comparable performance on (i) the ModelNet10 classification chal-
lenge, which is a standard 3D classification benchmark task, and (ii) the ISBI
2012 connectome segmentation benchmark, which is a 3D anisotropic boundary
segmentation problem. We have released our code at https://deworrall92.github.
com.

2 Background

For completeness, we set out our terminology and definitions. We outline def-
initions of linear equivariance, invariance, groups, and convolution, and then
combine these ideas into the group convolution, which is the workhorse of the
paper. These definitions are not our contribution and can be found in textbooks
such as [7], but we have tried to standardize them and simplify notation.

Definition 1 (Equivariance). Consider a set of transformations G, where
individual transformations are indexed as g ∈ G. Consider also a function or
feature map Φ : X → Y mapping inputs x ∈ X to outputs y ∈ Y. Transfor-
mations can be applied to any x ∈ X using the operator T X

g : X → X , so that
x �→ T X

g [x]. The same can be done for the outputs with y �→ T Y
g [y]. We say that

Φ is equivariant to G if

Φ(T X
g [x]) = T Y

g [Φ(x)], ∀g ∈ G. (1)

Since T X
g and T Y

g are related via (1), they are essentially different represen-
tations of the same transformation. Due to this connection, it is customary to
drop the T •

g notation and write

Φ(gx) = gΦ(x). (2)

Equivariance is important, because it highlights an explicit relationship
between input transformations and feature-space transformations, which in the
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context of deep learning is not well-understood. An example of an equivariant
task is pose-detection, where g represents the sought-after pose. The kind of
equivariant feature maps, we are interested in, are those where T X and T Y are
linear. Such feature maps are known as linearly equivariant. A special case of
equivariance is invariance, where we have

Φ(x) = Φ(gx), (3)

that is, the feature-space transformation is just the identity. An example of an
invariant task is object classification. Note when we use the term equivariant in
the rest of the paper, we will generally refer to non-invariance.

Groups. Invertible transformations are members of a class of mathematical
objects called groups. Groups are a mathematical abstraction, which are used to
describe the compositional structure of mathematical operators, such as trans-
formations. Groups have four main properties: for group elements f, g, h ∈ G

1. closure: chained transformations are transformations, e.g. fg ∈ G
2. associativity: f(gh) = (fg)h = fgh
3. identity: there exists a transformation e ∈ G (sometimes written 0) such

that eg = ge = g,∀g ∈ G
4. invertibility: every transformation g has an inverse g−1, so gg−1 = g−1g = e.

Rotations and translations are both examples of groups.

Convolution. The fundamental operation in convolutional neural networks is
the convolution—technically CNNs perform cross-correlation, but we stick with
the term ‘convolution’ to remain in sync with the literature �. In 3D, convolution
is the inner product of a filter W ∈ R

h×w×d with patches extracted from an
activation tensor or feature map F ∈ R

H×W×D where h,w, d,H,W,D are the
height, width, and depth of the filter/activations respectively. The method of
patch extraction is usually a translationally sliding window. So given a filter W,
the translated version is gW, such that

[F � W]g =
∑

x∈Z3

[gW]xFx =
∑

x∈Z3

Wg−1xFx; (4)

where to index elements of the filters/activations we have used the multi-index
notation Wx := Wx,y,z for x = [x, y, z]� ∈ Z

3, and so in this example
Wg−1x = Wx−gx,y−gy,z−gz

for voxel-wise translation in 3D by g = [gx, gy, gz]�.
This sliding-window interpretation of convolution can be viewed as applying the
same filter to different local regions of the inputs. Note that in reality, since the
feature map is zero outside of a a certain neighborhood, we need not sum over
all Z3. Note also how the output of the convolution is indexed by the transfor-
mation parameter g; that is, the gth activation corresponds to the response of
a g-shifted filter gW. We have used the notation [F � W]g to emphasize that
[F � W] is an indexable object like W or F, and it can be viewed as a vector
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(see Fig. 1). CNNs usually have multiple channels k per activation tensor, so in
general we really have

[F � W]kg =
I∑

i=1

∑

x∈Z3

[gW]ikx Fi
x, (5)

where the dummy index i is over input channels with output channel k.

Fig. 1. (Best viewed in color) On the left we show the standard 2D convolution of
Eq. 4 between a sliding filter W and an input patch F. On the right we show the
2D right-angle rotation convolution (called Z4-convolution) acting on an input where
G = Z

2.

One can show (c.f. [8,11] and Eqs. 8 and 9) that the standard translational
convolution is equivariant to translations; that is, translations of the input to the
convolution result in translations in the feature space representation [F�W]. The
extension of this translational equivariance to other groups of transformation is
embodied in the group convolution [8], which we show next. This has been proven
[29] to be the only operator which is equivariant to (compact) group-structured
transformations.

Definition 2 (Group Convolution). A group convolution between a filter W
and a single-channel feature map F over a group of transformations G is

[F � W]g =
∑

h∈G

[gW]hFh =
∑

h∈G

Wg−1hFh. (6)

The extension to multichannel activations parallels Eq. (5).

We see that the main difference between the standard convolution of Eq. 4
and the group convolution of Eq. 6 is that we have replaced the domain of sum-
mation from Z

3 to the group G. So the sliding inner product could generalize
to a sliding-and-rotating inner-product, or sliding-and-flipping inner product, or
even sliding-and-scaling inner product depending on the choice of group G. A
simple example is shown in Fig. 1, where we show a 2D translational convolution
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and a first layer 2D right-angle rotational convolution (called Z4-convolution).
In this example, the domain of the Z4-convolution is G = Z

2, the standard 2D
image domain, but the output is over the group of four 2D rotations, Z4. This
amounts to taking an inner product of the kernel W rotated four times, with
each individual response being stacked into a vector. If we were to then convolve
a kernel over the response of this first Z4-convolution, the domain of that convo-
lution would be G = Z4. Stacks of group convolutions turn out to be equivariant
as well.

Note that the dimensionality of the convolutional responses is linear in the
number of elements of the group G. At each layer, it is common to choose the
size of the group to be the same, or smaller if we include pooling. To maintain
a transformation invariant output, we using average over the group at the final
layer of the network, which is an extension of global average pooling to groups.

In this paper, we are interested in the group of 3D roto-translations. The
group convolution for this group will involve us convolving an activation tensor
with rotated and shifted copies of a filter [gW]x = Wg−1x = WR−1

g x−zg
, where

Rg is a 3D rotation matrix and zg is a translational offset.

3 Related Work

Recently there has been an explosion of interest into CNNs with predefined
transformation equivariances, beyond translation [8,9,11,14–16,18,19,22,25,26,
28,29,31,33,36,42,48–50,55]. However, with the exception of Cohen and Welling
[9] (projections on sphere), Kondor [28] (point clouds), and Thomas et al. [48]
(point clouds), these have mainly focused on the 2D scenario. There are also
examples of CNNs, which have explicit regularization to learn equivariance [30,
40,43,51]. To the best of our knowledge, we are the first to develop a 3D rotation
equivariant CNN architecture for voxelized data.

Handcrafted Equivariance. There are many computer vision models that exhibit
equivariance properties. Perhaps the first notable instance is the scale-space [13],
which specifically displays equivariance to isotropic scale, later extended to affine
equivariance by Lindeberg [34]. In the presence of continuous transformations,
Freeman and Adelson famously [17] (and less famously Lenz [32]), shored up
the theory of steerable filters, which are a set of bandlimited linear filters wθ ∈
R

H×W , which can be synthesized exactly at any rotation θ as a finite linear
combination of basis filters

wθ(x) =
N∑

n=1

αn(θ)φn(x). (7)

These are attractive because their expressiveness is controlled by the number
of coefficients N , rather than the spatial size of the filter. These have been applied
to scale-spaces/pyramids in Simoncelli et al. [44], and have been placed on firm
theoretical ground by Teo [47] in his PhD thesis. It has also been shown that
for certain transformations, such as scalings (or more generally non-compact
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groups), exact steering is only possible if N = ∞. In this case, Perona [37]
showed that he could approximate Eq. 7 using an SVD formulation. Like our
method, all these works display handcrafted linear equivariance to a predefined
set of transformations.

2D Rotation Invariant Neural Networks. For CNNs, as mentioned, most works
have focussed on 2D rotations. Fasel and Gatica-Perez [16], Laptev et al. [31], and
Gonzalez et al. [19] average classifier predictions on multiple rotated copies of an
input. Sifre and Mallat [42] and Oyallon and Mallat [36] use a scattering network
[5] for roto-translation invariant classification. Every layer of these networks
is locally (patch-wise) rotation invariant, performing a pre-determined wavelet
transform averaging responses over rotation. Cotter and Kingsbury [12] recently
suggested, however, that these networks lack discriminativeness, partially from
the phase removal and partially from the fact that the wavelet transforms are
not optimized per-task, which our method can handle.

2D Rotation Equivariant Neural Networks. Henriques and Vedaldi [22] and
Esteves et al. [15] perform a log-polar transform of the input, which converts
scalings and rotations about a single point into a translation. Applying a stan-
dard translation equivariant CNN to this representation is then equivariant to
rotations and scalings about the image center. This is only equivariant to global
rotations, and does not generalize to 3D. For locally equivariant methods Diele-
man et al. [14] maintain multiple rotated feature maps at every layer of a network;
whereas, Cohen and Welling [8] rotate the filters. In the same paper, Cohen and
Welling also extended this method to finite groups and later generalized this to
arbitrary compact groups in [11]. Worrall et al. [50] generalized the filter rotation
method to continuous rotations, using circular Fourier transforms to compute
continuous rotation responses with a finite number of filters. At the same time
Zhou et al. [55] extended the filter rotation method to non-90◦ rotations using
bilinear interpolation. Gonzalez et al. [18] do similar, but also pool over rotations
and use a representation similar to [50]. Weiler et al. [49] so far have the best
solution to rotate filters, using steerable filters to solve the interpolation prob-
lem. Our method can be seen as an instance of Cohen and Welling [8] adapted
to 3D rotation and translation.

Deeply Learned Equivariance. There are many papers which also focus on learn-
ing equivariance. Tangent Prop by Simard et al. [43] is a classic example of an
invariance inducing regularizer. Hinton et al. [23] introduced the transforming
autoencoder to build latent spaces with equivariant structure. More recently,
Worrall et al. [51] extended this method by imposing explicit transformation
rules on the latent space. Papers such as InfoGAN by Chen et al. [6] and the
Deep Convolutional Inverse Graphics Network of Kulkarni et al. [30] seek to
learn equivariant structure in unsupervised fashion unsupervised. Most recently
Sabour et al. [40] and Hinton et al. [24] achieved highly impressive results on
the MNIST dataset with capsule networks by learning approximations to affine
equivariance. While these methods are very flexible, they require lots of training
data
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3D Methods. For classification, the most straightforward CNNs operating on 3D
voxel data use 3D convolutions as of Eq. 4 such as Maturana and Scherer [35]
or 3D Convolutional Deep Belief Network as in Wu et al. [53]. Brock et al. [4]
take this to the extreme, designing an ensemble of six 45-layer deep inception-
and resnet-style networks trained with a lot of data-augmentation and rotation
averaging. Sedaghat et al. [41] rely less on brute force, augmenting the prediction
task with orientation estimation. For 3D rotation equivariant methods, Cohen
and Welling introduce the Spherical CNN [10], which operates on images pro-
jected onto the sphere, while Kondor [28] and Thomas et al. [48] operate on
point clouds. All three methods use variants of a 3D extension of Worrall et
al. [50], which introduced continuous rotation equivariance into CNNs, by use of
the shifting property of Fourier transforms.

4 Method

We have introduced the concept of groups as a way to model transformations,
and as a way to extend standard convolution to these transformations. Here, we
chart out three different discrete 3D rotation groups; namely, Klein’s four-group,
the tetrahedral group and the cube group. We then show how to apply these
groups in a group equivariant CNN using Cayley tables to build three different
3D rotation equivariant CNNs. We do not consider equivariant to continuous 3D
rotations in this paper, leaving it for future work.

Cube Group. The set of all right-angle rotations of a cubic filter Fx ∈ R
N×N×N

forms a group. There are 24 such rotations, going by the name of the cube group1

S4. Each of the 24 rotations applied to a cube is shown in Fig. 2. The group is non-
commutative, so F(g1g7)−1x �= F(g7g1)−1x for rotations g1 and g7, for example.

Tetrahedral Group. Using 24 copies of the same filter increases the computa-
tional overhead 24 times. A cheaper subsampling is the rotations of the tetra-
hedron. This has 12 states, and goes by the name of the rotational tetrahedral
group T4. T4 is formally a subgroup2 of the cube group, comprised of all even
rotations (i.e. all rotations which can be made by two 90◦-rotations). It is shown
as the 12 cube rotations wrapped in thin blue in Fig. 2.

Klein’s Four-Group. The smallest subsampling of rotations, which can be seen
as rotations about 3 independent axes is Klein’s Vierergruppe V or four-group.
It has four rotations as can be seen in Fig. 3. This group is a subgroup of the
rotational tetrahedral group and the cube group. Interestingly, it is commutative
and also the smallest non-cyclic group. It is shown as the 4 rotations wrapped
in dashed red in Fig. 2.

1 Other names are the subgroup O of the octohedral group; symmetric group S4; and
full tetrahedral group Td.

2 A subgroup H is any subset of G, which satisfies the four group axioms, which we
introduced in the background section.
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Fig. 2. (Best viewed in color) Left: The 24 rotations of the cube group S4, applied
to the a cube Fx are shown. For instance, rotation g22 applied to the cube returns
F

g−1
22 x

, shown by the #22 in the bottom row. The 12 cubes wrapped in thin blue

boxes are the rotational tetrahedral group T4. The 4 cubes wrapped in thick dashed
red lines are the Klein four-group V . Right: The Cayley table of the cube group,
representing how rotations are composed. For instance, on the bottom left, we have
the example of composing rotation g7 with rotation g1. The composition is performed
by (i) first applying g7 to the cube to yield F

g−1
7 x

then (ii) applying g1 to F
g−1
7 x

,

returning F
g−1
1 g−1

7 x
. The first transformation is easy to visualize - it is by #7 in the

grid of cubes. The transformation g1 is a rotation by 90◦ counter-clockwise about the
vertical axis, thus for the composition we rotate F

g−1
7 x

90◦ counter-clockwise about

the z-axis. This results in F
g−1
8 x

. This result is stored in the Cayley table by placing

the first rotation down the left column and the second rotation along the top row.
The intersection of row 7 with column 1 is the rotation 8. On the bottom right, we
show the composition g7g1 = g17 �= g8 = g1g7, demonstrating the non-commutativity
property of the cube group and 3D rotations in general.

4.1 Cayley Tables

Knowing how a rotation of the input will permute the convolutional response
can be figured out from the group Cayley table. This is a multiplication table
enumerating every composition of transformations. For Klein’s four-group, we
label the rotations as g0 (the identity), g1, g2, & g3. The Cayley table with
instructions of how to read it are given in Table 1. The Cayley table is useful for
determining how to perform the group convolution in deeper layers. We can see
why this is the case because looking to the expression for the group convolution∑

h∈G Wg−1hFh, we see a product g−1h in the indices of W. We can use the
Cayley table to ascertain the single transformation that is the result of the
product. Looking closely at a Cayley table we see that all the rows/columns are
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permutations of one another, this will be important for understanding how input
rotations affect the group-convolutional response.

Table 1. The Cayley table for Klein’s four-group. The product g2g3 (a g2-rotation
followed by a g3-rotation) can be found by looking down the left column for the first
transformation g2, then finding the second transformation g3 in the top row. The cell
at the intersection of row-g2 and column-g3 (shaded in yellow) is g1, so g2g3 = g1.

• g0 g1 g2 g3
g0 g0 g1 g2 g3
g1 g1 g0 g3 g2
g2 g2 g3 g0 g1
g3 g3 g2 g1 g0

4.2 Discrete Group Equivariance and Permutations

Rotating an input to a group convolution will lead to a transformation of its
output. Specifically a rotation will lead to a permutation of the output, where
we view the output as a vector of responses, with each dimension corresponding
to a different group element/transformation g ∈ G. An example of this vectorized
output can be seen in Fig. 1. For translations the permutation is a voxel-wise
shift, but for the aforementioned 3D rotations the permutations are much more
complicated. If we apply a transformation p to the input features F, then

[[pF] � W]g =
∑

h∈G

[gW]h[pF]h =
∑

h∈G

Wg−1hFp−1h (8)

=
∑

h′∈G

Wg−1ph′Fh′ = [F � W]p−1g = [p[F � W]]g. (9)

Here we have made the substitution h′ = p−1h and noted that p−1G = G for
p ∈ G, where p−1G := {p−1g | g ∈ G}. What lines 8 and 9 say is that the output
of the group convolution is permuted whenever the input F is transformed by
an element of the group G. The specific permutation of the output depends on
the specific transformation and transformation group. Thinking of F � W and
[pF] � W as vectors separated by a permutation, we can write

[pF] � W = p[F � W] = Pp[F � W], (10)

where the first equality is from Eqs. 8 and 9 and in the second equality we have
rewritten the permutation as multiplication with the permutation matrix Pp.
In fact Pp is the permutation matrix corresponding to the pth column of the
Cayley table. Thus we see that group convolutions are linearly equivariant to
transformations p ∈ G, as defined in Eq. 1. We see an example of this for Klein’s
four-group in Fig. 3, where we have labeled the four rotations as g0 (the identity),
g1, g2, & g3.
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Fig. 3. Example of how the group convolution output permutes as a function of the
input rotation. This example is for Klein’s four-group V . Each cube represents a rota-
tion from V and a corresponding example feature vector is given with each cube.

4.3 Implementation: Roto-Translational Group-Convolution

Now we show how to implement a group-convolution for a 3D roto-translation. In
this example, we focus on the four-group to model rotations. A roto-translation
can be synthesized from a rotation, followed by a translation. Roto-translations
form a group, which can be seen as the product3 of V and Z

3. For our purposes,
it is safe to assume that we can write the elements of this producted group as
tr for t ∈ Z

3 and r ∈ V . So,

[F � W]tr =
∑

τ∈Z3

∑

ρ∈V

[trW]τρ Fτρ =
∑

τ∈Z3

∑

ρ∈V

[
t [rW]ρ

]

τ
Fτρ. (11)

The interpretation behind this equation is as follows. First we start with a
filter W. W has a different value for each voxel in its receptive field, indexed by
the translation variable τ , and also for every input rotation ρ—it may be easier
just to think of four 3D filters, Wρ0 ,Wρ1 ,Wρ2 ,Wρ3 , one for each rotation in V .
To convolve, we first rotate the kernel as rWρ• , then we perform a translational
shift t[rWρ• ]—this second part ends up as the standard convolution of Eq. 4,
which is efficient on GPUs. The initial rotation of the filter rWρ• can be found
from composing r and ρ• using our Cayley tables. It is the rotation needed to
rotate r into ρ•. When the input is a raw image, the input domain is just Z3, so
the rotation of W is just r.

To compute gradient for backpropagation we leverage the power of automatic
differention, which is available in most modern neural network libraries.

5 Experiments and Results

Here we describe two simple experiments we performed to demonstrate the effec-
tiveness of group-convolutions on 3D voxelized data. We tested on the Model-
Net10 classification challenge, which is a small 3D voxel dataset, and on the ISBI
2012 connectome segmentation challenge. In both examples, we found Klein’s
four-group to be the most effective group for the rotation-equivariant group-
convolutions.

3 Formally, this is a semi-direct product.
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5.1 ModelNet10

The ModelNet 10 dataset [53] contains 4905 CAD models from 10 categories with
a train:test split of 3991:914. Each model is aligned to a canonical frame and
then rotated at 12 evenly-sampled orientations about the z-axis. These rotated
models are then voxelized to a 32 × 32 × 32 grid. We use the voxelized version
of Maturana and Scherer [35]. While the dataset consists of vertically aligned
models, rotated only about the z-axis, we posit that local features occur at all
3D rotations, and so a Cubenet is well positioned to operate on such as dataset.
We use the four-group of rotations and the rotational tetrahedral group T4, since
we found the cube-group too large and slow to be trained practically multiple
times during a model search.

We use a simple VGG-like [45] network architecture shown in Fig. 4. It con-
sists of 10 group-convolutional layers followed by a 2-layer fully-connected net-
work. Before every convolution, we combine multiplicative dropout with 0.1 stan-
dard deviation on the filter tensors, and after every convolution we add batch
normalization. We use ReLU nonlinearities and global average pooling before
two fully-connected layers at the end of the network. The loss function is the
multi-class cross-entropy. We initialize all weights using the He method [20] and
train the network with ADAM stochastic gradient descent [27], with a learning
rate of 1e−3, which steps down by 1/5 every 5 epochs for 25 epochs.

The data augmentation is performed similar to the implementation found
in Brock [4] with 12 stratified rotations about the z-axis, reflections in the x-
and y-axis with uniform probability and uniformly random translations of up to
±4 voxels along all three axes. We use this data augmentation to maintain a
direct comparison with prior works. It should also be noted that rotational data
augmentation cannot be avoided entirely, since our networks are only equivari-
ant to subgroups of the full roto-translation group SE(3), so we still need to
augment for all angles in the quotient SE(3)/G, where G is the subgroup of
interest. We also rescale the voxel values to {−1, 5} instead of {0, 1} as in [4],
who showed it helps with sparse voxel volumnes. We show our results in Table 2.
We compare the rotational tetrahedral group and the four-group models. For the
four-group model, we compare the average single-view accuracy across 5 models
for robustness, with rotation averaged accuracy and single-view accuracy for the
best model. The single view accuracy is computed as the accuracy averaged over
each of the 12 rotated test views; whereas, the rotation averaged accuracy is
computed as the accuracy of the average of all 12 predictions.

For the single-model category, our four-group, rotation-averaged network
attains state-of-the-art performance. Interestingly, our single-view result we
obtain is very similar to ORION [41], which introduces an orientation estimation
task along with the classification. We posit that the T4-model does not perform
as well as the V -model, because increasing the number of filter copies reduces the
diversity of filters, when the number of total filters (number of learnable filters
times number of copies) is constrained. Essentially there is a tradeoff between fil-
ter diversity and the extent of equivariance due to weight-tying. The Klein-group
appears to achieve best in this situation. It is also interesting to see that rotation
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Table 2. Results for the ModelNet 10 benchmark. We compare against other methods
which operate on a voxel-representation of the data. The only model to beat us is
Brock et al. ’s ensemble of 6 models. If we just restrict to a single model, then we hold
state-of-the-art accuracy.

Method ModelNet10 # params (×106, 2 s.f.)

3D ShapeNets [53] 0.8354 12

Xu and Todovoric [54] 0.8800 0.080

3D-GAN [52] 0.9100 11

VRN [4] 0.9133 18

VoxNet [35] 0.9200 0.92

Fusion-Net [21] 0.9311 120

ORION [41] 0.9380 0.91

Ours T4 0.9127 4.5

Our V (average) 0.9372 4.5

Ours V (best model single-view) 0.9420 4.5

Ours V (best model rotation averaged) 0.9460 4.5

VRN Ensemble [4] 0.9714 108

averaging improves performance slightly, compared to our single-view model. We
suggest this is because we are averaging over rotations not covers by the four-
group. Looking across the model sizes, we see that the group-convolutional mod-
els sit somewhere in the middle in terms of number of parameters. Speed-wise,
we found that during development the four-group network only trained about
2× slower than non-group CNNs.

5.2 ISBI 2012 Challenge: Connectome Segmentation

The ISBI 2012 Challenge is a volumetric boundary segmentation benchmark.
The task is to segment Drosophilia ventral nerve cords from a serial-section
transmission electron microscopy (EM) image [1]. The training set is a single
2 × 2 × 1.5µm3 volume of anisotropic imaging resolution (high x-y resolution,
low z resolution). Each voxel is 4 × 4 × 50 nm3 so the full training image is
512 × 512 × 30 voxels in shape. The test image is 512 × 512 × 30 voxel, with
withheld labels. Scoring is performed using the metrics Vrand and Vinfo described
in [1]. Larger is better.

Here we are faced with two major issues, (a) small dataset, (b) high imaging
anisotropy. We counter (a) with heavy data augmentation as per [38] and by not-
ing that group convolutions reduce the number of trainable parameters through
significant weight-tying. To counter the imaging anisotropy, we use Klein’s four-
group, which is not affected by stretching of one of the axes (Fig. 5).

Competing methods segment on a single 2D high-resolution slice at a time,
but as a proof of concept we try segmentation as a 3D problem, feeding 3D
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Fig. 4. (Best viewed in color) The architectures used in our experiments. We use
a simple VGG-like architecture for the ModelNet10 classification challenge, and a
UNet/FusionNet-like architecture for the ISBI2012 boundary segmentation benchmark.

Fig. 5. Examples of 2D slices from the training volume, the associated label mask, and
the prediction made by our network. The original volume contains small amounts of
noise and certain structures within the volume are ambiguous in nature.

image chunks into a 3D network. We use an architecture as shown in Fig. 4,
based on Weiler et al. ’s steerable version [49] of the FusionNet [38]. It is a
UNet [39] with added skip connections within the encoder and decoder paths to
encourage better gradient flow. We place Gaussian multiplicative dropout [46]
with standard deviation 0.1 before every convolution. By this we mean if x is an
activation and n ∼ Normal(n; 1, 0.12) then the result of dropout is x ·n. We also
place batch normalization after every convolution and use ReLU nonlinearities
directly before each convolution, except on the input.

For the training set we extract random 100 × 100 × 5 voxel patches from the
training volume and predict the center slice. We reflection pad 10 voxels in the
x-y plane, and constant pad up to 5 voxels in the z-direction if we sample at the
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upper or lower image boundaries. We then apply a random elastic distortion in
the x-y-plane, and pass the patches through our group-equivariant FusionNet.
We keep our implementation close to the design of Weiler et al. to maintain a
close comparison, and do not perform extensive model search. The results are
shown in Table 3.

Table 3. Results for the ISBI 2012 challenge. We have tried to keep our implementation
as close as possible to Weiler et al. Unlike other methods, we perform no post-processing
at all unlike Weiler et al. who use a lifting multi-cut [3] post-process, or UNet and Quan
et al. who use rotation averaging. Quan also adds an optional median filtering to boost
scores. This shows that we can adapt state-of-the-art models to process 3D volumetric
data with little change in the competitiveness of the results.

Method Vrand Vinfo

UNet [39] 0.97276 0.98662

Quan et al. [38] 0.97804 0.98995

Ours 0.98018 0.98202

Weiler et al. [49] 0.98680 0.99144

IAL MC/LMC 0.98792 0.99183

Our results are comparable with other leading methods. Our Vrand metric is
slightly improved over UNet and Quan et al., but not as good as Weiler et al., who
use a 2D group convolutional neural network approach, with 17 rotations about
the z-axis and lifting multicut post-process. The leading method uses the lifting
multicut method too. Our Vinfo metric is not as good as the other methods, but
we believe with sufficient model search, and extensive post-processing we could
increase this number further. The main point of this experiment, as with the
ModelNet10 experiment, was to demonstrate that we could get relatively good
performance, without the need for extensive test-time rotation averaging.

6 Conclusion

We have presented a 3D convolutional neural network architecture, which is
equivariant to right-angle rotations in three dimensions. This relies on an exten-
sion of the standard convolution to 3D rotations. On the ModelNet10 classifica-
tion challenge, we have achieved state-of-the-art for a single model, beating some
much larger models, which rely on heavy data augmentation. Since our models
are rotation in/equivariant by design, our CNNs need not learn to overcome
rotations, the way a standard CNN does. In 3D, this is an especially impor-
tant gain. As a result, our model is positioned to get better generalization with
less data, while avoiding the need to perform time-costly rotation averaging at
test-time.

Another perspective on our approach is to think of it as global average pooling
over rotations, where we expose a new ‘rotation-dimension’. Without adhering to
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a defined group, it would be challenging to disentangle or orient a feature space
(at any one layer, or across multiple layers) with respect to such a rotation
dimension. The trade-off is that we commit to a group and its corresponding
CubeNet architecture, to avoid the considerable effort of learning to disentangle
pose.

We leave it to future work to examine whether these models can be gen-
eralized to continuous rotations and other challenging transformations, such as
scale. There is also the untouched challenge of finding 3D rotation groups, which
are not aligned to the Cartesian voxel-grid.
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