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Abstract. It is now much easier than ever before to produce videos.
While the ubiquitous video data is a great source for information dis-
covery and extraction, the computational challenges are unparalleled.
Automatically summarizing the videos has become a substantial need
for browsing, searching, and indexing visual content. This paper is in the
vein of supervised video summarization using sequential determinantal
point processes (SeqDPPs), which models diversity by a probabilistic
distribution. We improve this model in two folds. In terms of learning,
we propose a large-margin algorithm to address the exposure bias prob-
lem in SeqDPP. In terms of modeling, we design a new probabilistic
distribution such that, when it is integrated into SeqDPP, the resulting
model accepts user input about the expected length of the summary.
Moreover, we also significantly extend a popular video summarization
dataset by (1) more egocentric videos, (2) dense user annotations, and
(3) a refined evaluation scheme. We conduct extensive experiments on
this dataset (about 60 h of videos in total) and compare our approach to
several competitive baselines.

1 Introduction

It is now much easier than ever before to produce videos due to ubiquitous
acquisition capabilities. The videos captured by UAVs and drones, from ground
surveillance, and by body-worn cameras can easily reach the scale of gigabytes
per day. In 2017, it was estimated that there were at least 2.32 billion active
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camera phones in the world [24]. In 2015, 2.4 million GoPro body cameras were
sold worldwide [13]. While the big video data is a great source for information
discovery and extraction, the computational challenges are unparalleled. Auto-
matically summarizing the videos has become a substantial need for browsing,
searching, and indexing visual content.

Under the extractive video summarization framework, a summary is com-
posed of important shots of the underlying video. This notion of importance,
however, varies drastically from work to work in the literature. Wolf defines the
importance as a function of motion cues [41]. Zhao and Xing formulate it by
reconstruction errors [47]. Gygli et al. learn a mixture of interestingness, rep-
resentativeness, and uniformity measures to find what is important [12]. These
differences highlight the complexity of video summarization. The criteria for
summarizing vastly depend on the content, styles, lengths, etc. of the video
and, perhaps more importantly, users’ preferences. For instance, to summarize
a surveillance video, a running action might flag an important event whereas in
a football match it is a normal action observed throughout the video.

To overcome those challenges, there are two broad categories of approaches in
the literature. One is to constrain the problem domain to a homogeneous set of
videos which share about the same characteristics (e.g., length and style) so that
experts can engineer some domain-specific criteria of good summaries [26,34].
The other is to design models that can learn the criteria automatically, often from
human-annotated summaries in a supervised manner [9,30,31,46]. The latter is
more appealing because a learner can be trained for different settings of choice,
while the former is not so scalable.

This paper is also in the vein of supervised video summarization based on
determinantal point processes (DPPs) [18]. Arising from quantum physics and
random matrix theories, DPP is a powerful tool to balance importance and
diversity, two axiomatic properties in extractive video summarization. Indeed,
a good summary must be collectively diverse in the sense that it should not
have redundancy of information. Moreover, a shot selected into the summary
must add value to the quality of the summary; otherwise, it is not important
in the context of the summary. Thanks to the versatility of DPP and one of its
extensions called SeqDPP [9] for handling sequences, they have been employed
in a rich line of recent works on video summarization [30,31].

This paper makes two-pronged contribution, improving these models from the
perspectives of both model flexibility and learning strategy. In terms of learning,
we propose a large-margin algorithm to address the SeqDPP’s exposure bias
problem explained below. In terms of modeling, we design a new probabilistic
block such that, when it is integrated into SeqDPP, the resulting model accepts
user input about the expected length of the summary.

We first explain the exposure bias problem with the existing SeqDPP works—
it is actually a mismatch issue in many sequence to sequence (seq2seq) learning
methods [1,29,35,36,39]. When the model is trained by maximizing the like-
lihood of user annotations, the model takes as input user annotated “oracle”
summaries. At the test time, however, the model generates output by search-
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ing over the output space in a greedy fashion and its intermediate conditional
distributions may receive input from the previous time step that deviates from
the oracle. In other words, the model is exposed to different environments in the
training and testing stages, respectively. This exposure bias also results in the
loss-evaluation mismatch [27] between the training phase and the inference.

To tackle these issues, we adapt the Large-Margin algorithm originally
derived for training LSTMs [40] to the SeqDPPs. The main idea is to allevi-
ate the exposure bias by incorporating the techniques of the test time into the
objective function used for training. Meanwhile, we add to the large-margin for-
mulation a multiplicative reward term which is related to the evaluation metrics
to mitigate the loss-evaluation mismatch.

In addition to the new large-margin learning algorithm, we also improve
the SeqDPP model by a novel probabilistic distribution in order to allow users
to control the lengths of system-generated video summaries. To this end, we
propose a generalized DPP (GDPP) in which an arbitrary prior distribution
can be imposed over the sizes of the subsets of video shots. As a result, both
vanilla DPP and k-DPP [17] can be considered as special instances of GDPP.
Moreover, we can conveniently substitute the (conditional) DPPs in SeqDPP by
GDPP. When a user gives an expected length of the summary, we dynamically
allocate it to different segments of the video and then choose the right number
of video shots from a segment.

We conduct extensive experiments to verify the improved techniques for
supervised video summarization. First of all, we significantly extend the UTE
dataset [19], its annotations of video summaries, and per-shot concepts [31] by
another eight egocentric videos [8]. Following the protocol described in [31], we
collect three user summaries for each of the hours-long videos as well as concept
annotations for each video shot. We evaluate the large-margin learning algo-
rithm on not only the proposed sequential GDPP but also the existing SeqDPP
models.

2 Related Work and Background

We briefly review the related work in this section. Besides, we also describe the
major body of DPPs and SeqDPPs. Readers are referred to [18] and [9] for more
details and properties of the two versatile probability models.

Supervised Video Summarization. In recent years, data-driven learning algo-
rithms have prevailed in a variety of computer vision problems. This is mainly
because they can learn complex relations from data, especially when the under-
lying relations are too subtle or complex to handcraft. Video summarization
is an instance of such cases. The fact that different users prefer different sum-
maries is a strong evidence to the complexity of the problem. To overcome the
impediments, one solution is to learn how to make good summaries in a super-
vised manner. The degree of supervision, however, is different in the literature.
In [4,15,16,42], weakly supervised web image and video priors help define visual
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importance. Captions associated with videos are used by [22,33] to infer semantic
importance. Finally, many frameworks (e.g., [9,12,30,31,46]) learn a summarizer
directly from user-annotated summaries.

Sequence-to-Sequence Learning. Sequence-to-sequence (Seq2seq) modeling has
been successfully employed in a vast set of applications, especially in Natural
Language Processing (NLP). By the use of Recurrent Neural Networks (RNNs),
impressive modeling capabilities and results are achieved in various fields such
as machine translation [1] and text generation applications (e.g., for image and
video captioning [38,43]).

The Seq2seq models are conveniently trained as conditional language models,
maximizing the probability of observing next ground truth word conditioned on
the input and target words. This translates to using merely a word-level loss
(usually a simple cross-entropy over the vocabulary).

While the training procedure described above has shown to be effective in
various word-generation tasks, the learned models are not used as conditional
models during inference at test time. Conventionally, a greedy approach is taken
to generate the output sequence. Moreover, when evaluating, the complete out-
put sequence is compared against the gold target sequence using a sequence-level
evaluation metric such as ROUGE [21] and BLEU [25].

Determinantal Point Process (DPP). A discrete DPP [14,18] defines a distribu-
tion over all the subsets of a ground set measuring the negative correlation, or
repulsion, of the elements in each subset. Given a ground set Y = {1, . . . , N},
one can define K ∈ R

N×N , a positive semi-definite kernel matrix that represents
the per-element importance as well as the pairwise similarities between the N
elements. A distribution over a random subset Y ⊆ Y is a DPP, if for every
y ⊆ Y the following holds:

P (y ⊆ Y ;K) = det(Ky) (1)

where Ky is the squared sub-kernel of K with rows and columns indexed by the
elements in y, and det(.) is the determinant function. K is referred to as the
marginal kernel since one can compute the probability of any subset y being
included in Y. It is the property of the determinant that promotes diversity:
in order to have a high probability P (i, j ∈ Y ;K) = KiiKjj − K2

ij , the per-
element importance terms Kii and Kjj must be high and meanwhile the pairwise
similarity terms Kij must be low.

To directly specify the atomic probabilities for all the subsets of Y, Borodin
and Rains derived another form of DPPs through a positive semi-definite matrix
L = K(I − K)−1 [2], where I is an identity matrix. It samples a subset y ⊆ Y
with probability

PL(Y = y;L) =
det(Ly)

det(L + I)
, (2)

where the denominator det(L + I) is a normalization constant.
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Sequential DPP (seqDPP). Gong et al. proposed SeqDPP [10] to preserve partial
orders of the elements in the ground set. Given a long sequence V of elements
(e.g., video shots), we divide them into T disjoint yet consecutive partitions
⋃T

t=1 Vt = V. The elements within each partition are orderless to apply DPP
and yet the orders between the partitions are observed in the following manner.
At the t-th time step, SeqDPP selects a diverse subset of elements by a variable
Xt ⊆ Vt from the corresponding partition and conditioned on the elements
xt−1 ⊆ Vt−1 selected from the previous partition. In particular, the distribution
of the subset selection variable Xt is given by a conditional DPP,

P (Xt = xt|Xt−1 = xt−1) := PL(Yt = xt ∪ xt−1|xt−1 ⊆ Yt;Lt) (3)

= PL(Xt = xt;Ωt) =
det Ωt

xt

det(Ωt + I)
, (4)

where PL(Yt;Lt) and PL(Xt;Ωt) are two L-ensemble DPPs with the ground sets
xt−1∪Vt and Vt, respectively—namely, the conditional DPP itself is a valid DPP
over the “shrinked” ground set. The relationship between the two L-ensemble
kernels Lt and Ωt is given by [2],

Ωt =
(
[(Lt + IVt

)−1]Vt

)−1 − I, (5)

where IVt
is an identity matrix of the same size as Lt except that the diagonal

entries corresponding to xt−1 are 0’s, [·]Vt
is the squared submatrix of [·] indexed

by the elements in Vt, and the number of rows/columns of the last identity matrix
I equals the size of the t-th video segment Vt.

3 A Large-Margin Algorithm for Learning SeqDPPs

We present the main large-margin learning algorithm in this section. We first
review the mismatch between the training and inference of SeqDPPs [9] and
then describe the large-margin algorithm in detail.

Training and Inference of SeqDPP. For the application of supervised video sum-
marization, SeqDPP is trained by maximizing the likelihood (MLE) of user sum-
maries. At the test time, however, an approximate online inference is employed:

x̂1 = argmaxx∈V1
P (X1 = x̂), x̂2 = argmaxx∈V2

P (X2 = x̂|X1 = x̂1), ... (6)

We note that, in the inference phase, a possible error at one time step (e.g., x̂1)
propagates to the future but MLE always feeds the oracle summary to SeqDPP
in the training stage (i.e., exposure bias [27]). Besides, the likelihood based objec-
tive function used in training does not necessarily correlate well with the evalu-
ation metrics in the test stage (i.e., loss-evaluation mismatch [27]).

The issues above are common in seq2seq learning. It has been shown that
improved results can be achieved if one tackles them explicitly [5,6,27,28,32].
Motivated by these findings, we propose a large-margin algorithm for SeqDPP
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to mitigate the exposure bias and loss-evaluation mismatch issues in existing
SeqDPP works. Our algorithm is extended from [40], which studies the large-
margin principle in training recurrent neural networks. However, we are not
constrained by the beam search, do not need to change the probabilistic SeqDPP
model to any non-probabilistic version, and also fit a test-time evaluation metric
into the large-margin formulation.

We now design a loss function as the following,

L(θ) =
T∑

t=1

δ(x∗
1:t−1 ∪ x̂t, x

∗
1:t)M(x∗

t , x̂t, x
∗
t−1;L), (7)

which includes two components: (1) a sequence-level cost δ which allows us to
scale the loss function depending on how erroneous the test-time inference is
compared to the oracle summary, and (2) a margin-sensitive loss term M which
penalizes the situation when the probability of an oracle sequence fails to exceed
the probability of the model-inferred ones by a margin. Denote by x̂t and x̂∗

t

the subsets selected from the t-th partition Vt by SeqDPP and by an “oracle”
user, respectively. Let x∗

1:t represent the oracle summary until time step t. The
sequence-level cost δ(x∗

1:t−1∪x̂t, x
∗
1:t) can be any accuracy metric (e.g., 1-F-score)

contrasting a system-generated summary with a user summary.
Assuming SeqDPP is able to choose the right subset x∗

t−1 from partition Vt−1,
given the next partition Vt, the margin-sensitive loss penalizes the situation that
the model selects a different subset x̂t from the oracle x∗

t ,

M(x∗
t , x̂t, x

∗
t−1;L) := [1 − log P (Xt = x∗

t |x∗
t−1) + log P (Xt = x̂t|x∗

t−1)]+
= [1 − log det(Lx∗

t ∪x∗
t−1

) + log det(Lx̂t∪x∗
t−1

)]+ (8)

where [·]+ = max(·, 0). When we use this loss term to train SeqDPP, we always
assume that the correct subset x̂t−1 = x∗

t−1 is chosen at the previous time step
t − 1. In other words, we penalize the model step by step instead of checking
the whole sequence of subsets predicted by the model. This allows more effective
training because it (1) enforces the model to choose the correct subset at every
time step, and (2) enables us to set the gradient weights according to how erro-
neous a mistake is at a time step, rather than the whole sequence of all steps, in
the eyes of the evaluation metric.

Compared to MLE, it is especially appealing that the large-margin formu-
lation flexibly takes the evaluation metric into account. As a result, it does not
require SeqDPP to predict exactly the same summaries as the oracles. Instead,
when the predicted and oracle summaries are equivalent (not necessarily identi-
cal) according to the evaluation metric, the model parameters are not updated.

4 Disentangling Size and Content in SeqDPP

In this section, we propose a sequential model of generalized DPPs (SeqGDPP)
that accepts an arbitrary distribution over the sizes of the subsets whose content
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follow DPP distributions. It allows users to provide priors or constraints over
the total items to be selected. We first present the generalized DPP and then
describe how to use it to devise the sequential model, SeqGDPP.

4.1 Generalized DPPs (GDPPs)

Kulesza and Taskar have made an intriguing observation about the vanilla DPP:
it conflates the size and content of the variable Y for selecting subsets from the
ground set Y [17]. To see this point more clearly, we can re-write a DPP as a
mixture of elementary DPPs PE(Y ) [18, Lemma 2.6],

PL(Y ;L) =
1

det(L + I)

∑

J⊆Y
PE(Y ;J)

∏

n∈J

λn, (9)

∝
N∑

k=0

∑

J⊆Y,|J|=k

PE(Y ;J)
∏

n∈J

λn (10)

where the first summation is over all the possible sizes of the subsets and the
second is about the particular items of each subset. Eigen-decomposing the L-
ensemble kernel to L =

∑N
n=1 λnvnvT

n , the marginal kernel of the elementary
DPP PE(Y ;J) is KJ =

∑
n∈J vnvT

n —it is interesting to note that, due to this
form of the marginal kernel, the elementary DPPs do not have their counterpart
L-ensembles. The elementary DPP PE(Y ;J) always chooses |J | items from the
ground set Y, namely, P (|Y | = |J |) = 1.

Equation (10) indicates that, to sample from the vanilla DPP, one may
sample the size of a subset from a uniform distribution followed by drawing
items/content for the subset. We propose to perturb this process and explicitly
impose a distribution π = {πk}Nk=0 over the sizes of the subsets,

PG(Y ;L) ∝
N∑

k=0

πk

∑

J⊆Y,|J|=k

P (Y ;J)
∏

n∈J

λn (11)

As a result, the generalized DPP (GDPP) PG(Y ;L) entails both DPP and k-
DPP [17] as special cases (when π is uniform and when π is a Dirac delta
distribution, respectively), offering a larger expressive spectrum. Another inter-
esting result is that, for a truncated uniform distribution π over the sizes of
the subsets, we arrive at a DPP which selects subsets with bounded cardinal-
ity, P (Y | k1 ≤ |Y | ≤ k2;L). Such constraint arises from real applications like
document summarization, image display, and sensor placement.

Normalization. The normalization constant for GDPP is ZG =
∑

J⊆Y π|J|∏
n∈J λn. Details are included in the supplementary materials (Suppl.). The com-

putation complexity of this normalization depends on the eigen-decomposition
of L. With the eigenvalues λn, we can compute the constant ZG in polynomial
time O(N2) with some slight change to the recursive algorithm [18, Algorithm
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7], which calculates all the elementary symmetric polynomials
∑

|J|=k

∏
n∈J λn

for k = 0, · · · , N in O(N2) time. Therefore, the overall complexity of computing
the normalization constant for GDPP is about the same as the complexity of
normalizing an L-ensemble DPP (i.e., computing det(L + I)).

Evaluation. With the normalization constant ZG, we are ready to write out the
probability of selecting a particular subset y ⊆ Y from the ground set by GDPP,

PG(Y = y;L) =
π|y|
ZG

det(Ly) (12)

in which the concise form is due to the property of the elementary DPPs that
PE(Y = y;J) = 0 when |y| �= |J |.
GDPP as a Mixture of k-DPPs. The GDPP expressed above has a close connec-
tion to the k-DPPs [17]. This is not surprising due to the definition of GDPP
(cf. Eq. (11)). Indeed, GDPP can be exactly interpreted as a mixture of N + 1
k-DPPs Pk(Y = y;L), k = 0, 1, · · · , N ,

PG(Y = y;L) =
π|y|

∑
|J|=|y|

∏
n∈J λn

ZG
P|y|(Y = y;L)

if all the k-DPPs, i.e., the mixture components, share the same L-ensemble
kernel L as GDPP. If we introduce a new notation for the mixture weights,
pk � πk/ZG

∑
|J|=k

∏
n∈J λn, the GDPP can then be written as

PG(Y ;L) =
N∑

k=0

pkPk(Y ;L). (13)

Moreover, there is no necessity to adhere to the involved expression of pk. Under
some scenarios, directly playing with pk may significantly ease the learning pro-
cess. We will build a sequential model upon the GDPP of form (13) in the next
section.

Exact Sampling. Following the interpretation of GDPP as a weighted combina-
tion of k-DPPs, we have the following decomposition of the probability:

P (Y |Y ∼ GDPP) = P (Y |Y ∼ k − DPP)P (k|k ∼ GDPP),

where, with a slight abuse of notation, we let k ∼ GDPP denote the probability of
sampling a k-DPP from GDPP. Therefore, we can employ a two-phase sampling
procedure from the GDPP,

– Sample k from the discrete distribution p = {pi}Ni=0.
– Sample Y from k-DPP.

The supplementary materials present another sampling method via a Markov
chain.
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4.2 A Sequential Model of GDPPs (SeqGDPP)

In this section, we construct a sequential model of the generalized DPPs
(SeqGDPP) such that not only it models the temporal and diverse properties
as SeqDPP does, but also allows users to specify the prior or constraint over the
length of the video summary.

We partition a long video sequence V into T disjoint yet consecutive short
segments

⋃T
t=1 Vt = V. The main idea of SeqGDPP is to adaptively distribute

the expected length M0 of the video summary to different video segments over
each of which a GDPP is defined. In particular, we replace the conditional DPPs
in SeqDPP (cf. Eq. (4)) by GDPPs,

P (Xt = xt|Xt−1 = xt−1) (14)

�PG(Xt = xt;Ωt) = pt|xt|P|xt|(Xt = xt;Ωt), (15)

where the last equality follows Eq. (13), and recall that the L-ensemble kernel Ωt

encodes the dependencies on the video frames/shots selected from the immediate
past segment xt−1 ⊆ Vt−1 (cf. Sect. 2, Eq. (5)). The discrete distribution pt =
{ptk} is over all the possible sizes {k} of the subsets at time step t.

We update pt adaptively according to

ptk ∝ exp(−α(k − μt)2), (16)

where the mean μt ∈ [0, |Vt|] is our belief about how many items should be
selected from the current video segment Vt and the concentration factor α >
0 tunes the confidence of the belief. When α approaches infinity, the GDPP
PG(Xt;Ωt) degenerates to k-DPP and chooses exactly μt items into the video
summary.

Our intuition for parameterizing the mean μt encompasses three pieces of
information: the expected length M0 over the overall video summary, number of
items that have been selected into the summary up to the t-th time step, and
the variety of the visual content in the current video segment Vt. Specifically,

μt � M0 − ∑t−1
t′=1 |xt′ |

T − t + 1
+ wTφ(Vt) (17)

where the first term is the average number of items to be selected from each
of the remaining video segments to make up an overall summary of length M0,
the second term wTφ(Vt) is an offset to the average number depending on the
current video segment Vt, and φ(·) extracts a feature vector from the segment.
We learn w from the training data—user annotated video summaries and their
underlying videos. We expect that a visually homogeneous video segment gives
rise to negative wTφ(Vt) such that less than the average number of items will
be selected from it, and vice versa.

4.3 Learning and Inference

For the purpose of out-of-sample extension, we shall parameterize SeqGDPP
in such a way that, at time step t, it conditions on the corresponding video
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segment Vt and the selected shots Xt−1 = xt−1 from the immediate previous
time step. We use a simple convex combination of D base GDPPs whose kernels
are predefined over the video for the parameterization. Concretely, at each time
step t,

P (Xt|xt−1,Vt) = PG(Xt;Ωt,Vt) �
D∑

i=1

βiPG(Xt;Ωt(i),Vt)

=
|Vt|∑

k=0

ptk

D∑

i=1

βiPk(Xt;Ωt(i),Vt) (18)

where the L-ensemble kernels Ωt(i), i = 1, · · · ,D of the base GDPPs are derived
from the corresponding kernels Lt(i) of the conditional DPPs (Eq. (5)). We com-
pute different Gaussian RBF kernels for Lt(i) from the segment Vt and previously
selected subset xt−1 by varying the bandwidths. The combination coefficients
(βi ≥ 0,

∑
i βi = 1) are learned from the training videos and summaries.

Consider a single training video V = ∪T
t=1Vt and its user summary {xt ⊆

Vt}Tt=1 for the convenience of presentation. We learn SeqGDPP by maximizing
the log-likelihood,

L = log SeqGDPP =
T∑

t=1

log P (Xt = xt|xt−1,Vt)

=
T∑

t=1

log pt|xt| +
T∑

t=1

log
( D∑

i=1

βiP|xt|
(
Xt = xt;Ω

t(i)
i

))

.

5 Experimental Setup and Results

In this section, we provide details on compiling an egocentric video summa-
rization dataset, annotation process, and the employed evaluation procedure,
followed by extensive comparison experiments on this dataset.

Dataset. While various video summarization datasets exist [7,11,33], we put
consumer grade egocentric videos in our priority. They are often lengthy and
carry a high level of redundancy, making summarization pressing need for the
downstream applications. The UT Egocentric [19] dataset contains 4 videos each
between 3–5 h long, covering activities such as driving, shopping, studying, etc.
in uncontrolled environments. In this paper, we build our video summarization
dataset by extending it with another 8 egocentric videos (on average over 6 h
long each) from the social interactions dataset [8]. These videos are recorded
using head-mounted cameras worn by individuals during their visits to Disney
parks. Our efforts result in a dataset consisting of 12 long egocentric videos with
a total duration of over 60 h.
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Table 1. Some statistics about the lengths of the summaries generated by three anno-
tators.

User 1 User 2 User 3 Oracle

Min 79 74 45 74

Max 174 222 352 200

Avg. 105.75 ± 27.21 133.33 ± 54.04 177.92 ± 90.96 135.92 ± 45.99

User Summary Collection. We recruit three students to summarize the videos.
The only instruction we give them is to operate on the 5-s video shot level.
Namely, the full shot will be selected into the summary once any frame in the
shot is chosen. Without any further constraints, the participants use their own
preferences to summarize the videos at the granularities of their choice. Some
statistics of Table 1 exhibit that the users have their own distinct preferences
about the summary lengths.

Oracle Summaries. Supervised video summarization approaches are convention-
ally trained on one target summary per video. Having obtained 3 user summaries
per video, we aggregate them into one oracle summary using a greedy algorithm
that has been used in several previous works [9,30,31], and learn using them as
the supervision. We leave the details of the greedy algorithm to the supplemen-
tary materials.

Features. We follow Zhang et al. [46] in extracting the features, i.e., using a
pre-trained GoogleNet [37] to obtain the frame’s pool5 activations and then
aggregating them to a 1024-d feature representation for each shot of the video.

Evaluation. There has been a plethora of different metrics for evaluating the
quality of video summaries including user studies [20,23], using low-level or pixel-
level measurements to compare system summaries with user summaries [9,15,
16,45,47], and temporal overlaps defined for two summaries [11,12,26,46]. We
share the same opinion as [30,31,44] in that the evaluation of video summaries
should take account of the high-level semantics the summaries convey.

To measure the quality of system summaries from the semantics perspec-
tive, Sharghi et al. [31] proposed to obtain dense shot-level concept annotations,
termed as semantic vectors in which 1/0 indicates the presence/absence of a
visual concept (e.g., Sky, Car, Tree, etc.). It is straightforward to measure
the similarity between two shots using the intersection-over-union (IoU) of their
concept vectors. For instance, if one shot is tagged by {Street,Tree,Sun}
and the other by {Lady,Car,Street,Tree}, then the IoU is 2/5 = 0.4. Hav-
ing defined the similarity measure between shots, one can conveniently perform
maximum weight matching on the bipartite graph, where the user and system
summaries are placed on opposing sides of the graph.

Before collecting the per-shot concepts, we have to designate a good dictio-
nary. We start with the dictionary of [31] and remove the concepts that do not
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Fig. 1. Count of concept appearances in the collected annotations for the 12 videos.

appear frequently enough such as Boat and Ocean. Furthermore, we apply
SentiBank detectors [3] (with over 1400 pre-trained classifiers) on the frames of
the videos to make a list of visual concepts appearing commonly throughout the
dataset. Next, by watching the videos, we select from this list the top candidates
and append them into the final dictionary that includes 54 concepts (cf. Fig. 1).

Equipped with the dictionary of concepts, we uniformly sample 5 frames from
each shot and ask Amazon Mechanical Turk workers to tag them with relevant
concepts. The instruction here is that a concept must be selected if it appears
in any of the 5 frames. We hire 3 Turkers per shot and pool their annotations
by taking the union. On average, each shot is tagged with ∼11 concepts. This is
significantly larger than the average of 4 tags/shot in Sharghi et al. [31], resulting
in more reliable assessment upon evaluation. Amazon Mechnical Turk. Figure 1
shows the total number of each visual concept appeared in our dataset.

While the metric introduced in [31] compares summaries using the high-level
concepts, it allows a shot in one summary to be matched with any shot in the
other without any temporal restrictions. We modify this metric by applying a
temporal filter on the pairwise similarities. We use two types of filters: (1) a Π
(rectangular shaped) function and (2) a Gaussian function. The Π filter sets the
similarities outside of a time range to zero, hence forcing the metric to match
a shot to its temporally close candidates only. The Gaussian filter on the other
hand applies a decaying factor on the matches far apart.

To evaluate a summary, we compare it to all 3 user-annotated summaries and
average the scores. We report the performance by varying the filters’ parameters
(the temporal window size and the bandwidth in the Π and Gaussian filters,
respectively). In addition, we compute the Area-Under-the-Curve (AUC) of the
average F1-scores in Table 2. It is worth mentioning that setting the parameters
of the filters to infinity results in the same metric defined by Sharghi et al. [31].

Data Split. In order to have a comprehensive assessment of the models, we
employ a leave-one-out strategy. Therefore, we run 12 sets of experiments,
each time leaving one video out for testing, two for validation (to tune hyper-
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parameters), and the remaining 9 for training. We report the average results of
the 12 rounds of experiments.

Large-Margin Training/Inference. Similar to the practices in seq2seq learn-
ing [27,40], we pre-train the models by maximizing the likelihood of user sum-
maries using SGD. This finds a good initialization for the model, resulting in
faster training process and better generalization to the test video. At the test
time, we follow Eq. (6) to generate the system summary.

SeqGDPP Details. Given the features that are extracted using GoogleNet, we
compute the Gaussian RBF kernels {Lt(i)}Di=1 over the video shots by varying
the bandwidths σi = 1.2kσ0, where σ0 is the median of all pairwise distances
between the video shots. The base kernels {Ωt(i)} for GDPPs are then computed
through Eq. (5) such that they take account of the dependency between two
adjacent time steps.

We also need to extract the feature vector φ(Vt) to capture the variability in
each video segment Vt. In Eq. (17), we use such feature vector to help determine
the mean of the distribution p over the possible subset sizes. Intuitively, larger
subsets should be selected from segments with more frequent visual appearance
changes. As such, we compute the standard deviation per feature dimension
within the segment Vt for φ(Vt).

There are three sets of parameters in SeqGDPP: α and w in the distribution
over the subset size, and {βi} for the convex combination of some base GDPPs.
We consider w and {βi} as model parameters to be learned by MLE or the large-
margin algorithm and α as a hyper-parameter tuned according to the validation
set.

Computational Cost Comparison. It takes about 28 s for SeqDPP to complete
one epoch of the MLE training and about 4 s for SeqGDPP. The latter is faster
because the kernel parameterization of SeqGDPP is less complex. The training
time of either model doubles after we use the large-margin method to train it.
This is not surprising because the large-margin method introduces extra cost for
computing the margin. However, we find that this cost can be controlled in the
following way. We first train the model (either SeqDPP or SeqGDPP) by the
conventional MLE. After that, we fine-tune it by the large-margin method. By
doing this, less than 10 epochs are required for the large-margin algorithm to
converge.

5.1 Quantitative Results and Analyses

In this section, we report quantitative results comparing our proposed models
against various baselines:

– Uniform. As the name suggests, we sample shots with fixed step size from
the video such that the generated summary has an equal length (the same
number of shots) as the oracle summary.
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Table 2. Comparison results for supervised video summarization (%). The AUCs are
computed by the F1-score curves drawn in Fig. 2 until the 60 s mark. The blue and red
colors group the base model and its large-margin version.

AUCΠ AUCGaussian

SubMod [12
SuperFrames [11
LSTM-DPP [47
SeqDPP [9]
LM-SeqDPP
SeqGDPP
LM-SeqGDPP

Uniform 12.33 12.36
] 11.20 11.12

] 11.46 11.28
] 7.38 7.36

9.71 9.56
15.05 14.69
15.29 14.86
15.87 15.43
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(b) Gaussian temporal filter

Fig. 2. Comparison results for supervised video summarization. The X axis represents
the temporal filters’ parameters. In the case of the Π filter, it indicates how far apart
a match can be temporally (in terms of seconds), whereas in the Gaussian filter, it is
the kernel bandwidth.

– SubMod. Gygli et al. [12] learn a convex combination of interestingness, rep-
resentativeness, and uniformity from user summaries in a supervised manner.
At the test time, given the expected summary length, which is the length of
the oracle summary, the model generates the summary of that length.

– SuperFrames. In [11], Gygli et al. first segment the video into superframes and
then measure their individual importance scores. Given the scores, the sub-
sets that achieve the highest accumulative scores are considered the desired
summary. Since a shot is 5-s long in our dataset, we skip the super-frame
segmentation component. We train a neural network consisting of three fully-
connected layers to measure each shot’s importance score, and then choose
the subsets with the highest accumulated scores as the summary.
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– LSTM-DPP. In [46], Zhang et al. exploit LSTMs to model the temporal
dependency between the shots of the video, and further use DPPs to enforce
diversity in selecting important shots. Similar to previous baselines, this
model has access to the expected summary length at the test time.

– SeqDPP. This is the original framework of Gong et al. [9]. Unlike other base-
lines, this model determines the summary length automatically.

The comparison results are shown in Table 2 and Fig. 2. There are some
interesting observations as shown below.

(1) Comparing SeqDPP and the large-margin SeqDPP (denoted by LM-
SeqDPP), we observe a significant performance boost thanks to the large-
margin training algorithm. As illustrated in Fig. 2, the performance gap
is consistently large throughout different filter parameters. Although both
SeqDPP and LM-SeqDPP determine the summary lengths automatically, we
find that the latter makes summaries that resemble the oracle summaries in
terms of both length and semantic information conveyed.

(2) Comparing SeqGDPP to SeqDPP, for which users cannot tune the expected
length of the summary, we can see that SeqGDPP significantly outperforms
SeqDPP. This is not surprising since SeqDPP does not have a mechanism to
take the user supplied summary length into account. As a result, the number
of selected shots by SeqDPP is sometimes much less or more than the length
of the user summary. Here both SeqGDPP and SeqDP are trained by MLE.

(3) The large-margin SeqGDPP (LM-SeqGDPP) performs slightly better than
SeqGDPP, and it outperforms all the other methods. Nothing that both
models generate summaries of the oracle lengths, the advantage of LM-
SeqGDPP is soly due to that it selects the shots that better match the
user summaries than SeqGDPP does.

(4) As described earlier, our refined evaluation scheme is a generalization of the
bipartite matching of per-shot concepts [30]—if we set the filter parameters
to infinity (hence no temporal restriction enforced by the filters), we can
obtain the performance of the original metric. We can see from Fig. 2 that the
relative orders of different methods remain about the same under different
evaluation metrics but the refined one gives clearer and consistent margin
between the methods. Hence, the AUC under the F1-score curve gives a more
reliable quantitative comparison than the original metric (i.e., the rightmost
points of the curves in Fig. 2).

6 Conclusion

In this work, we make twofold contribution towards improving the sequential
determinantal point process (SeqDPP) models for supervised video summariza-
tion. We propose a large-margin training scheme that facilitates learning models
more effectively by addressing the common problems in most seq2seq frameworks
– exposure bias and loss-evaluation mismatch. Furthermore, we introduce a new
probabilistic module, GDPP, which enables the resulting sequential model to
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accept priors about the expected summary length. Finally, we compile a large
video summarization dataset consisting of 12 egocentric videos totalling over
60 h. We collecte 3 user-annotated summaries per video as well as dense con-
cept annotations required for the evaluation. Experiments on this dataset verify
the effectiveness of our large-margin training algorithm as well as the sequential
GDPP model.
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