
Part-Activated Deep Reinforcement
Learning for Action Prediction

Lei Chen1, Jiwen Lu2(B), Zhanjie Song1, and Jie Zhou2

1 Tianjin University, Tianjin, China
{chen lei,zhanjiesong}@tju.edu.cn
2 Tsinghua University, Beijing, China
{lujiwen,jzhou}@tsinghua.edu.cn

Abstract. In this paper, we propose a part-activated deep reinforce-
ment learning (PA-DRL) method for action prediction. Most existing
methods for action prediction utilize the evolution of whole frames to
model actions, which cannot avoid the noise of the current action, espe-
cially in the early prediction. Moreover, the loss of structural information
of human body diminishes the capacity of features to describe actions. To
address this, we design the PA-DRL to exploit the structure of the human
body by extracting skeleton proposals under a deep reinforcement learn-
ing framework. Specifically, we extract features from different parts of the
human body individually and activate the action-related parts in features
to enhance the representation. Our method not only exploits the struc-
ture information of the human body, but also considers the saliency part
for expressing actions. We evaluate our method on three popular action
prediction datasets: UT-Interaction, BIT-Interaction and UCF101. Our
experimental results demonstrate that our method achieves the perfor-
mance with state-of-the-arts.

Keywords: Action prediction · Deep reinforcement learning
Skeleton · Part model

1 Introduction

Human activity analysis has aroused much attention in computer vision due to
its broad prospects of applications [8,17,19,29,36]. As an important branch of
human activity analysis, predicting the activity of humans presents importance
in a number of real-world applications, such as video detection [43], abnormal
behavior detection [7,40] and robot interaction [36]. In spite of the enormous
amount of works conducted in this area [21,25,26], this task is still challenging
due to the fundamental challenges inherent in the problem like the large variance
among the activities and huge spatiotemporal scale variation. Recognizing the
action in the full length video is too luxury to wait for the whole video completed
[44]. For example, predicting the falling down of human can save the person
as early as possible. Different from action recognition [4,5,34,35,41,42,46,47],
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Fig. 1. The advantage of PA-DRL in representing the evolution of the action. Top:
the features are extracted by the conventional methods with noise, which disturbs the
action prediction. The gray parts in the feature are noise which are introduced by
feature extraction and push the features far away from the evolution direction of the
actual actions. Bottom: our method is to purify the feature from noise with considering
the structure of the human body. Moreover, we activate the action-related parts for
action prediction to pull the feature of frames to the direction of action evolution. (Best
viewed in color)

action prediction aims to take full advantage of the partially observed video for
predicting the action as early as possible. Action prediction [31] is defined as
the inference of the ongoing activities of humans just with observing the partial
videos or sequences, when the action has not been completed.

It is challenging to model the process of the partially observed action in both
spatial and temporal domain for predicting the ongoing actions [16]. The major-
ity of the existing action prediction works can be mainly divided into two cate-
gories: exploiting reliable features with template matching [2,20,44] and devel-
oping classification models [14,16,31,33]. Approaches in the first category aim
to design a template-based model for the prediction. However, these templates
are easily affected by the outliers and perform poorly when actors present large
pose variations. Methods in the second category focus on discovering temporal
characteristics of human actions, because the confidence of prediction increases
with more frames gradually observed. However, most existing methods extract
holistic features of frames to exploit the temporal information, which ignores
the essential structural information of the human body. The challenge of action
prediction is that the useful information of predicting actions is very limited,
but the redundant information has strong ability of disturbing the prediction.
The top of Fig. 1 shows that the conventional features extracting from the whole
frame captures the noise, which disturbs the action prediction.

To address the above limitations, we present a part-activated deep reinforce-
ment learning method for action prediction. The bottom of Fig. 1 shows the main



Part-Activated Deep Reinforcement Learning for Action Prediction 437

process of activating the action-related parts. Based on the structural informa-
tion of the human body by skeleton proposals, we activate the action-related
parts of human body and deactivate the noise parts by deep reinforcement learn-
ing. Depending on the skeleton of the human body, our method extracts features
in the region proposals which are decided by the joints of skeleton. Then we con-
catenate the features in order to keep the structural information of the body. For
different actions, our method attends the action-related parts of features. Our
proposed method learns a part-activated policy for activating and deactivating
the parts of features with the deep reinforcement learning. Experimental results
on three benchmarks demonstrate the effectiveness of our proposed approach.

2 Related Work

Action Prediction: Simply modeling action prediction as an ensemble of action
classification is non-optimal. Conventional action recognition methods hold the
assumption that the temporal information of an activity is complete, while only
partial temporal information of an action is observed in action prediction. Most
existing methods for action prediction can be divided into two categories: exploit-
ing reliable features and developing classification models. For the first category,
most existing methods design a template for action prediction. For example,
Ryoo [31] proposed the integral bag-of-words (IBoW) and dynamic bag-of-words
(DBoW) approaches for action prediction. The action model of every progress
level is computed by averaging features of a particular progress level with the
same category. The model suffers from the difficulty with the situation that the
videos of the same action have a large variation in the spatial domain and it
is sensitive to the outliers. Lan et al. [20] exploited templates at multiple levels
of granularities in a hierarchical representation, which can capture and compare
human movements at different context levels. For the second category, methods
focus on exploiting the temporal information of human actions. For example,
Cao et al. [2] designed an action prediction model with sparse coding to learn
the features and reconstructed the testing partial videos with the bases extracted
from the training activities. In their model, they addressed the problem of the
intra-class action variations with bases from long-short segments. Kong et al.
[16] proposed a multiple temporal scale support vector machine (MTSSVM) for
action prediction and they took full advantage of the evolution of segments.
Ma et al. [24] proposed a hybrid Siamese network with three branches to jointly
learn both the future label and the starting time. They found that using more
frames yielded high prediction performance. However, most existing methods try
to capture the temporal information through the duration of partially observed
actions, which ignore the importance of structural information of the human
body for action representation.

Deep Reinforcement Learning: Recently, the field of reinforcement learn-
ing resurrects with the strong support from deep learning [13,18,45]. Deep
reinforcement learning effectively learns the better policy than the supervised
way for challenge tasks [22] and it can be divided into two main architectures:
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Q-network and policy gradient. Deep reinforcement learning technique is intro-
duced to optimize the sequential model with delayed reward [23] and performs
very promising results in a series of problems. For example, Mnih et al. [28]
achieved the human-level performance in the Atari game with their proposed
deep Q-networks. Goodrich et al. [6] designed an architecture with 32 actions
to shift the focal point and reward the agent when finding the goal. Caicedo et
al. [1] defined a transformations set for the bounding box as the action of agent
and rewarded the agent when the bounding box moves close to the ground-truth
with iterations. More recently, deep reinforcement learning has been applied in
many computer vision tasks [9–11,27,38]. For example, Krull et al. [18] applied a
policy gradient approach to the object pose estimation problem. Kong et al. [13]
proposed a novel multi-agent Q-learning solution that facilitates learnable inter-
agent communication with gated cross connections between the Q-networks. Ren
et al. [30] presented a novel decision-making framework for image captioning uti-
lizing a policy network and a value network. However, little progress has been
made in reinforcement learning for activity analysis, especially in action pre-
diction. In this work, we develop a part-activated deep reinforcement learning
model to learn the policy of activating the attention parts of the human body
for predicting the unfinished actions.

3 Approach

In this section, we first show the pipeline of our part-activated deep reinforcement
learning (PA-DRL) method for action prediction. Then we describe our proposed
skeletal proposal for extracting features of actions. Lastly, we detail the method
of our part-activated deep reinforcement learning method.

Figure 2 shows the pipeline of our action prediction architecture and we first
utilize the skeleton extracted by [3] to extract proposal. To take advantage of
the information of the partial sequence, we provide the proposal for extract-
ing the action features. To predict the action effectively, we design a two-step
architecture to activate the original features extracted from the frames of videos.

• We extract those features in local patches of skeleton proposals which are
decided by the joints of the skeleton. The extracted features contain action-
related information and are used as the candidates for part-activating. Then
we concatenate the features from the same frame in the order of the skeleton
to keep the structural information of human body.

• We active the most related parts in features by learning the part-activated
strategy with deep reinforcement learning. The activated parts of consequent
frames enhance the action-related information in both spatial and temporal
domain, which reduces the distance between the predicting action and the
actual action in feature space.
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Fig. 2. The pipeline of our PA-DRL. The aim of our PA-DRL is to predict the ongoing
actions based on the frames at the beginning of the action. The input are partially
observed videos and sequences. We extract the skeleton proposal based features from
every frame. Then our PA-DRL activates action-related parts of features frame by
frame with deep reinforcement learning. The activated parts of features capture the
action-related information, which are used for predicting the actions.

3.1 Partial Feature Extraction

To solve the problem for the lack of apparent information of the skeleton, we
use the skeleton as a proposal to select a local patch around the joint points.
We extract apparent features in the local patches to provide spatial information
for the structure of human body. The local patch extracted by joints of skeleton
in our architecture is denoted as the skeleton proposal. The skeleton proposal
carries two parts of information:

• The patches are extracted from images and contain the apparent information
around the joints.

• The concatenating order of features keeps the structural information of human
body.

All patches in the skeleton proposal are decided by the skeleton joints and the
order of the concatenated feature keeps the structure of skeleton.

We define the operation of concatenating the features as Γ (·). We propose
our skeleton proposal for video-based action prediction. Thus the input of our
method are videos and sequences. For a video, the number of observed frames
is defined as N . In every frame, the index of persons are indicated as p and the
total number of people is P . The skeletons of people are defined by their indexes
{S1, S2, ..., Sp, ..., SP }. We assume that the skeleton has E joints that can be
represented as {JSp,1, JSp,2, ..., JSp,e, ..., JSp,E}. Then we extract features based
on joints of the skeleton, which is denoted by Fn

Jp,e
. To keep the structure of

skeleton, we concatenate the features in the order from 1 to E for one person.
U = P ×E represents the total number of parts in the state. For the nth frame,
we formulate the concatenation of features as follows:

Kn = Γp∈P (Γe∈E(Fn
Jp,e

)) = Γu∈U (Fn
Ju

), (1)
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where Fn
Jp,e

is the proposal based feature which is generated from the skeleton
proposal. Comparing with the original features, the proposal-based feature not
only has less noise from background, but also keeps the structural information
of actions. Kn is the concatenation of features denoting the representation for
all persons in frame n, which has two advantages on representing the video:

• In Kn, the order of parts from Fn
J1,1

to Fn
JP,E

keeps the structural information
of human body.

• The corresponding parts from K1 to Kn captures the evolution of the corre-
sponding human body parts.

Different parts in the same feature have different relationship to the action.
The same part in different stages of the action has different significance in the
whole action. For example, during the action of boxing, most of the joints of skele-
ton are moving. The joints at elbows and hands are positive for understanding
the action of boxing. But the joints on feet disturb the representation of features.
To address the problem of the noise from the unrelated parts for actions, we pro-
pose a part-activated deep reinforcement learning method to select the saliency
parts of features on the human body.

3.2 Part-Activated Deep Reinforcement Learning

For action prediction, we use the partially observed videos to recognize the
action. The number of observed frames is much less than the whole video. Our
aim is to predict the ongoing action as early as possible. With a few frames at
the beginning of the action, it is very essential to take fully advantage of action-
related parts and to reduce interference of noise. We propose part-activated deep
reinforcement learning method (PA-DRL) to active the action-related parts. The
architecture of our method is based on the actor-critic. For every frame, there
exists not “ground-truth” of action-related part. However, our PA-DRL is to
learn the policy of activating the action-related parts only with the label of
the action. Based on the deep reinforcement learning, PA-DRL makes a series
of decisions to get the holistic optimal result for activating the action-related
parts.

Figure 3 shows the part-activated process of our method with observed
frames. As shown in this figure, the red points represent the activated parts
in the feature. With the starting frames of the action, the noise pushes the fea-
tures away from the actual action in feature space, which makes the predicting
evolutionary direction (yellow arrow) away from the actual evolutionary direc-
tion (black line of dashes). PA-DRL deactivates the parts with lager distance and
pull features close to the actual action. The green points are the action-unrelated
parts in features and are deactivated by our PA-DRL. The part-activated fea-
tures predict a new evolutionary direction to represent the action, which is close
to the actual action. PA-DRL deactivates some parts of the feature and changes
the prediction result with deep reinforcement learning.

Problem Settings: To activate and deactivate parts in the feature, we have
to confirm the relationship between parts and the action. However, it is hard to
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Fig. 3. The PA-DRL for feature parts activation. The red points represent the acti-
vated parts in corresponding features. The large black circle represents the whole fea-
ture which is decided by the all activated parts in the feature. The black circles from
left to right reflect the temporal evolution of the action. Yellow arrow is the predict-
ing evolutionary direction of the action. Black dashed line is the actual evolutionary
direction of the action. (Color figure online)

obtain all labels of activation and deactivation for every part in skeleton proposal
based features. Different from conventional supervised deep learning methods,
our PA-DRL aims to learn the policy for activating the action-related parts and
deactivate the noise without labels of all parts. Based on the deep reinforcement
leaning, our PA-DRL has three important elements: state, action and reward.
To distinguish the action in the prediction task and the action in the learning
architecture, we use action for the action in the learning architecture instead.

We define the action space Λ with two types of action for every part of state
St

w. We denote the action at
u,w ∈ Λ for the part βt

u,w. Two types of action in
action space Λ are activation and deactivation. For βt

u,w, the action of activation
can be represented by a vector of 1 with the same dimension of βt

u,w. Similarly,
the action deactivation can be represented by a vector of 0. Then we represent
concatenated action At

w for state St
w as follows:

At
w = [at

1,w, ..., at
U,w], at

u,w ∈ {1b, 0b}, (2)

where b is the dimension of feature βt
u,w.

We define the state of our policy as St
w, where w ∈ W is the index of videos

and t ∈ Tw is the iteration of learning process. Tw is the terminal step of video
w. The original state S0

w equals the skeleton proposal based feature K0. During
the learning process, the state Sw changes with the iteration t. St

w denotes the
activated feature at the tth iteration for the wth video. Thus we formulate the
state St

w as follows:
St

w = Γu∈U

(
βt

u,w

)
, (3)

where βt
u,w is the uth part of state Sw after the tth iteration.
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Fig. 4. State transformation in PA-DRL. The activated part is the corresponding part
of original state. The deactivated part is the original part multiplying by 0. The deac-
tivated part can be reactivated by adding the corresponding original part. We define a
part-wise product to generate the new state. The new state St+1 is computed by the
part-wise product of the last state St and corresponding action At.

We define the step reward for action At
w as r(At

w). The predicting label of
state St

w is ηt
w. The label of ground truth for the corresponding frame is εw. If ηt

w

equals to εw, the action At−1
w is positive for prediction and will receive a positive

reward by the policy. If the category of action is correctly predicted in continuous
iterations, we decide a reward of |r(At−1

w )|+1 for the action. Otherwise, we give
the negative reward for the continuous wrong predictions with −|r(At−1

w )| − 1.
At iteration t, we formulate the step reward r(At

w) as follows:

r(At
w) = Θ(ηt

w, εw) × (|r(At−1
w )| + 1), (4)

where Θ(·) is characteristic function which equals 1 if prediction is correct and
equals 0 else. Based on the step reward, we define the final reward function
as R(w). After the terminal iteration, we feedback the series actions Aw with
the final reward R(w). When the state stops at the terminal iteration ST

w , the
final reward R(w) is the average value of all step rewards of every iteration. We
represent final reward R(w) for the video w as:

R(w) =
1
T

∑

t∈T

r(At
w). (5)

The final reward is used for updating the model at the terminal step of one
training sample.

State Transformation: Figure 4 shows the state transformation of PA-DRL.
We denote the actor network as Πθ, which is parameterized by θ. We formulate
the state transformation from state St−1

w to St
w as follows:

At−1
w = Πθ(St−1

w ), (6)
St

w = S0
w � At−1

w , (7)

where S0
w is the state of original skeleton proposal feature and � is element-wise

product. The action At−1
w implements on the original state S0

w to activate and
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deactivate the parts of features. We prefer to compute the element wise product
of At−1

w and S0
w. The reason is that the action At−1

w cannot reactivate the part of
St−1

w which is already deactivated in the previous iterations. The information of
the part is lost and cannot be recovered in the following iterations. After several
iterations, the state of ST

w has the possibility to form a vector of all zeros, which
cannot represent the action.

To stop the iteration softly, we set the condition of terminal iteration. For
the training process, we count the number of continuously correct predictions as
σ. When σ is larger than the stop value λ, the iteration stops. For the testing
process, we count the number of continuously consistent predictions as σ. The
condition of termination is the same as that in training. The last action of frame
n is the initial action of frame n+1. Because the adjacent two frames are similar,
which makes the action similar. We use the constraint of continuity on the action
to reflect the continuity of frames.

3.3 Implement Details

We first utilized the skeleton which was extracted with [3] as the proposal for
extracting the features of the human body. The number of parts extracted by
[3] is 14 and we uniformly used 28 parts (14 × 2) per frame, where we trained
one actor network for each part. For every frame, we selected region proposals
at joints of skeleton. The center of region was the joint of skeleton and the size
of region was 20 × 20 pixels. At every joint, we extracted of the spatial feature
with pre-trained model of VGG-16. The feature size of one patch was 1000. The
extracted 14 features of one person were concatenated into a vector and then
the features of different persons were concatenated. The generated feature was
used as the input of our actor network. Our actor network consisted of two fully
convolution layer fc1 and fc2. The fc1 layer had 128 units and the fc2 layer
had 2 units. The layer of fc1 and fc2 were activated by the relu(·) function.
We separately trained 28 actor networks with the same input and the output of
every network referred to the action corresponding to the part. The critic part
of our reinforcement learning was linear-SVM. The stop value λ was set as 5.
The max value in training process and testing process were both set as 10. We
used Adam [12] as the optimizer in training and set the learning rate as 10−4.
The discount factor γ was set as 0.99.

4 Experiments and Results

4.1 Datasets

We evaluated PA-DRL on the UT-Interaction #1, the UT-Interaction #2 [32],
the BIT-Interaction dataset [15] and UCF101 dataset [37].

UTI #1 and UTI #2 Datasets: The two sets of the UT-Interaction dataset
contain videos of continuous actions of 6 classes: shake-hands, point, hug, push,
kick and punch. Each video contains at least one execution per interaction,
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providing 8 executions of human activities per video on average. Both sets have
60 video clips with 10 videos per action class. Backgrounds in the Set #2 are
more complex than those in the Set #1.

BIT-Interaction Dataset: The BIT-Interaction dataset has a list of 23 inter-
active phrases based on 17 attributes for all the videos. Videos are captured
in realistic scenes with cluttered background. People in each interaction class
behave totally different and thus have diverse motion attributes. This dataset
consists of 8 classes of human interactions (bow, boxing, handshake, high-five,
hug, kick, pat, and push), with 50 videos per class.

UCF101 Dataset: UCF101 action recognition dataset has collected from
YouTube, where the videos are realistic without constraint. The total categories
of dataset are 101 and all videos are divided into 25 groups with 101 action
categories. There are 13320 videos in all 101 categories.

4.2 Experimental Settings

In the training process, we trained the model by feeding one sample each round.
We fixed the parameters of the linear-SVM in the process of training with each
video. The model updated with the final reward by using (5) and calculated
the reward with (4) in every iteration. In the training process, we terminated
the iterative updating of each video when predicted labels were the same as the
ground truth or the iteration number reached the max value. The parameters
of network in our model updated after the iterative updating of each video
was terminated. In the testing process, PA-DRL outputted the final feature
for one video when predicted labels did not change in continuous 3 iterations
or the iteration number reached the max value. On UT-Interaction datasets, we
followed the experimental settings in [32] and utilized 10-fold leave-one-sequence-
out to measure the performance of our proposal based PA-DRL on both the UTI
#1 and the UTI #2. For every round, we measured the performance 10 times
while changing the test set iteratively, finding the average performance. Every
time, we utilized 6 videos in one of 10 folds as the testing set and used the
other 54 videos as the training set. On BIT-Interaction dataset, we followed the
settings in [15]. With randomly choosing 272 videos, we trained the model and
utilized the remaining 128 videos for testing. On UCF101 dataset, we followed
the split scheme proposed in [37]. We used the first 15 groups for training, the
next 3 groups for cross-validation and the remaining 7 groups for testing.

4.3 Results and Analysis

We first compared our PA-DRL method with thirteen state-of-the-art action
prediction methods, including SVM [31], Bayesian [31], IBOW [31], DBOW [31],
SC [2], MSSC [2], Lan et al. [20], MTSSVM [16], AAC [44], MMAPM [14], C3D
[39], Lai et al. [19] and Deep SCN [17]. We employed the results of these compared
methods provided by the original authors. Table 1 illustrates the accuracy of PA-
DRL compared with several state-of-the-art methods for action prediction. The
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Table 1. The accuracy (%) of different methods on the UTI #1, the UTI #2.

Methods UTI Set #1 UTI Set #2

OR = 0.5 OR = 1.0 OR = 0.5 OR = 1.0

SVM [31] 25.3 69.2 27.2 69.2

Bayesian [31] 20.9 78.0 21.8 50.7

IBoW [31] 65.0 81.7 45.7 59.3

DBoW [31] 70.0 85.0 51.2 65.3

SC [2] 70.0 76.7 68.5 80.0

MSSC [2] 70.0 83.3 71.0 81.5

Lan et al. [20] 83.1 88.4 78.3 82.0

MTSSVM [16] 78.3 95.0 74.3 87.3

AAC [44] 88.3 95.0 75.6 63.9

MMAPM [14] 78.3 95.0 75.0 87.3

PA-DRL 91.7 96.7 83.3 91.7

Table 2. The accuracy (%) of different methods on the BIT and UCF101 datasets.

Methods BIT dataset UCF101

OR = 0.5 OR = 1.0 OR = 0.5 OR = 1.0

IBoW [31] 49.2 43.0 74.6 76.0

DBoW [31] 46.9 53.1 53.2 53.2

MSSC [2] 48.4 68.0 62.6 61.9

MTSSVM [16] 60.0 76.6 82.3 82.5

Lai et al. [19] 79.4 85.3 - -

Deep SCN [17] 78.1 90.6 85.5 86.7

C3D [39] 57.8 69.6 80.0 82.4

PA-DRL 85.9 91.4 87.3 87.7

comparisons were taken on UTI, BIT and UCF101 dataset at OR = 0.5 and
OR = 1.0 separately. The OR indicates the observation ratio.

Comparisons with the State-of-the-Arts: From Tables 1 and 2, we clearly
see that PA-DRL achieves the performance of the state-of-the-art on three
datasets. For the difference of three sets, we compared the results in three sets
individually. On the UTI #1, the performance of our PA-DRL reached 91.7% and
96.7% at OR = 0.5 and OR = 1.0. At OR = 0.5, comparing with the AAC, our
PA-DRL improved 3%. For the other approaches, our PA-DRL outperformed
at least 3.5%. The result of our method demonstrated that our PA-DRL has
the strong ability of representing at the half observation of actions on this set.
Although our PA-DRL achieved the similar performance at OR = 1.0, we obvi-
ously outperformed than other methods on half observed videos.
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Fig. 5. The accuracy curve of prediction. The observation ratio changes from 0.1
to 1.0. The comparisons are presented on UTI #1, UTI #2, BIT and UCF101
dataset.

The categories of actions in UTI #2 are the same as that of the UTI #1,
but the variations of background in UTI #2 are larger, which makes it more
difficult to predict the actions. Depending on the UTI #2 in Table 1, our PA-DRL
achieved the best performance comparing with other methods. At OR = 0.5, PA-
DRL raised 7.7% than AAC and improved 5% comparing with Lan et al. [20].
The large variation of background made the prediction difficult. Nevertheless, our
proposed method performed best by extracting features from skeleton proposal,
especially when the video was observed with a half.

The BIT dataset has more categories of actions and is more complex than the
sets of the UTI. Nevertheless, we achieved the state-of-the-art with the accuracy
of 85.9% and 91.4%. The complexity of actions reduced the predicting preci-
sion of other approaches. But for PA-DRL, the variance of actions would not
change the order of joints on the skeleton, which could minimize the impact
of complexity. Our PA-DRL outperformed Lai et al. [19] and Deep SCN [17],
which are the leading approaches on BIT dataset. Because PA-DRL enhanced
the action-related parts in features and made these parts much more attentional
to the original features. The enhanced features highlighted the discriminative
information and achieved PA-DRL to outperformed other methods.

UCF101 dataset is a dataset of action recognition, which is much larger than
the previous two dataset and has collected from realistic videos. The complexity
of actions makes the prediction more difficult. However, at OR = 0.5, PA-DRL
outperformed 1.8% than Deep SCN [17], which obtained the state-of-the-art
results on UCF101 for action prediction. Comparing with the action recognition
method, C3D [39], PA-DRL raised the accuracy with 7.3%. The significant gap
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with demonstrated that when the action was observed incompletely, the method
for full length action recognition had difficult to predict the action. While PA-
DRL successfully predicted the actions on the incomplete action videos.

Figure 5 illustrates the comparisons between PA-DRL and other approaches
on three datasets. In this figure, the horizontal axis of the figure corresponds
to the observation ratio, and the vertical axis represents the average prediction
accuracy. Our PA-DRL outperformed the other methods on the BIT dataset.

From Fig. 5(a), we see that the prediction curve of PA-DRL increased rapidly
from OR = 0.3 to OR = 0.5, and became stable since OR = 0.7. The methods
of the SVM [31] and the Bayesian [31] relayed on the complete information of
actions and achieved a good performance at OR = 0.9. The method of MTSSVM
[16] quickly increased at low observation ratio, especially at OR = 0.3. But
our PA-DRL outperformed the MTSSVM since OR = 0.4. Comparing with
the method of MMAPM [14], our PA-DRL obtained a better performance at
OR = 0.5 and OR = 0.7 and reached the comparable results with the MMAPM.
The result demonstrates that our proposed PA-DRL has the strong ability for
representing the full length actions.

From Fig. 5(b), we see that our proposed method performed the best at
OR = 0.5 and OR = 1.0. The repaid increasing from OR = 0.3 and OR = 0.5
indicated that our method effectively captured the evolution of actions with the
increasing of observation ratio. The MTSSVM is benefited from using histogram
features of both local and global information in temporal domain. The MMAPM
used the multi-temporal scale to model the ongoing actions. However, our PA-
DRL just used the global information with temporal pooling. The comparable
results demonstrates that our PA-DRL exploited the structural information of
the human body effectively and enhanced the discriminative power of features.

From Fig. 5(c), we see that the prediction of PA-DRL performed the state-
of-the-art on the BIT dataset. The Lai et al. [19] and Deep SCN [17] are leading
approaches on the BIT dataset, which do not mine the structural information
of human. However, our PA-DRL achieved a higher performance with exploiting
the structural information and mining the saliency information of human. The
high performance with little observation of the whole video indicated that our
PA-DRL could predict the activity at the early stage.

From Fig. 5(d), PA-DRL performed an accuracy with 81.5% even at OR =
0.2, which the observed video was just the beginning of actions. By activating
the action-related parts, PA-DRL precisely predicted the direction of action
evolution with a few frames of the beginning part of videos. Comparing with
C3D, PA-DRL performed well with observation ratio higher than 0.6. Because
the method failed to reduce the disturbance of action-unrelated parts in features.
PA-DRL enhanced the action-related parts and made the predicted direction of
the action evolution close to the actual direction.

Analysis of Different Components: To analyze the effectiveness of PA-DRL,
we took the experiments comparing PA-DRL with skeleton feature without local
patch feature and skeleton proposal based feature without deep reinforcement
learning (DRL). Table 3 illustrates the results. In our experiments, skeleton
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Table 3. The accuracy (%) of action prediction with different settings for PA-DRL on
the UTI #1, the UTI #2 and BIT dataset.

Different settings Dataset OR = 0.5 OR = 1.0

Skeleton feature without local patch feature UTI #1 69.9 73.3

Skeleton proposal based feature without RL UTI #1 76.7 91.7

PA-DRL UTI #1 91.7 96.7

Skeleton feature without local patch feature UTI #2 66.7 70.0

Skeleton proposal based feature without RL UTI #2 70.0 86.7

PA-DRL UTI #2 83.3 91.7

Skeleton feature without local patch feature BIT 62.3 75.7

Skeleton proposal based feature without RL BIT 68.6 87.5

PA-DRL BIT 85.9 91.4

feature without local patch feature denoted that the feature used for predicting
action was the just the skeleton feature, which was composed of the position of
skeleton joints. Skeleton proposal based feature without DRL utilized the feature
of local patch around skeleton joints without activating process.

As can be seen in Table 3, PA-DRL effectively exploited the relationship
between the part in feature and actions and used the action-related parts to
predict the direction of action evolution. The setting of using skeleton feature
obtained the worst performance on three sets, which indicated that without
using the apparent information could substantially decrease the precision of pre-
diction. The performance of skeleton proposal based feature was higher than that
of skeleton feature, which indicated that the structural information and appar-
ent information were complementary for representing actions. The comparisons
between skeleton proposal based feature and PA-DRL showed that there was a
significant gap. The improvement demonstrated that the action-unrelated parts
in the feature limited the representation ability, while our PA-DRL effectively
exploited the relationship between feature and actions for representation.

From OR = 0.5, we see that the observed video did not contain the sufficient
information of the action. Treating all parts of the feature equally reduced the
ability of action-related parts to represent the action and relatively generated
the disturbance by the noise. PA-DRL selected the action-related parts to inhibit
the influence of noise and performed a significant improvement. At OR = 1.0,
the feature with the complete information of the action reduced the disturbance
of noise, which made the skeleton proposal based feature achieve a good perfor-
mance. However, PA-DRL still outperformed skeleton proposal based feature by
precisely predicting the direction of action evolution.
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5 Conclusion

In this paper, we have proposed a part-activated deep reinforcement learning
(PA-DRL) method for action prediction. The aim of our proposed PA-DRL is
to learn the policy of activating action-related parts. Our PA-DRL exploits the
structural information through extracting features by the skeleton proposal and
mines the related information of human body for the ongoing actions. Experi-
mental results on UTI, BIT and UCF101 dataset have been presented to demon-
strate the effectiveness of the propose method for action prediction.
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