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Abstract. Recognizing visual relationships 〈subject-predicate-object〉
among any pair of localized objects is pivotal for image understanding.
Previous studies have shown remarkable progress in exploiting linguis-
tic priors or external textual information to improve the performance.
In this work, we investigate an orthogonal perspective based on feature
interactions. We show that by encouraging deep message propagation
and interactions between local object features and global predicate fea-
tures, one can achieve compelling performance in recognizing complex
relationships without using any linguistic priors. To this end, we present
two new pooling cells to encourage feature interactions: (i) Contrastive
ROI Pooling Cell, which has a unique deROI pooling that inversely pools
local object features to the corresponding area of global predicate fea-
tures. (ii) Pyramid ROI Pooling Cell, which broadcasts global predi-
cate features to reinforce local object features. The two cells constitute
a Spatiality-Context-Appearance Module (SCA-M), which can be further
stacked consecutively to form our final Zoom-Net. We further shed light
on how one could resolve ambiguous and noisy object and predicate
annotations by Intra-Hierarchical trees (IH-tree). Extensive experiments
conducted on Visual Genome dataset demonstrate the effectiveness of our
feature-oriented approach compared to state-of-the-art methods (Acc@1
11.42% from 8.16%) that depend on explicit modeling of linguistic inter-
actions. We further show that SCA-M can be incorporated seamlessly
into existing approaches to improve the performance by a large margin.
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1 Introduction

Visual relationship recognition [22,30,38] aims at interpreting rich interactions
between a pair of localized objects, i.e., performing tuple recognition in the form
of 〈subject-predicate-object〉 as shown in Fig. 1(a). The fundamental challenge
of this task is to recognize various vaguely defined relationships given diverse
spatial layouts of objects and complex inter-object interactions. To complement
visual-based recognition, a promising approach is to adopt a linguistic model
and learn relationships between object and predicate labels from the language.
This strategy has been shown effective by many existing methods [6,26,30,47–
49]. These language-based methods either apply statistical inference to the tuple
label set, establish a linguistic graph as the prior, or mine linguistic knowledge
from external billion-scale textual data (e.g., Wikipedia).

Fig. 1. Given an image ‘surfer fall from surfboard ’ and its region-of-interests (ROI)
in (a), traditional methods without mining contextual interactions between object (sub-
ject) and predicate (e.g., Appearance Module (A-M)) or ignoring spatial informa-
tion (e.g., Context-Appearance Module (CA-M)) may fail in relationship recogni-
tion, as shown in the two bottom rows of (c). The proposed Spatiality-Context-
Appearance Module (SCA-M) in (b) permits global inter-object interaction and sharing
of spatiality-aware contextual information, thus leading to a better recognition perfor-
mance.

In this paper, we explore a novel perspective beyond the linguistic-based
paradigm. In particular, contemporary approaches typically recognize the tuple
〈subject-predicate-object〉 via separate convolutional neural network (CNN)
branches. We believe that by enhancing message sharing and feature interac-
tions among these branches, the participating objects and their visual relation-
ship can be better recognized. To this end, we formulate a new spatiality-aware
contextual feature learning model, named as Zoom-Net. Differing from pre-
vious studies that learn appearance and spatial features separately, Zoom-Net
propagates spatiality-aware object features to interact with the predicate fea-
tures and broadcasts predicate features to reinforce the features of subject and
object.

The core of Zoom-Net is a Spatiality-Context-Appearance Module,
abbreviated as SCA-M. It consists of two novel pooling cells that permit deep
feature interactions between objects and predicates, as shown in Fig. 1(b). The
first cell, Contrastive ROI Pooling Cell, facilitates predicate feature learning by
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inversely pooling object/subject features to a matching spatial context of pred-
icate features via a unique deROI pooling. This allows all subject and object
to fall on the same spatial ‘palette’ for spatiality-aware feature learning. The
second cell is called Pyramid ROI Pooling Cell. It helps object/subject fea-
ture learning through broadcasting the predicate features to the corresponding
object’s/subject’s spatial area. Zoom-Net stacks multiple SCA-Ms consecutively
in an end-to-end network that allows multi-scale bidirectional message passing
among subject, predicate and object. As shown in Fig. 1(c), the message sharing
and feature interaction not only help recognize individual objects more accu-
rately but also facilitate the learning of inter-object relation.

Another contribution of our work is an effective strategy of mitigating ambi-
guity and imbalanced data distribution in 〈subject-predicate-object〉 annota-
tions. Specifically, we conduct our main experiments on the challenging Visual
Genome (VG) dataset [22], which consists of over 5,319 object categories, 1,957
predicates, and 421,697 relationship types. The large-scale ambiguous categories
and extremely imbalanced data distribution in VG dataset prevent previous
methods from predicting reliable relationships despite they succeed in the Visual
Relationship Detection (VRD) dataset [30] with only 100 object categories, 70
predicates and 6,672 relationships. To alleviate the ambiguity and imbalanced
data distribution in VG, we reformulate the conventional one-hot classification
as a n-hot multi-class hierarchical recognition via a novel Intra-Hierarchical
trees (IH-trees) for each label set in the tuple 〈subject-predicate-object〉.
Contributions. Our contributions are summarized as follows:

(1) A general feature learning module that permits feature interactions - We
introduce a novel SCA-M to mining intrinsic interactions between low-level
spatial information and high-level semantical appearance features simulta-
neously. By stacking multiple SCA-Ms into a Zoom-Net, we achieve com-
pelling results on VG dataset thanks to the multi-scale bidirectional message
passing among subject, predicate and object.

(2) Multi-class Intra-Hierarchical tree - To mitigate label ambiguity in large-
scale datasets, we reformulate the visual relationship recognition problem
to a multi-label recognition problem. The recognizability is enhanced by
introducing an Intra-Hierarchical tree (IH-tree) for the object and predicate
categories, respectively. We show that IH-tree can benefit other existing
methods as well.

(3) Large-scale relationship recognition - Extensive experiments demonstrate the
respective effectiveness of the proposed SCA-M and IH-tree, as well as their
combination on the challenging large-scale VG dataset.

It is noteworthy that the proposed method differs significantly from previ-
ous works as Zoom-Net neither models explicit nor implicit label-level interac-
tions between 〈subject-predicate-object〉. We show that feature-level interactions
alone, which is enabled by SCA-M, can achieve state-of-the-art performance. We
further demonstrate that previous state-of-the-arts [26] that are based on label-
level interaction can benefit from the proposed SCA-M and IH-trees.
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2 Related Work

Contextual Learning. Contextual information has been employed in various
tasks [1,13,15,25,34,40,42], e.g., object detection, segmentation, and retrieval.
For example, the visual features captured from a bank of object detectors are
combined with global features in [5,24]. For both detection and segmentation,
learning feature representations from a global view rather than the located object
itself has been proven effective in [3,23,32]. Contextual feature learning for visual
relationship recognition is little explored in previous works.

Class Hierarchy. In previous studies [8,9,11,17,33], class hierarchy that
encodes diverse label relations or structures is used to improve performances
on classification and retrieval. For instance, Deng et al. [11] improve large-scale
visual recognition of object categories by forming a semantic hierarchy that con-
sists of many levels of abstraction. While object categories can be clustered easily
by their semantic similarity given the clean and explicit labels of objects, building
a semantic hierarchy for visual relationship recognition can be more challenging
due to noisy and ambiguous labels. Moreover, the semantic similarity between
some phrases and prepositions such as walking on a versus walks near the is not
directly measurable. In our paper, we employ the part-of-speech tagger toolkit
to extract and normalize the keywords of these labels, e.g. walk, on and near.

Visual Relationship. Recognizing visual relationship [38] has been shown ben-
eficial to various tasks, including action recogntion [7,15], pose estimation [12],
recognition and object detection [4,36], and scene graph generation [27,44].
Most recent works [6,18,27–30,35,45,48,50] focus on measuring linguistic rela-
tions with textual priors or language models. The linguistic relations have been
explored for object recognition [9,31,43], object detection [37], retrieval [39],
and caption generation [16,20,21]. Yu et al. [46] employ billions of external tex-
tual data to distill useful knowledge for triplet 〈subject-predicate-object〉 learn-
ing. These methods do not fully explore the potential of feature learning and
feature-level message sharing for the problem of visual relationship recognition.
Li et al. [26] propose a message passing strategy to encourage feature sharing
between features extracted from 〈subject-predicate-object〉. However, the net-
work does not capture the relative location of different objects thus it cannot
capture valid contextual information between subject, predicate and object.

3 Zoom-Net: Mining Deep Feature Interactions

We propose an end-to-end visual relationship recognition model that is capable
of mining feature-level interactions. This is beyond just measuring the interac-
tions among the triplet labels with additional linguistic priors, as what previous
studies considered.
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Fig. 2. (a) Given the ROI-pooled features of subject (S), predicate (P) and object (O)
from an input image, (b) An Appearance module (A-M) separately processes these
features without any message passing, (c) a Context-Appearance module (CA-M)
attempts to capture contextual information by directly fusing pairwise features. The
proposed SCA-M in (d) integrates the local and global contextual information in a
spatiality-aware manner. The SP/PS/SO/PO/OP features are combined by channel-
wise concatenation. For instance, SP feature is the result of combining subject and
predicate features.

3.1 Appearance, Context and Spatiality

As shown in Fig. 2(a), given the ROI-pooled features of the subject, predicate and
object, we consider a question: how to learn good features for both object (sub-
ject) and predicate? We investigate three plausible modules as follows.

Appearance Module. This module focuses on the intra-dependencies within
each ROI, i.e., the features of the subject, predicate and object branches are
learned independently without any message passing. We term this network struc-
ture as Appearance Module (A-M), as shown in Fig. 2(a). No contextual and
spatial information can be derived from such a module.

Context-Appearance Module. The Context-Appearance Module (CA-
M) [26] directly fuses pairwise features among three branches, in which sub-
ject/object features absorb the contextual information from the predicate fea-
tures, and predicate features also receive messages from both subject/object
features, as shown in Fig. 2(b). Nonetheless, these features are concatenated
regardless of their relative spatial layout in the original image. The incompati-
bility of scale and spatiality makes the fused features less optimal in capturing
the required spatial and contextual information.

Spatiality-Context-Appearance Module. The spatial configuration, e.g.,
the relative positions and sizes of subject and object, is not sufficiently rep-
resented in CA-M. To address this issue, we propose a Spatiality-Context-
Appearance module (SCA-M) as shown in Fig. 2(c). It consists of two novel
spatiality-aware feature alignment cells (i.e., Contrast ROI Pooling and Pyra-
mid ROI Pooling) for message passing between different branches. In com-
parison to CA-M, the proposed SCA-M reformulates the local and global
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Fig. 3. The Spatiality-Context-Appearance Module (SCA-M) hinges on two compo-
nents: (i) Contrastive ROI pooling (b–d), denoted as 〈ROI, deROI〉, which propagates
spatiality-aware features f̂s, f̂o from subject and object into the spatial ‘palette’ of pred-
icate features fp, and (ii) Pyramid ROI pooling (a,e), 〈ROI, ROI〉, which broadcasts
the global predicate features f̂p to local features fs, fo in subject and object branches.

information integration in a spatiality-aware manner, leading to superior capa-
bility in capturing spatial and contextual relationships between the features of
〈subject-predicate-object〉.

3.2 Spatiality-Context-Appearance Module (SCA-M)

We denote the respective regions of interest (ROIs) of the subject, predicate and
object as Rs, Rp, and Ro, where Rp is the union bounding box that tightly
covers both the subject and object. The ROI-pooled features for these three
ROIs are ft, t ∈ {s, p, o}, respectively. In this section, we present the details of
SCA-M. In particular, we discuss how Contrastive ROI Pooling and Pyramid
ROI Pooling cells, the two elements in SCA-M, permit deep feature interactions
between objects and predicates.

Contrastive ROI Pooling denotes a pair of 〈ROI, deROI〉 operations that
the object1 features fo are at first ROI pooled for extracting normalized local
features, and then these features are deROI pooled back to the spatial palette of
the predicate feature fp, so as to generate a spatiality-aware object feature f̂o with
the same size as the predicate feature, as shown in Fig. 3(b) marked by the purple
triangle. Note that the remaining region outside the relative object ROI in f̂o is
set to 0. The spatiality-resumed local feature f̂o can thus influence the respective
regions in the global feature map fp. In practice, the proposed deROI pooling
can be considered as an inverse operation of the traditional ROI pooling (green
triangle in Fig. 3), which is analogous to the top-down deconvolution versus the
bottom-up convolution.

There are three Contrastive ROI pooling cells presented in the SCA-M mod-
ule to integrate the feature pairs subject-predicate, subject-object and predicate-
object, as shown in Fig. 3(b–d). Followed by several convolutional layers, the
1 Subject and object refer to the same concept, thus we only take object as the example

for illustration.
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features from subject and object are spatially fused into the predicate feature
for enhanced representation capability. The proposed 〈ROI, deROI〉 operations
differ from conventional feature fusion operations (channel-wise concatenation or
summation). The latter would introduce scale incompatibility between local sub-
ject/object features and global predicate features, which could hamper feature
learning in subsequent convolutional layers.

Pyramid ROI Pooling denotes a pair of 〈ROI, ROI〉 operations that broad-
casts the global predicate features to local features in the subject and object
branches, as shown in Fig. 3(a) and (e). Specifically, with the help of ROI pool-
ing unit, we first ROI-pool the features of predicate from the input region R̃,
which convey global contextual information of the region. Next, we perform a
second ROI pooling on predicate features with the subject/object ROIs to fur-
ther mine the contextual information from the global predicate feature region.
The Pyramid ROI pooling thus provides multi-scale contexts to facilitate sub-
ject/object feature learning.

3.3 Zoom-Net: Stacked SCA-M

By stacking multiple SCA-Ms, the proposed Zoom-Net is capable of captur-
ing multi-scale feature interactions with dynamic contextual and spatial infor-
mation aggregation. It enables a reliable recognition of the visual relationship
triplet 〈s-p-o〉, where the predicate p indicates the relationships (e.g., spatiality,
preposition, action and etc.) between a pair of localized subject s and object o.

As visualized in Fig. 4, we use a shared feature extractor with convolutional
layers until conv3 3 to encode appearance features of different object categories.

Fig. 4. The architecture of Zoom-Net. The subject (in light yellow), predicate (in red)
and object (in dark yellow) share the same feature extraction procedure in the lower
layers, and are then ROI-pooled into three branches. Following each branch of pooled
feature maps is two convolutional layers to learn appearance features which are then fed
into two stacked SCA-Ms to further fuse multi-scale spatiality-aware contextual infor-
mation across different branches. Three classifiers with intra-hierarchy structures are
applied to the features obtained from each branch for visual relationship recognition.
(Color figure online)



Zoom-Net 337

By indicating the regions of interests (ROIs) for subject, predicate and object,
the associated features are ROI-pooled to the same spatial size and respectively
fed into three branches. The features in three branches are at first independently
fed into two convolutional layers (the conv4 1 and conv4 2 layers in VGG-16)
for a further abstraction of their appearance features. Then these features are
put into the first SCA-M to fuse spatiality-aware contextual information across
different branches. After receiving the interaction-augmented subject, predicate
and object features from the first SCA-M, M1

SCA, we continue to convolve these
features with another two appearance abstraction layers (mimicking the struc-
tures of conv5 1 and conv5 2 layers in VGG-16) and then forward them to the
second SCA-M, M2

SCA. After this module, the multi-scale interaction-augmented
features in each branch are fed into three fully connected layers fc s, fc p and
fc o to classify subject, predicate and object, respectively.

4 Hierarchical Relational Classification

To thoroughly evaluate the proposed Zoom-Net, we adopt the Visual
Genome (VG) dataset2 [22] for its large scale and diverse relationships. Our
goal is to understand the a much broader scope of relationships with a total
number of 421,697 relationship types, in comparison to the VRD dataset [30]
that focuses on only 6,672 relationships. Recognizing relationships in VG is a
non-trivial task due to several reasons:

(1) Variety - There are a total of 5,319 object categories and 1,957 predicates,
tens times than those available in the VRD dataset.

(2) Ambiguity - Some object categories share a similar appearance, and multiple
predicates refer to the same relationship.

(3) Imbalance - We observe long tail distributions both for objects and predi-
cates.

To circumvent the aforementioned challenges, existing studies typically sim-
plify the problem by manually removing a considerable portion of the data by
frequency filtering or cleaning [6,26,46,47]. Nevertheless, infrequent labels like
“old man” and “white shirt” contain common attributes like “man” and “shirt”
and are unreasonable to be pruned. Moreover, the flat label structure assumed
by these methods is limited to describe the label space of the VG dataset with
ambiguous and noisy labels.

To overcome the aforementioned issues, we propose a solution by establish-
ing two Intra-Hierarchical trees (IH-tree) for measuring intra-class correlation
within object3 and predicate, respectively. IH-tree builds a hierarchy of concepts
that systematically groups rare, noisy and ambiguous labels together with those
clearly defined labels. Unlike existing works that regularize relationships across

2 Extremely rare labels (fewer than 10 samples) were pruned for a valid evaluation.
3 Subject and object refer to the same term in this paper, thus we only take the object

as the example for illustration.



338 G. Yin et al.

the triplet 〈s-p-o〉 by external linguistic priors, we only consider the intra-class
correlation to independently regularize the occurrences of the object and predi-
cate labels. During end-to-end training, the network employs the weighted Intra-
Hierarchical losses for visual relationship recognition as L = αLs + βLp + γLo,
where hyper-parameters α, β, γ balance the losses with respect to subject Ls,
predicate Lp and object Lo. α = β = γ = 1 in our experiments. We introduce
IH-tree and the losses next.

Fig. 5. An illustration of Intra-Hierarchical Tree. Both IH-trees for object (left) and

predicate (right) start from the base layer H(0)
s,p,o to a purified layer H(1)

s,p,o but have a

different construction in the third layer. The H(2)
o clusters similar semantic concepts

from H(1)
o , while the H(2)

p separately cluster verb and preposition words from H(1)
p .

4.1 Intra-Hierarchical Tree Ho for Object

We build an IH-tree, Ho, for object with a depth of three, where the base layer
H(0)

o consists of the raw object categories.

(1) H(0)
o → H(1)

o : H(1)
o is extracted from H(0)

o by pruning noisy labels with the
same concept but different descriptive attributes or in different singular and
plural forms. We employ the part-of-speech tagger toolkit from NLTK [2] and
NLTK Lemmatizer to filter and normalize the noun keyword, e.g., “man”
from “old man”, “bald man” and “men”.

(2) H(1)
o → H(2)

o : We observe that some labels have a close semantic correla-
tion. As shown in the left panel of Fig. 5, labels with similar semantic con-
cepts such as “shirt” and “jacket” are hyponyms of “clothing” and need to
be distinguished from other semantic concepts like “animal” and “vehicle”.
Therefore, we cluster labels in H(1)

o to the third level H(2)
o by semantical

similarities computed by Leacock-Chodorow distance [40] from NLTK. We
find that a threshold of 0.65 is well-suited for splitting semantic concepts.

The output of the subject/object branch is a concatenation of three inde-
pendent softmax activated vectors corresponded to three hierarchical levels in
the IH-tree. The loss Ls (Lo) is thus a summation of three independent softmax
losses with respect to these levels, encouraging the intra-level mutual label exclu-
sion and inter-level label dependency.
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4.2 Intra-Hierarchical Tree Hp for Predicate

The predicate IH-tree also has three hierarchy levels. Different from the object
IR-tree that only handles nouns, the predicate categories include various part-
of-speech types, e.g., verb (action) and preposition (spatial position). Even a
single predicate label may contain multiple types, e.g., “are standing on” and
“walking next to a”.

(1) H(0)
p → H(1)

p : Similar to H(1)
o , H(1)

p is constructed aiming at extracting and
normalizing keywords from predicates. We retain the keywords and nor-
malize tenses with respective to three main part-of-speech types, i.e., verb,
preposition and adjective, and abandon other pointless and ambiguous
words. As shown in the right panel of Fig. 5, “wears a”, “wearing a yellow”
and “wearing a pink” are mapped to the same keyword “wear”.

(2) H(1)
p → H(2)

p : Different part-of-speech types own particular characteristics
with various context representations, and hence a separate hierarchical struc-
ture for the verb (action) and preposition (spatial) is indispensable for bet-
ter depiction. To this end, we construct H(2)

p for verb and preposition label
independently, i.e., H(2−1)

p for action information and H(2−2)
p for spatial con-

figuration. There are two cases in H(1)
p : (a) the label is in the form of phrase

that consists of both verb and preposition (e.g. “stand on” and “walk next
to”) and (b) the label is a single word (e.g., “on” and “wear”). For the
first case, H(2−1)

p extracts the verb words from the two phrases while H(2−2)
p

extracts the preposition words. It thus causes that a label might be simul-
taneously clustered into different partitions of H(2)

p . If the label is a single
word, it would be normally clustered into the corresponding part-of-speech
but remained the same in the opposite part-of-speech, as shown with the
dotted line in the right panel of Fig. 5. The loss Lp is constructed similarly
to that for the object.

5 Experiments on Visual Genome (VG) Dataset

Dataset. We evaluate our method on the Visual Genome (VG) dataset (version
1.2). Each image is annotated with a triplet 〈subject-predicate-object〉, where
the subjects and objects are annotated with labels and bounding boxes while
the predicates only have labels. We randomly split the VG dataset into training
and testing set with a ratio of 8 : 2. Note that both sets are guaranteed to have
positive and negative samples from each object or predicate category. The details
of data preprocessing and the source code will be released.

Evaluation Metrics. (1) Acc@N . We adopt the Accuracy score as the major
evaluation metric in our experiments. The metric is commonly used in traditional
classification tasks. Specifically, we report the values of both Acc@1 and Acc@5
for subject, predicate, object and relationship, where the accuracy of relationship
is calculated as the averaged accuracies of subject, predicate and object.
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(2) Rec@N . Following [30], we use Recall as another metric so as to handle
incomplete annotations. Rec@N computes the ratio of the correct relationship
instance that is covered in the top N predictions per image. We report Rec@50
and Rec@100 in our experiments. For a fair comparison, we follow [30] to evaluate
Rec@N on three tasks, i.e., predicate recognition where both the labels and
bounding boxes of the subject and object are given; phrase recognition that takes
a triplet as a union bounding box and predicts the triple labels; relationship
recognition, which also outputs triple labels but evaluates separate bounding
boxes of subject and object. The recall performance is relative to the number
of predicate per subject-object pair to be evaluated, i.e., top k predictions. In the
experiments on VG dataset, we adopt top k = 100 for evaluation.

Training Details. We use VGG16 [41] pre-trained on ImageNet [10] as the
network backbone. The newly introduced layers are randomly initialized. We set
the base learning rate as 0.001 and fix the parameters from conv1 1 to conv3 3.
The implementations are based on Caffe [19], and the networks are optimized via
SGD. The conventional feature fusion operations are implemented by channel-
wise concatenation in SCA-M cells here.

5.1 Ablation Study

SCA-Module. The advantage of Zoom-Net lies in its unique capability of learn-
ing spatiality-aware contextual information through the SCA-M. To demonstrate
the benefits of learning visual features with spatial-oriented and context-aided
cues, we compare the recognition performance of Zoom-Net with a set of variants
achieved by removing each individual cue step by step, i.e., the SCA-M without
stacked structure, the CA-M that disregard the spatial layouts, and the vanilla
A-M that does not perform message passing (see Sect. 3.1). Their accuracy and
recall scores are reported in Table 1.

In comparison to the vanilla A-M, both the CA-M and SCA-M obtain a
significant improvement suggesting the importance of contextual information
to individual subject, predicate, and object classification and their relationship
recognition. Note that contemporary CNNs have already shown a remarkable
performance on subject and object classification, i.e., it is not hard to recog-
nize object via individual appearance information, and thus the gap (4.96%) of
subject is smaller than that of predicate (12.25%) between A-M and SCA-M
on Top-1 accuracy. Not surprisingly, since the key inherent problem of relation-
ship recognition is to learning the interactions between subject and object, the
proposed SCA-M module exhibit a strong performance, thanks to its capabil-
ity in capturing correlation between spatiality and semantic appearance cues
among different object. Its effectiveness can also be observed from qualitative
comparisons in Fig. 6(a).

Intra-Hierarchical Tree. We use the two auxiliary levels of hierarchical labels
H(1) and H(2) to facilitate the prediction of the raw ground truth labels H(0) for
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Table 1. Recognition performances (Acc@N and Rec@N) of Zoom-Net on VG dataset
compared with (i) three variants of SCA module, and (ii) Zoom-Net discarding IH-trees.
The best results are indicated in bold.

Metrics @N Zoom-Net SCA-M CA-M A-M Zoom-Net
w/o
H(1,2)

Zoom-Net
w/o H(2)

Acc. Subject 1 38.94 37.48 34.84 32.52 36.52 37.88

5 65.70 64.09 61.59 58.28 62.63 63.97

Predicate 1 48.73 48.14 46.81 35.89 47.18 48.26

5 77.64 76.97 75.55 67.05 76.43 77.18

Object 1 45.09 44.13 42.66 41.39 42.52 43.67

5 71.69 70.64 69.55 67.99 69.33 70.35

Relationship 1 11.42 10.51 9.46 6.39 9.92 10.76

5 22.80 21.31 19.70 14.06 20.44 22.08

Rec. Predicate 50 67.25 66.54 65.07 53.94 65.84 66.73

100 77.51 76.92 75.45 66.53 76.30 77.16

Relationship 50 19.97 18.60 17.14 12.23 17.78 18.92

100 25.07 23.51 21.63 15.86 22.53 23.88

Phrase 50 20.84 19.55 18.12 13.05 18.65 19.78

100 26.16 24.70 22.85 16.92 23.62 24.96

the subject, predicate and object, respectively. Here we show that by involving
hierarchical structures to semantically cluster ambiguous and noisy labels, the
recognition performance w.r.t. the raw labels of the subject, predicate, object as
well as their relationships are all boosted, as shown in Table 1. Discarding one
of two levels in IH-tree clearly hamper the performance, i.e., Zoom-Net with-
out IH-tree experiences a drop of around 1%–4% on different metrics. It reveals
that intra-hierarchy structures do provide beneficial information to improve the
recognition robustness. Besides, Fig. 6(b) shows the Top-5 triple relationship pre-
diction results of Zoom-Net with and without IH-trees. The novel design of the
hierarchical label structure help resolves data ambiguity for both on object and
predicate. For example, thanks to the hierarchy level H(1) introduced in Sect. 4,
the predicates related to “wear” (e.g., “wearing” and “wears”) can be ranked
in top predictions. Another example shows the contribution of H(2) designed for
semantic label clustering, e.g. “sitting in”, which is grouped in the same cluster
of the ground truth “in”, also appears in top ranking results.

5.2 Comparison with State-of-the-Art Methods

We summarize the comparative results on VG in Table 2 with two recent state
of the arts [6,26]. For a fair comparison, we implement both methods with the
VGG-16 as the network backbone. The proposed Zoom-Net significantly out-
performs these methods, quantitatively and qualitatively. Qualitative results are
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Table 2. Recognition performances (Acc@N and Rec@N) of Zoom-Net on VG dataset
compared with the state-of-the-art methods. Results in bold font are the best by a single
model, while the underlined results indicate the best performance of a combined model
that incorporates the proposed modules into other state-of-the-art architectures.

Metrics @N Zoom-Net DR-Net [6] ViP [26] ViP+SCA

-M

ViP+IH

-tree

ViP+SCA-M

+IH-tree

Acc. Subject 1 38.94 30.10 31.10 37.13 34.36 38.78

5 65.70 55.46 57.33 63.61 61.03 65.69

Predicate 1 48.73 44.14 45.17 48.40 46.54 49.07

5 77.64 71.67 74.26 77.28 75.30 78.07

Object 1 45.09 37.91 39.18 43.09 43.18 44.96

5 71.69 64.30 65.68 69.93 69.48 71.58

Relationship 1 11.42 6.69 8.16 10.65 9.97 11.79

5 22.80 13.11 17.01 21.63 20.40 23.28

Rec. Predicate 50 67.25 62.05 63.44 66.87 64.80 67.63

100 77.51 71.96 74.15 77.22 75.29 77.89

Relationship 50 19.97 12.56 14.78 18.73 17.76 20.41

100 25.07 16.06 18.85 23.67 22.35 25.55

Phrase 50 20.84 13.51 15.70 19.61 18.72 21.31

100 26.16 17.23 19.96 24.70 23.50 26.66

shown in the first row of Fig. 6(c). DR-Net [6] exploits binary dual masks as the
spatial configuration in feature learning and therefore loses the critical interac-
tion between visual context and spatial information. ViP [26] focuses on learning
label interaction by proposing a phrase-guided message passing structure. Addi-
tionally, the method tries to capture contextual information by passing mes-
sages across triple branches before ROI pooling and thus fail to explore in-depth
spatiality-aware feature representations.

Transferable SCA-M Module and IH-Tree. We further demonstrate the
effectiveness of the proposed SCA-M module in capturing spatiality, context
and appearance visual cues, and IH-trees for resolving ambiguous annotations,
by plugging them into architectures of existing works. Here, we take the net-
work of ViP [26] as the backbone for its end-to-end training scheme and state-
of-the-art results (Table 2). We compare three configurations, i.e., ViP+SCA-
M, ViP+IH-tree and ViP+SCA-M+IH-tree. For a fair comparison, the ViP
is modified by replacing the targeted components with SCA-M or IH-tree
with other components fixed. As shown in Table 2, the performance of ViP
is improved by a considerable margin on all evaluation metrics after apply-
ing our SCA-M (i.e. ViP+SCA-M ). The results again suggest the superior-
ity of the proposed spatiality-aware feature representations to that of ViP.
Note that the overall performance by adding both stacked SCA module and
IH-tree (i.e., ViP+SCA-M+IH-tree) surpasses that of ViP itself. The ViP
designs a phrase-guided message passing structure to learn textual connections
among 〈subject-predicate-object〉 at label-level. On the contrary, we concentrate
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Fig. 6. Qualitative results on VG dataset. (a) Comparison results with the variants
of different module configurations. (b) Results by discarding IH-trees. (c) Comparison
between Zoom-Net with state-of-the-art methods. (a) and (c) show Top-1 prediction
results while (b) provides Top-5 results for each method. The ground truth are in bold.

more on capturing contextual connections among 〈subject-predicate-object〉 at
feature-level. Therefore, it’s not surprising that a combination of these two
aspects can provide a better result.

6 Comparisons on Visual Relationship Dataset (VRD)

Settings. We further quantitatively compare the performance of the proposed
method with previous state of the arts on the Visual Relationship Dataset
(VRD) [30]. The following comparisons keep the same settings as the prior arts.
Since VRD has a clean annotation, we fine-tune the construction of IH-tree by
removing the H(1)

o and H(1)
p , which aim at reducing data ambiguity and noise in

VG (details in Sect. 4). For a fair comparison, object proposals are generated by
RPN [14] here and we use triplet NMS to remove redundant triplet candidates
following the setting in [26] due to its excellent performance.

Evaluation Metrics. We follow [6,46] to report Recall@50 and Recall@100
when k = 70. The IoU between the predicted bounding boxes and the ground
truth is required above 0.5 here. In addition, some previous works used k = 1 for
evaluation and thus we report our results with k = 1 as well to compare these
previous methods under the same conditions.

Results. The results listed in Table 3 show that the proposed Zoom-Net out-
performs the state-of-the-art methods by significant gains on almost all the eval-
uation metrics4. In comparison to previous state-of-the-art approaches, Zoom-
4 Note that Yu et al. [46] take external Wikipedia data with around 4 billion and

450 million sentences to distill linguistic knowledge for modeling the tuple correla-
tion from label-aspect. It’s not surprising to achieve a superior performance. In this
experiment, we only compare with the results [46] without knowledge distillation.
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Table 3. Comparisons with the referenced methods on VRD dataset. Results in bold
indicate the best performance while the underlined results represent the next best. *
marks the results of LK without knowledge distillation. ** marks the results of LK
with knowledge distillation including large-scale external Wikipedia data.

k Methods Predicate Relationship Phrase

Rec@50 Rec@100 Rec@50 Rec@100 Rec@50 Rec@100

k = 1 LP [30] 47.87 47.87 13.86 14.70 16.17 17.03

VTransE [47] 44.76 44.76 14.07 15.20 19.42 22.42

VRL [29] - - 18.19 20.79 21.37 22.60

PPRFCN [48] 47.43 47.43 14.41 15.72 19.62 23.15

SA-Full [35] 50.40 50.40 14.90 16.10 16.70 18.10

LK [46]* 47.50 47.50 16.57 17.69 19.15 19.98

LK [46]** 55.16 55.16 19.17 21.34 23.14 24.03

ViP [26] - - 17.32 20.01 22.78 27.91

CAI [49] 53.59 53.59 15.63 17.39 17.60 19.24

Zoom-Net 50.69 50.69 18.92 21.41 24.82 28.09

CAI + SCA-M 55.98 55.98 19.54 22.39 25.21 28.89

k = 70 LK [46]* 74.98 86.97 20.12 28.94 22.59 25.54

LK [46]** 85.64 94.65 22.68 31.89 26.32 29.43

DR-Net [6] 80.78 81.90 17.73 20.88 19.93 23.45

Zoom-Net 84.25 90.59 21.37 27.30 29.05 37.34

CAI + SCA-M 89.03 94.56 22.34 28.52 29.64 38.39

Net improves the recall of predicate prediction by 3.47% Rec@50 and 3.62%
Rec@100 when k = 70. Besides, the Rec@50 on relationship and phrase predic-
tion tasks are increased by 1.25% and 6.46%, respectively. Note that the result
of predicate (k = 1) only achieves comparable performance with some prior
arts [29,35,46,49] since these methods use the groundtruth of subject and object
and only predict predicate while our method predicts subject, predicate, object
together.

Among all prior arts designed without external data, CAI [49] has achieved
the best performance on predicate prediction (53.59% Rec@50) by designing
a context-aware interaction recognition framework to encode the labels into
semantic space. To demonstrate the effectiveness and robustness of the proposed
SCA-M in feature representation, we replace the visual feature representation in
CAI [49] with our SCA-M (i.e. CAI + SCA-M ). The performance improvements
are significant as shown in Table 3 due to the better visual feature learned, e.g.,
predicate Rec@50 is increased by 2.39% compared to [49]. In addition, with nei-
ther language priors, linguistic models nor external textual data, the proposed
method can still achieve the state-of-the-art performance on most of the evalu-
ation metrics, thanks to its superior feature representations.
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7 Conclusion

We have presented an innovative framework Zoom-Net for visual relationship
recognition, concentrating on feature learning with a novel Spatiality-Context-
Appearance module (SCA-M). The unique design of SCA-M, which contains
the proposed Contrastive ROI Pooling and Pyramid ROI Pooling Cells, benefits
the learning of spatiality-aware contextual feature representation. We further
designed the Intra-Hierarchical tree (IH-tree) to model intra-class correlations
for handling ambiguous and noisy labels. Zoom-Net achieves the state-of-the-art
performance on both VG and VRD datasets. We demonstrated the superiority
and transferability of each component of Zoom-Net. It is interesting to explore
the notion of feature interactions in other applications such as image retrieval
and image caption generation.
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