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Abstract. Recent deep networks achieved state of the art performance
on a variety of semantic segmentation tasks. Despite such progress, these
models often face challenges in real world “wild tasks” where large differ-
ence between labeled training/source data and unseen test/target data
exists. In particular, such difference is often referred to as “domain gap”,
and could cause significantly decreased performance which cannot be
easily remedied by further increasing the representation power. Unsuper-
vised domain adaptation (UDA) seeks to overcome such problem without
target domain labels. In this paper, we propose a novel UDA framework
based on an iterative self-training (ST) procedure, where the problem
is formulated as latent variable loss minimization, and can be solved by
alternatively generating pseudo labels on target data and re-training the
model with these labels. On top of ST, we also propose a novel class-
balanced self-training (CBST) framework to avoid the gradual domi-
nance of large classes on pseudo-label generation, and introduce spatial
priors to refine generated labels. Comprehensive experiments show that
the proposed methods achieve state of the art semantic segmentation
performance under multiple major UDA settings.

1 Introduction

Semantic segmentation is a core computer vision task where one aims to densely
assign labels to each pixel in the input image. In the past decade, significant
amount of effort has been devoted to this area [1,5,6,9,10,13,20,38,39,44,45],
leading to considerable progress with the recent advance of deep representation
learning [15,19,31]. The competition on major open benchmark datasets [10]
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Fig. 1. Illustration of the proposed itertive self-training framework for unsupervised
domain adaptation. Left: algorithm workflow. Right figure: semantic segmentation
results on Cityscapes before and after adaptation.

have resulted in a number of more powerful models that tend to overfit to the
benchmark data. While the boundaries of benchmark performance have been
pushed to new limits, these models often encounter challenges in practical appli-
cations such as autonomous driving, where one needs ubiquitous good perfor-
mance of the perception module. This is because benchmark datasets are usually
biased to specific environments, while the testing scenario may encounter large
domain differences caused by a number of factors, including change of geologi-
cal position, illumination, camera, weather condition, etc. In this case, even the
performance of a powerful model often drops dramatically, and such issue can
not be easily remediated by further building up the model power [9,16,17].

A natural idea to improve network’s generalization ability is to collect and
annotate data covering more diverse scenes. However, densely annotating image
is time-consuming and labor-intensive. For example, each Cityscapes image on
average takes about 90 min to annotate [10]. To overcome the limitation, efforts
were made to efficiently generate densely annotated images from rendered scenes,
such as the Grand Theft Auto V (GTA5) [24] and SYNTHIA [26]. However, the
large appearance gap across simulated/real domains significantly degrades the
performance of synthetically trained models.

In light of the above issues, in this paper we focus on the challenging problem
of unsupervised domain adaptation for semantic segmentation, aiming to unsu-
pervisedly adapt a segmentation model trained on a labeled source domain to
a target domain without knowing target labels. Recently, unsupervised domain
adaptation has been widely explored for classification and detection tasks. There
is a predominant trend to use adversarial training based methods for matching
the distributions of both source and target features [3,9,12,17,29]. In particu-
lar, these methods aim to minimize a domain adversarial loss to reduce both
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the global and class-wise discrepancy between source and target feature distri-
butions, while retaining good performance on source domain task by minimizing
the task-specific loss.

Adversarial training based domain adaptation methods have recently
achieved great success. However, in this work we show that similar or even better
adaptation performance can be achieved by taking an alternative way without
using adversarial training. Rather than trying to adapt by confusing the domain
discriminator, our method kind of unifies the feature space alignment and the
task itself together under a single, unified loss, which is given in Sect. 4. Under
the single unified loss, we incorporate both the global and class-wise feature
alignment as parts of our unified task, instead of considering feature matching
and classification task separately.

Traditional self-training methods with handcrafted features is a common
semi-supervised learning method that can learn better decision boundary for
source and target data. Usually these approaches do not consider feature dis-
tribution matching. But combined with CNN, self-training becomes a powerful
domain adaptation method that can not only learn better decision boundary, but
also find a feature space of matched source and target distribution. In essence,
the feature learning in self-training guided by softmax cross-entropy loss not only
encourages global closeness of source and target features but also the class-wise
feature alignment. The CNN based self-training methods share the same goal
of adversarial training based global and class-wise feature alignment methods
[9,17], but it try to solve domain adaption by a simpler and more elegant way.

The area of self-training based domain adaptation for semantic segmenta-
tion is underdevelopment. We propose a typical CNN based self-training (ST)
framework for domain adaptation in semantic segmentation of which workflow
is shown in Fig. 1, taking adapting from GTA5 → Cityscapes as an example. ST
is carried out by alternately generating a set of pseudo-labels corresponding to
large selection scores (i.e., softmax probability) in target domain, and then fine
tuning network based on these pseudo-labels and labeled source data. It should
be mentioned that ST assumes that target samples with larger prediction prob-
ability have better prediction accuracy.

The visual (e.g., appearance, scale, etc.) domain gap between source and
target domains are usually different between classes. This can result in differ-
ent difficulty degree for the network to learn transferable knowledge for each
class. For instance, different countries may have different construction views and
plants, but traffic lights and vehicles are similar. So it’s harder for the source
pre-trained models to learn transferable knowledge for construction and plants
than for traffic lights and vehicles. Moreover, the imbalanced class distribution
of source domain, and difference between source distribution and target distribu-
tion can also cause different degree of difficulty in transferring knowledge among
different classes. This causes different prediction confidence levels for various
classes in target domain. Since ST selects pseudo-labels with large confidence,
it tends to be biased towards easy-to-transfer classes ignoring other classes and
have inferior adaptation performance.
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In summary, we focus on self-training based adaptation methods for semantic
segmentation in this work. Our contributions are as follows.

– Building on deep nets, we introduce a self-training (ST) with self-paced learn-
ing adaptation framework for segmentation. We formulate it as a loss mini-
mization problem in the form of mixed integer nonlinear program, which can
be solved in an end-to-end way. Both domain-invariant features and classifier
are expected be learned.

– To solve the class imbalance problem of pseudo-labels in ST, we propose a
novel class-balanced self-training (CBST) adaptation for semantic segmenta-
tion. The proposed CBST utilizes confidence scores normalized classwise to
select and generate pseudo-labels with balanced class distribution.

– Moreover, we observe that a traffic scene has its own spatial structure and
introduce the concept of spatial priors (SP). We incorporate spatial priors
into proposed self-training leading to class-balanced self-training with spatial
priors (CBST-SP). The probability scores weighted by spatial priors are used
for pseudo-label generation metric.

– We comprehensively evaluate our approaches in adapting large-scale ren-
dered image dataset SYNTHIA/GTA5, to real image dataset, Cityscapes,
and achieve state-of-the-art performance, outperforming other methods by
a large margin. Also we test our methods in cross city adaptation settings,
Cityscapes to NTHU dataset, and achieve state-of-the-art performance.

2 Related Works

The revolution of deep learning inspired broad interest in deep neural network
based semantic segmentation. Long et al. [20] proposed a fully convolutional net-
work for pixel-level classification. Recently several researchers proposed powerful
segmentation nets, such as ResNet-38, PSPNet, etc. [38,39,44].

Unsupervised domain adaptation has been widely investigated in computer
vision primarily for classification and detection tasks. In the era of deep neural
network, the main adaption idea is to learn domain invariant features by mini-
mizing difference between source and target feature distributions in an end-to-
end way [11,12,14,21,32,35,37]. Among them, several methods utilize Maximum
Mean Discrepancy (MMD) and its kernel variants to achieve the goal of feature
distribution difference minimization. Recently there is an increasing interest in
utilizing adversarial learning based methods to reduce the gap between source
and target domains [14,21,36,37].

Another important strategy for unsupervised domain adaptation is based on
self-training [4,47], which has many applications in vision and natural language
processing [22,25,40,47]. Tang et al. [33] proposed a self-paced adaptation to
shift object detection model from images to videos by learning labeled source
samples and target data with pseudo-labels in an easy-to-hard way. Chen et al.
[7] proposed a adaptation framework by slowly adapting its training set from
the source to the target domain, using ideas from co-training. Bekker [2] et al.
tackle the noisy labels problem.
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As pointed out in [43], approaches addressing classification do not trans-
late well to the semantic segmentation problem. So recently domain adaptation
for semantic segmentation has emerged as a hot topic. Several researchers have
focused on utilizing adversarial learning to minimize the domain gap of feature
spaces. [9,17] proposed pixel level adversarial domain adaptation methods to
reduce domain gap in feature spaces. Based on the domain adversarial training,
[28] introduced a critic network detecting samples near the boundary and a gen-
erator that can generate discriminative features for target domain. [43] proposed
a curriculum adaption method to regularize the predicted label distribution in
the target domain to follow label distributions in source domain. Another possi-
ble direction to solve the domain adaptation problem is to utilize style transfer
technique to stylize annotated source domain images as target domain images.
Following this idea, based on the style transfer network Cycle-GAN [16,46] pro-
posed a cycle-consistent adaptation framework combining the cycle-consistent
loss with adversarial loss to minimize both pixel level and feature level domain
gap.

3 Preliminaries

3.1 Fine-Tuning for Supervised Domain Adaptation

If the labels for the same task in both source and target are available, possi-
bly the most direct way to perform domain adaptation is supervised fine-tuning
the model on both domains. For semantic segmentation nets with softmax out-
put, the adaptation problem can be formulated as minimizing the following loss
function:

min
w

LS(w) = −
S∑

s=1

N∑

n=1

y�
s,n log(pn(w, Is)) −

T∑

t=1

N∑

n=1

y�
t,n log(pn(w, It)) (1)

where Is denotes the image in source domain indexed by s = 1, 2, ..., S, ys,n

the ground truth label for the n-th pixel (n = 1, 2, ..., N) in Is, and w con-
tains the network weights. pn(w, Is) is the softmax output containing the class
probabilities at pixel n. Similar definitions apply for It, yt,n and pn(w, It).

3.2 Self-training for Unsupervised Domain Adaptation

In the case of unsupervised domain adaptation, the target ground truth labels
are not available. An alternate way to fine-tune the segmentation model is to
consider the target labels as hidden variables that can be learned. Accordingly,
the problem can be formulated as follows:

min
w,ŷ

LU (w, ŷ) = −
S∑

s=1

N∑

n=1

y�
s,n log(pn(w, Is)) −

T∑

t=1

N∑

n=1

ŷ�
t,n log(pn(w, It))

s.t. ŷt,n ∈ {e(i)|e(i) ∈ R
C},∀t, n

(2)
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where ŷ indicates the set of target labels, C is the number of classes, and e(i) a
one-hot vector. By minimizing the loss in Eq. (2) with respect to ŷ, the optimized
ŷ should approximate the underlying true target ground truth. Domain adapta-
tion can then be performed similarly to Eq. (1). We call ŷ “pseudo-labels”, and
regard such training strategy as self-training.

4 Proposed Methods

4.1 Self-training (ST) with Self-paced Learning

Jointly learning the model and optimizing pseudo-labels on unlabeled data is
naturally difficult as it is not possible to completely guarantee the correctness
of the generated pseudo-labels. A better strategy is to follow an “easy-to-hard”
scheme via self-paced curriculum learning, where one seeks to generate pseudo-
labels from the most confident predictions and hope they are mostly correct.
Once the model is updated and better adapted to the target domain, the scheme
then explores the remaining pseudo-labels with less confidence. To incorporate
curriculum learning, we consider the following revised self-training formulation:

min
w,ŷ

LST (w, ŷ) = −
S∑

s=1

N∑

n=1

y�
s,n log(pn(w, Is))

−
T∑

t=1

N∑

n=1

[
ŷ�
t,n log(pn(w, It)) + k|ŷt,n|1

]

s.t. ŷt,n ∈ {{e(i)|e(i) ∈ R
C} ∪ 0},∀t, n

k > 0

(3)

where assigning ys,n as 0 leads to ignoring this pseudo-label in model training,
and the L1 regularization serves as a negative sparse promoting term to prevent
the trivial solution of ignoring all pseudo-labels. k is a hyperparameter control-
ling the amount of ignored pseudo-labels. A larger k encourages the selection of
more pseudo-labels for model training. To minimize the loss in Eq. (3), we take
the following alternative block coordinate descent algorithm:

– (a) Fix (initialize) w and minimize the loss in Eq. 3 with respect to ŷt,n.
– (b) Fix ŷt,n and optimize the objective in Eq. 3 with respect to w.

We call one step of (a) followed by one step of (b) as one round. In this work,
we propose a self-training algorithm where step (a) and step (b) are alternately
repeated for multiple rounds. Intuitively, step (a) selects a certain portion of
most confident pseudo-labels from the target domain, while step (b) trains the
network model given the pseudo-labels selected in step (a). Figure 1 illustrates
the proposed algorithm flow in the domain adaptation example of GTA5 →
Cityscapes.
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Solving step (b) leads to network learning with stochastic gradient descent.
However, solving step (a) requires a nonlinear integer programming given the
optimization over discrete variables. Given k > 0, step (a) can be rewritten as:

min
ŷ

−
T∑

t=1

N∑

n=1

[ C∑

c=1

ŷ
(c)
t,n log(pn(c|w, It)) + k|ŷt,n|1

]

s.t. ŷt,n =
[
ŷ
(1)
t,n, ..., ŷ

(C)
t,n

] ∈ {{e(i)|e(i) ∈ R
C} ∪ 0},∀ t, n

k > 0

(4)

Since ŷt,n is required to be either a discrete one-hot vector or a zero vector, the
pseudo-label configuration can be optimized via the following solver:

ŷ
(c)∗
t,n =

⎧
⎪⎪⎨

⎪⎪⎩

1, if c = arg max
c

pn(c|w, It),

pn(c|w, It) > exp(−k)
0, otherwise

(5)

Unlike traditional self-training adaptation with handcrafted features that
learn a domain-invariant classifier, CNN based self-training can learn not only
domain-invariant classifier but also domain-invariant features. The softmax loss
implicitly tries to reduce the domain difference in feature space. In addition, the
self-training also has the missing value (pseudo-label) problem, similar to EM
algorithm. The proposed alternate optimization method can learn the weights
of models without prior observation of target domain labels.

One may note that the proposed framework is similar to [33] and several other
related works. However, the proposed method presents a more generalized model
for self-training and self-paced learning, in the sense that pseudo-label genera-
tion is unified with curriculum learning under a single learning framework. More
importantly, in terms of the specific application, the above self-training frame-
work sheds light on a relatively new direction for adapting semantic segmenta-
tion models. We will show that self-training based methods lead to considerably
better or competitive performance compared to many current state of the art
methods that are predominantly based on adversarial training.

4.2 Class-Balanced Self-training (CBST)

As mentioned in Sect. 1, the difference in visual domain gap and class distri-
bution can cause different domain-transfer difficulty among classes, resulting in
relatively higher prediction confidence scores for easy-to-transfer classes in tar-
get domain. Since ST generates pseudo-labels corresponding to large confidence,
an issue comes out that model tends to be biased towards these initially well-
transferred classes and ignore other hard classes along the training process. Thus
it is difficult for ST to perform well in multi-class segmentation adaptation prob-
lem. To overcome this issue, we propose the following class-balanced self-training
framework where class-wise confidence levels are normalized:
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min
w,ŷ

LCB(w, ŷ) = −
S∑

s=1

N∑

n=1

y�
s,n log(pn(w, Is))

−
T∑

t=1

N∑

n=1

C∑

c=1

[
ŷ
(c)
t,n log(pn(c|w, It)) + kcŷ

(c)
t,n

]

s.t. ŷt,n =
[
ŷ
(1)
t,n, ..., ŷ

(C)
t,n

] ∈ {{e(i)|e(i) ∈ R
C} ∪ 0},∀t, n

kc > 0,∀c

(6)

where each kc is a separate parameter determining the proportion of selected
pseudo-labels in class c. As one may observe, it is the difference between kc
that introduces different levels of class-wise bias for pseudo-label selection, and
addresses the issue of inter-class balance.

The optimization flow of class-balanced self-training is the same as in Eq. (3)
except for pseudo-label generation. Again, we can rewrite the step of pseudo-
label optimization as:

min
ŷ

−
T∑

t=1

N∑

n=1

C∑

c=1

[
ŷ
(c)
t,n log(pn(c|w, It)) + kcŷ

(c)
t,n

]

s.t. ŷt,n =
[
ŷ
(1)
t,n, ..., ŷ

(C)
t,n

] ∈ {{e|e ∈ R
C} ∪ 0},∀ t, n

kc > 0,∀ c

(7)

Note that the loss function in Eq. (7) can not be trivially minimized by the solver
of Eq. (3). Instead, optimizing Eq. (7) requires the following class-balanced solver:

ŷ
(c)∗
t,n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if c = arg max
c

pn(c|w, It)
exp(−kc)

,

pn(c|w, It)
exp(−kc)

> 1

0, otherwise

(8)

From Eq. (8), one can see that pseudo-label generation in Eq. (6) is no longer
dependent on the output pn(c|w, It), but hinges on the normalized output
pn(c|w,It)
exp(−kc)

. Pseudo-label assignment using this normalized output owns the ben-
efit of balancing towards the class with relatively low score but having high
within-class confidence. As a result, kc should be set in a way that exp(−kc)
encodes the response strength of each class to balance different classes. In addi-
tion, for CBST, the pseudo-label of any pixel is only filtered when all the bal-
anced responses are smaller than 1. There could also be multiple classes with
pn(c|w,It)
exp(−kc)

> 1. In this case, the class with the maximum balanced response is
selected.
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4.3 Self-paced Learning Policy Design

Determination of k in ST. From previous sections, we know that k plays
a key role in filtering out pseudo-labels with probabilities smaller than k. To
control the proportion of selected pseudo-labels in each round, we set k based
on the following strategy:

We take the maximum output probability at each pixel, and sort such prob-
abilities across all pixel locations and all target images in descending order. We
then set k such that exp(−k) equals the probability ranked at round(p ∗ T ∗N),
where p is a proportion number between [0, 1]. In this case, pseudo-label opti-
mization produces p × 100% most confident pseudo-labels for network training.
The above policy can be summarized in Algorithm1.

Algorithm 1. Determination of k in ST
Input : Neural network P (w), all target images It, portion p of selected

pseudo-labels
Output: k

1 for t=1 to T do
2 PIt = P(w,It)
3 MPIt = max(PIt ,axis=0)
4 M = [M, matrix to vector(MPIt)]

5 end
6 M = sort(M,order=descending)
7 lenth = length(M) × p
8 k = -log(M[lenth])
9 return k

We design the self-paced learning policy such that more pseudo-labels are
incorporated for each additional round. In particular, we start p from 20%, and
empirically add 5% to p in each additional round of pseudo-label generation.
The maximum portion is set to be 50%.

Determination of kc in CBST. The policy of kc in CBST is similarly defined.
Although CBST seemingly introduce much more parameters than ST, we pro-
pose a strategy to easily determine kc, and effectively encode the class-wise
confidence levels.

Note that Algorithm 2 determines kc by ranking the class c probabilities on
all pixels predicted as class c, and setting kc such that exp(−kc) equals to the
probability ranked at round(p ∗ Nc), where Nc indicates the number of pixels
predicted as class c. Such a strategy basically takes the probability ranked at
p × 100% separately from each class as a reference for both thresholding and
confidence normalization. The proportion variable p and its increasing policy is
defined exactly the same to ST.
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4.4 Incorporating Spatial Priors

For adapting models in the case of street scenes, we could take advantage of the
spatial prior knowledge. Traffic scenes have common structures. For example,
sky is not likely to appear at the bottom and road is not likely to appear at
the top. If the image views in source domain and target domain are similar,
we believe this knowledge can help to adapt source model. Thus we introduce
spatial priors, similar to [30], by counting the class frequencies in the source
domain, followed by smoothing with a 70×70 Gaussian kernel. In particular, we
use qn(c) to indicate the frequency of class c at pixel n. Upon obtaining the class
frequencies, we also normalize them by requiring

∑N
i=1 qn(c) = 1. Figure 2 shows

the heat map of spatial priors, calculated from GTA5 dataset, where yellow color
indicates higher energy and blue color indicates lower energy.

To incorporate spatial priors into proposed CBST, we multiply the softmax
output with the spatial priors, and consider the resulting potential as selection
metric in pseudo-label generation:

min
w,ŷ

LSP (w, ŷ) = −
S∑

s=1

N∑

n=1

y�
s,n log(pn(w, Is))

−
T∑

t=1

N∑

n=1

C∑

c=1

[
ŷ
(c)
t,n log(qn(c)pn(c|w, It)) + kcŷ

(c)
t,n

]

s.t. ŷt,n ∈ {{e|e ∈ R
C} ∪ 0},∀t, n

kc > 0,∀c

(9)

Algorithm 2. Determination of kc in CBST
Input : Neural network f(w), all target images It, portion p of selected

pseudo-labels
Output: kc

1 for t=1 to T do
2 PIt = P(w,It)
3 LPIt = argmax(P,axis=0)
4 MPIt = max(P,axis=0)
5 for c=1 to C do
6 MPc,It = MPIt(LPIt == c)
7 Mc = [Mc, matrix to vector(MPc,It)]

8 end

9 end
10 for c=1 to C do
11 Mc = sort(Mc,order=descending)
12 lenc,th = length(Mc) × p
13 kc = -log(Mc[lenc,th])

14 end
15 return kc
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Fig. 2. Spatial priors on GTA5

We denote the above algorithm as CBST-SP. The workflow and self-paced learn-
ing policy are identical to CBST, except that the potential qn(c)pn(c|w, It) is
used to replace pn(c|w, It) in CBST. It should be noted that incorporating the
spatial prior does not change network training, since qn(c) can be taken out of
log(·) as constants.

5 Numerical Experiments

In this section, we provide a comprehensive evaluation of proposed methods
by performing experiments on three benchmark datasets. We firstly consider
a cross-city adaptation case of shifting from Cityscapes to NTHU dataset [9].
Following [9], we choose the training set of Cityscapes as source. The NTHU
dataset contains 400 1, 024 × 2, 048 from 4 different cities: Rome, Rio, Tokyo
and Taipei. Also we consider two challenging problems: from SYNTHIA [26] to
Cityscapes [10] and from GTA5 [24] to Cityscapes. We use SYNTHIA-RAND-
CITYSCAPES subset including labeled 9,400 760× 1280 images. GTA5 dataset
includes annotated 24,966 1, 052 × 1, 914 images captured from the GTA5. The
validation set of Cityscapes is treated as target domain.

Implementation Details. We use FCN8s-VGG16 [20] as our base network
in SYNTHIA to Cityscapes and GTA5 to Cityscapes to give fair comparison
with other methods utilizing the same base net. Further we boost our methods’
performance via a better model ResNet-38 [39]. In the cross-city setting, we show
state-of-the-art performance via CBST with ResNet-38. The networks were pre-
trained on ImageNet [27]. SGD has been used to train all the models by MXNET
[8]. We use NVIDIA Titan Xp. In the CBST and CBST-SP experiments of
GTA5 to Cityscapes and Cityscapes to NTHU, we use a hard sample mining
strategy which mines the least prediction classes according to target prediction
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Table 1. Experimental results for Cityscapes → NTHU dataset

City Method Road SW Build TL TS Veg. Sky PR Rider Car Bus Motor Bike Mean

Rome

Source Dilation-Frontend [9] 77.7 21.9 83.5 0.1 10.7 78.9 88.1 21.6 10.0 67.2 30.4 6.1 0.6 38.2
GCAA [9] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

DeepLab-v2 [34] 83.9 34.3 87.7 13.0 41.9 84.6 92.5 37.7 22.4 80.8 38.1 39.1 5.3 50.9
MAA [34] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

Source Resnet-38 86.0 21.4 81.5 14.3 47.4 82.9 59.8 30.8 20.9 83.1 20.2 40.0 5.6 45.7
ST 85.9 20.2 84.3 15.0 46.4 84.9 73.5 48.5 21.6 84.6 17.6 46.2 6.7 48.9

CBST 87.1 43.9 89.7 14.8 47.7 85.4 90.3 45.4 26.6 85.4 20.5 49.8 10.3 53.6

Rio

Source Dilation-Frontend [9] 69.0 31.8 77.0 4.7 3.7 71.8 80.8 38.2 8.0 61.2 38.9 11.5 3.4 38.5
GCAA [9] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

DeepLab-v2 [34] 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2
MAA [34] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

Source Resnet-38 80.6 36.0 81.8 21.0 33.1 79.0 64.7 36.0 21.0 73.1 33.6 22.5 7.8 45.4
ST 80.1 41.4 83.8 19.1 39.1 80.8 71.2 56.3 27.7 79.9 32.7 36.4 12.2 50.8

CBST 84.3 55.2 85.4 19.6 30.1 80.5 77.9 55.2 28.6 79.7 33.2 37.6 11.5 52.2

Tokyo

Source Dilation-Frontend [9] 81.2 26.7 71.7 8.7 5.6 73.2 75.7 39.3 14.9 57.6 19.0 1.6 33.8 39.2
GCAA [9] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

DeepLab-v2 [34] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8
MAA [34] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

Source Resnet-38 83.8 26.4 73.0 6.5 27.0 80.5 46.6 35.6 22.8 71.3 4.2 10.5 36.1 40.3
ST 83.1 27.7 74.8 7.1 29.4 84.4 48.5 57.2 23.3 73.3 3.3 22.7 45.8 44.6

CBST 85.2 33.6 80.4 8.3 31.1 83.9 78.2 53.2 28.9 72.7 4.4 27.0 47.0 48.8

Taipei

Source Dilation-Frontend [9] 77.2 20.9 76.0 5.9 4.3 60.3 81.4 10.9 11.0 54.9 32.6 15.3 5.2 35.1
GCAA [9] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

DeepLab-v2 [34] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6
MAA [34] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

Source Resnet-38 84.9 26.0 80.1 8.3 28.0 73.9 54.4 18.9 26.8 71.6 26.0 48.2 14.7 43.2
ST 83.1 23.5 78.2 9.6 25.4 74.8 35.9 33.2 27.3 75.2 32.3 52.2 28.8 44.6

CBST 86.1 35.2 84.2 15.0 22.2 75.6 74.9 22.7 33.1 78.0 37.6 58.0 30.9 50.3

portions. The mining classes are the worst 5 classes and top priority are given to
classes whose portions are smaller than 0.1%. Other more details are provided
in supplementary document.

5.1 Small Shift: Cross City Adaptation

NTHU dataset contains 13 classes shared with Cityscapes. We follow the same
protocol as [9] to use a 10-fold cross validation. The IoU (Intersection-over-
Union) of each class and the mIoU (mean IoU) are reported. Table 1 shows the
results. Our CBST achieves superior or competitive performance compared with
state-of-the-art.

5.2 Large Shift: Synthetic to Real Adaptation

From SYNTHIA to Cityscapes. We follow the same evaluation protocol
as other works [17,43], we choose 16 common classes between SYNTHIA and
CITYSCAPES as our valid labels. There is another setting only considering 13
classes excluding wall, fence and pole [34].

Table 2 reports the results. mIoU* is the mean IoU of 13 classes, exclud-
ing the classes with *. With FCN8s-VGG16 as base model, our CBST provides
competitive performance compared with other methods. Equipped with a bet-
ter base net ResNet-38, CBST achieves the superior performance outperforming
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Table 2. Experimental results for SYNTHIA → Cityscapes

Method Base Net Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*
Source only [17] Dilation-Frontend 6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4 20.2
FCN wild [17] [41] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.1

Source only [43] FCN8s-VGG16 5.6 11.2 59.6 8.0 0.5 21.5 8.0 5.3 72.4 75.6 35.1 9.0 23.6 4.5 0.5 18.0 22.0 27.6
Curr. DA [43] [20] 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8
Source only FCN8s-VGG16 24.1 19.1 68.5 0.9 0.3 16.4 5.7 10.8 75.2 76.3 43.2 15.2 26.7 15.0 5.9 8.5 25.7 30.3
GAN DA [20] 79.1 31.1 77.1 3.0 0.2 22.8 6.6 15.2 77.4 78.9 47.0 14.8 67.5 16.3 6.9 13.0 34.8 40.8

Source only DeepLab-v2 [34] 55.6 23.8 74.6 − − − 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 − 38.6
MAA [34] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 − 46.7

Source only FCN8s-VGG16 17.2 19.7 47.3 1.1 0.0 19.1 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 22.6 26.2
ST [20] 0.2 14.5 53.8 1.6 0.0 18.9 0.9 7.8 72.2 80.3 48.1 6.3 67.7 4.7 0.2 4.5 23.9 27.8

CBST 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1
Source only ResNet-38 32.6 21.5 46.5 4.8 0.1 26.5 14.8 13.1 70.8 60.3 56.6 3.5 74.1 20.4 8.9 13.1 29.2 33.6

ST [39] 38.2 19.6 70.2 3.9 0.0 31.9 17.6 17.2 82.4 68.3 63.1 5.3 78.4 11.2 0.8 7.5 32.2 36.9
CBST 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4

Table 3. Experimental results for GTA5 → Cityscapes

Method Base Net Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU
Source only [17] Dilation-Frontend 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.2
FCN wild [17] [41] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

Source only [43] FCN8s-VGG16 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3
Curr. DA [43] [20] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9

Source only [16] FCN8s-VGG16 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9
CyCADA [16] [20] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

Source only [16] Dilated ResNet-26 42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7
CyCADA [16] [42] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

Source only [28] ResNet-50 64.5 24.9 73.7 14.8 2.5 18.0 15.9 0 74.9 16.4 72.0 42.3 0.0 39.5 8.6 13.4 0.0 0.0 0.0 25.3
ADR [28] [15] 87.8 15.6 77.4 20.6 9.7 19.0 19.9 7.7 82.0 31.5 74.3 43.5 9.0 77.8 17.5 27.7 1.8 9.7 0.0 33.3

Source only [23] DenseNet 67.3 23.1 69.4 13.9 14.4 21.6 19.2 12.4 78.7 24.5 74.8 49.3 3.7 54.1 8.7 5.3 2.6 6.2 1.9 29.0
I2I Adapt [23] [18] 85.8 37.5 80.2 23.3 16.1 23.0 14.5 9.8 79.2 36.5 76.4 53.4 7.4 82.8 19.1 15.7 2.8 13.4 1.7 35.7

Source only [34] DeepLab-v2 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
MAA [34] [18] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

Source only FCN8s-VGG16 64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3
ST [17] 83.8 17.4 72.1 14.3 2.9 16.5 16.0 6.8 81.4 24.2 47.2 40.7 7.6 71.7 10.2 7.6 0.5 11.1 0.9 28.1

CBST 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9
CBST-SP 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

Source only ResNet-38 70.0 23.7 67.8 15.4 18.1 40.2 41.9 25.3 78.8 11.7 31.4 62.9 29.8 60.1 21.5 26.8 7.7 28.1 12.0 35.4
ST [39] 90.1 56.8 77.9 28.5 23.0 41.5 45.2 39.6 84.8 26.4 49.2 59.0 27.4 82.3 39.7 45.6 20.9 34.8 46.2 41.5

CBST 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2
CBST-SP 88.0 56.2 77.0 27.4 22.4 40.7 47.3 40.9 82.4 21.6 60.3 50.2 20.4 83.8 35.0 51.0 15.2 20.6 37.0 46.2

CBST-SP+MST 89.6 58.9 78.5 33.0 22.3 41.4 48.2 39.2 83.6 24.3 65.4 49.3 20.2 83.3 39.0 48.6 12.5 20.3 35.3 47.0

state-of-the-art by 1.7. Compared with ST, CBST with either FCN8s-VGG16
or ResNet-38 achieves better performance for mIoU and IoU of these initially
not well-transfered classes, such as wall, rider, motorcycle and bike. The appear-
ance of fence in SYNTHIA (car barriers) is extremely different from the fence
in Cityscapes (pedestrian barriors) and it’s very hard for the model to learn
transferable knowledge for fence from SYNTHIA to Cityscapes. Figure 3 gives
the visualization segmentation results in Cityscapes.

From GTA5 to Cityscapes. Table 3 gives experimental results of the shared
19 classes. For the results with FCN8s-VGG16 as base model, the performance
of ST demonstrates that the adapted model can be easily biased towards ini-
tial easy-to-transfer classes. However, the CBST not only achieves better mIoU
than ST, but also better IoU for these initial hard-to-transfer classes. Moreover,
since images from GTA5 and Cityscapes have similar view structure, we evaluate
our proposed CBST-SP, achieving mIoU 36.1, which is better than the results
using powerful base models, ResNet-50 [28] and DenseNet [23]. Equipped with
a powerful model ResNet-38, our method get a much better score 46.2, outper-
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road sidewalk building wall fence pole traffic lgt traffic sgn vegetation
terrain sky person rider car truck bus train motorcycle bike

Fig. 3. Adaptation results on SYNTHIA → Cityscapes. Rows correspond to predictions
for sample images in Cityscapes. Columns correspond to original images, ground truth,
and results of source ResNet-38, ST, CBST

Fig. 4. Adaptation results on GTA5 → Cityscapes. Rows correspond to predictions for
sample images in Cityscapes. Columns correspond to original images, ground truth,
and results of source ResNet-38, ST, CBST and CBST-SP

forming other methods by a large margin. The multi-scale testing (0.5,0.75,1.0)
boosts the mIoU to 47.0. Figure 4 gives the visualization segmentation results in
Cityscapes.

6 Conclusions

In this paper, we proposed a deep neural network based self-training (ST) frame-
work for unsupervised domain adaptation in the context of semantic segmenta-
tion. The ST is formulated as a loss minimization problem allowing learning of
domain-invariant features and classifier in an end-to-end way. A class-balanced
self-training (CBST) is introduced to overcome the imbalance issue of transfer-
ring difficulty among classes via generating pseudo-labels with balanced class
distribution. Moreover, if there is a small domain difference in image view, we
could incorporate spatial priors (SP) into CBST, resulting in CBST-SP. We
experimentally demonstrate that our proposed methods achieve superior results
outperforming other state-of-the-art methods by a large margin. We empirically



Class-Balanced Self-training for Semantic Segmentation 311

show our proposed methods is compatible with adversarial domain adaptation
methods.
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