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Abstract. Paragraph generation from images, which has gained pop-
ularity recently, is an important task for video summarization, editing,
and support of the disabled. Traditional image captioning methods fall
short on this front, since they aren’t designed to generate long informa-
tive descriptions. Moreover, the vanilla approach of simply concatenating
multiple short sentences, possibly synthesized from a classical image cap-
tioning system, doesn’t embrace the intricacies of paragraphs: coherent
sentences, globally consistent structure, and diversity. To address those
challenges, we propose to augment paragraph generation techniques with
“coherence vectors,” “global topic vectors,” and modeling of the inherent
ambiguity of associating paragraphs with images, via a variational auto-
encoder formulation. We demonstrate the effectiveness of the developed
approach on two datasets, outperforming existing state-of-the-art tech-
niques on both.
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1 Introduction

Daily, we effortlessly describe fun events to friends and family, showing them
pictures to underline the main plot. The narrative ensures that our audience
can follow along step by step and picture the missing pieces in their mind with
ease. Key to filling in the missing pieces is a consistency in our narrative which
generally follows the arrow of time.

While computer vision, natural language processing and artificial intelligence
techniques, more generally, have made great progress in describing visual content
via image or video captioning [5,11,18,29,38], the obtained result is often a single
sentence of around 20 words, describing the main observation. Even if brevity
caters to today’s short attention span, 20 words are hardly enough to describe
subtle interactions, let alone detailed plots of our experience. Those are much
more meaningfully depicted in a paragraph of reasonable length.
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To this end, visual paragraph generation methods [17,22,26,47], which have
been proposed very recently, provide a longer narrative which describes a given
image or video. However, as argued initially, coherence between successive sen-
tences of the narrative is a key necessity to effectively convey the plot of our
experience. Importantly, models for many of the aforementioned methods pro-
vide no explicit mechanisms to ensure cross-sentence topic consistency. A notable
exception is the work of Liang et al. [26].

Regions - Hierarchical Our Approach

A man in red shirt is walking on a street.  
Another man is standing next to him.  
A building is in the background.  
A trash can is next to the men.  
There are many cars next to the building.  
Many green trees are behind the man.

Two men are walking outside on a city street next to a  
building.  
Several green trees are behind the two men.  
A trash can is next to the two men.  
The trash can is green in color.   
The background has  a building.  
The background has  many cars.

A man in a black shirt is playing a piano. 
A woman is standing behind the man. 
Behind the man there is a white wall with  
a window. 
The piano is black. 
There is a tree next to the man. 
It has green leaves.

A man in black shirt is playing a piano inside a room. 
The piano is black in color. 
A woman in a white dress is standing behind the man with 
 her right arm extended up. 
Behind the woman is a tree. 
The room has white walls. 
In the background there is a tree with green leaves and a 
 window next to it.

There is a bus driving on the road. 
It is painted yellow and red. 
There is a large white building. 
The building has plenty of windows. 
A man is sitting next to the bus. 
There is a tall tree with green leaves  
behind the bus. 

A yellow bus with orange stripes is on the city street. 
It is stopped at a bus stop. 
A man is sitting next to the bus in the bus stop. 
In the background is a large white building. 
The building has many glass windows. 
A tall tree with green leaves is in the background.

Fig. 1. Paragraphs generated with a prior state-of-the-art technique [22] and with
our developed approach. Due to the introduced ‘Coherence Vectors’ we observe the
generated paragraphs to be much more coherent than prior work [22] (Color figure
online)

In particular, Liang et al. [26] propose to ensure consistency across sentence
themes by training a standard paragraph generation module [22], coupled with
an attention mechanism, under a Generative Adversarial Network (GAN) [13]
setting which has an additional loss-term to enforce consistency. However, diffi-
culties associated with training GANs [3] and no explicit coherence model, leave
their method vulnerable to generating incoherent paragraphs.

Different from prior work, we explicitly focus on modeling the diverse yet
coherent possibilities of successive sentences when generating a paragraph, while
ensuring that the ‘big picture’ underlying the image does not get lost in the
details. To this end, we develop a model that propagates, what we call “Coher-
ence Vectors,” which ensure cross-sentence topic smoothness, and a “Global
Topic Vector,” which captures the summarizing information about the image.
Additionally, we observe improvements in the quality of the generated para-
graphs, when our model is trained to incorporate diversity. Intuitively, the coher-
ence vector embeds the theme of the most recently generated sentence. To ensure
a smooth flow of the theme across sentences, we combine the coherence vector
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with the topic vector of the current sentence and a global topic vector. Figure 1
illustrates a sampling of a synthesized paragraph given an input image, using
our method vis-à-vis prior work [22]. Notably, using our model, we observe a
smooth transition between sentence themes, while capturing summarizing infor-
mation about the image. For instance, generated paragraphs corresponding to
the images in the first and the third rows in Fig. 1 indicate that the images have
been captured in a ‘city’ setting.

Following prior work we quantitatively evaluate our approach on the standard
Stanford Image-Paragraph dataset [22], demonstrating state-of-the-art perfor-
mance. Furthermore, different from all existing methods, we showcase the gener-
alizability of our model, evaluating the proposed approach by generating reviews
from the “Office-Product” category of the Amazon product review dataset [30]
and by showing significant gains over all baselines.

In the next section, we discuss prior relevant work before providing details of
our proposed approach in Sect. 3. Section 4 presents empirical results. We finally
conclude in Sect. 5, laying out avenues for future work.

2 Related Work

For a long time, associating language with visual content has been an impor-
tant research topic [4,25,40]. Early techniques in this area associate linguis-
tic ‘tag-words’ with visual data. Gradually, the focus shifted to generating
entire sentences and paragraphs for visual data. For this, techniques from
both natural language processing and computer vision are combined with the
aim of building holistic AI systems that integrate naturally into common sur-
roundings. Two tasks that spurred the growth of recent work in the language-
vision area are Image Captioning [5,11,17,38,44], and Visual Question Answer-
ing [2,12,15,28,33–35,42,43,45]. More recently, image captioning approaches
were extended to generate natural language descriptions at the level of para-
graphs [17,22,26]. In the following, we review related work from the area of
image captioning and visual paragraph generation in greater detail, and point
out the distinction with our work.

Image Captioning: Image Captioning is the task of generating textual descrip-
tions, given an input image. Classical methods for image captioning, are usually
non-parametric. These methods build a pool of candidate captions from the
training set of image-caption pairs, and at test time, a fitness function is used
to retrieve the most compelling caption for a given input image [4,25,31]. How-
ever the computationally demanding nature of the matching process imposes a
bottleneck when considering a set of descriptions of a reasonable size.

To address this problem, Recurrent Neural Network (RNN)-based approaches
have come into vogue [1,10,18,29,38,39,44,46] lately. These approaches, typ-
ically, first use a Convolutional Neural Network (CNN) [24,36] to obtain an
encoding of the given input image. This encoding is then fed to an RNN which
samples a set of words (from a dictionary of words) that agree most with the
image encoding. However, the captions generated through such techniques are
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short, spanning typically a single sentence of at most 20 words. Our approach
differs from the aforementioned image captioning techniques, in that we gener-
ate a paragraph of multiple sentences rather than a short caption. Importantly,
captioning techniques generally don’t have to consider coherence across sentence
themes, which is not true for paragraph generation approaches which we review
next.

Visual Paragraph Generation: From a distance, the task of Visual Para-
graph Generation resembles image captioning: given an image, generate a tex-
tual description of its content [22]. However, of importance for visual paragraph
generation is the attention to detail in the textual description. In particular, the
system is expected to generate a paragraph of sentences (typically 5 or 6 sen-
tences per paragraph) describing the image in great detail. Moreover, in order for
the paragraph to resemble natural language, there has to be a smooth transition
across the themes of the sentences of the paragraph.

Early work in generating detailed captions, include an approach by Johnson
et al. [17]. While generating compelling sentences individually, a focus on a theme
of the story underlying a given image was missing. This problem was addressed
by Krause et al. [22]. Their language model consists of a two-stage hierarchy
of RNNs. The first RNN level generates sentence topics, given the visual rep-
resentation of semantically salient regions in the image. The second RNN level
translates this topic vector into a sentence. This model was further extended by
Liang et al. [26] to encourage coherence amongst successive sentences. To this
end, the language generation mechanism of Krause et al. [22], coupled with an
attention mechanism, was trained in a Generative Adversarial Network (GAN)
setting, where the discriminator is intended to encourage this coherence at train-
ing time. Dai et al. [8] also train a GAN for generating paragraphs. However,
known difficulties of training GANs [3] pose challenges towards effectively imple-
menting such systems. Xie et al. introduce regularization terms for ensuring
diversity [41] which results in a constrained optimization problem that does not
admit a closed form solution and is thus hard to implement. Different from these
approaches [8,26,41], we demonstrate that a change of the generation mechanism
is better suited to obtain coherent sentence structure within the paragraph. To
this end we introduce Coherence Vectors which ensure a gradual transition of
themes between sentences.

Additionally, different from prior work, we also incorporate a summary of
the topic vectors to sensitize the model to the ‘main plot’ underlying the image.
Furthermore, to capture the inherent ambiguity of generating paragraph from
images, i.e., multiple paragraphs can successfully describe an image, we cast our
paragraph-generation model as a Variational Autoencoder (VAE) [7,14,16,20],
enabling our model to generate a set of diverse paragraphs, given an image.

3 Our Proposed Method for Paragraph Generation

As mentioned before, coherence of sampled sentences is important for automatic
generation of human-like paragraphs from visual data, while not losing sight
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Fig. 2. Overview of the topic generation net of our proposed approach illustrating the
construction of the individual and ‘Global Topic Vector’.

Fig. 3. Overview of the sentence generation net.

of the underlying ‘big picture’ story illustrated in the image. Further, another
valuable element for an automated paragraph generation system is the diversity
of the generated text. In the following we develop a framework which takes
into account these properties. We first provide an overview of the approach
in Sect. 3.1, before discussing our approach to generate coherent paragraphs in
Sect. 3.2 and finally our technique to obtain diverse paragraphs in Sect. 3.3.

3.1 Overview

To generate a paragraph y = (y1, . . . , yS) consisting of S sentences yi, i ∈
{1, . . . , S}, each with Ni words yi,j , j ∈ {1, . . . , Ni}, for an image x, we use
a deep net composed out of two modules which are coupled hierarchically: the
Topic Generation Net and the Sentence Generation Net.

The Topic Generation Net illustrated in Fig. 2 seeks to extract a set of S
topic vectors, Ti ∈ R

H ∀i ∈ {1, . . . , S}, given an appropriate visual represen-
tation of the input image x. The topic generation net is a parametric function
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which, recursively at every timestep, produces a topic vector Ti and a proba-
bility measure ui indicating if more topics are to be generated. We implement
this function using a recurrent net, subsequently also referred to as the Sen-
tenceRNN. We then leverage the topic vectors Ti to construct a Global Topic
Vector G ∈ R

H , which captures the underlying image summary. This global
topic vector is constructed via a weighted combination of the aforementioned
topic vectors Ti.

Figure 2 illustrates a detailed schematic of the topic generation net. Formally
we use (G, {(Ti, ui)}S

i=1) = ΓwT
(x) to denote the input and output of the net

ΓwT
(·), where the vector wT subsumes the parameters of the function. The global

topic vector G, and the individual topic vectors and probabilities {(Ti, ui)}S
i=1

are the output which also constitute the input to the second module.
The second module of the developed approach, called the Sentence Genera-

tion Net, is illustrated in Fig. 3. Based on the output of the topic generation net,
it is responsible for producing a paragraph y, one sentence yi at a time.

Formally, the sentence generation module is also modeled as a parametric
function which synthesizes a sentence yi, one word yi,j at a time. More specifi-
cally, a recurrent net Γws(·, ·) is used to obtain the predicted word probabilities
{pi,j}Ni

j=1 = Γws(Ti, G), where ws subsumes all the parameters of the net, and
pi,j ∈ [0, 1]V ∀j ∈ {1, . . . , Ni} is a probability distribution over the set of V
words in our vocabulary (including an ‘End of Sentence’ (‘EOS’) token). We
realize the function, Γws(·, ·) using a recurrent net, subsequently referred to as
the WordRNN.

In order to incorporate cross-sentence coherence, rather than directly using
the topic vector Ti in the WordRNN, we first construct a modified topic vector
T ′

i , which better captures the theme of the ith sentence. For every sentence i,
we compute T ′

i ∈ R
H via a Coupling Unit, by combining the topic vector Ti,

the global topic vector G and a previous sentence representation Ci−1, called a
Coherence Vector, which captures properties of the sentence generated at step
i − 1. Note that the synthesis of the first sentence begins by constructing T ′

1,
which is obtained by coupling T1 with the global topic vector G, and an all zero
vector.

Visual Representation: To obtain an effective encoding of the input image, x,
we follow Johnson et al. [17]. More specifically, a Convolutional Neural Network
(CNN) (VGG-16 [36]) coupled with a Region Proposal Network (RPN) gives
fixed-length feature vectors for every detection of a semantically salient region
in the image. The obtained set of vectors {v1, . . . , vM} with vi ∈ R

D each corre-
spond to a region in the image. We subsequently pool these vectors into a single
vector, v ∈ R

I – following the approach of Krause et al. [22]. This pooled rep-
resentation contains relevant information from the different semantically salient
regions in the image, which is supplied as input to our topic generation net.
Subsequently, we use v and x interchangeably.
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3.2 Coherent Paragraph Generation

The construction of coherent paragraphs adopts a two-step approach. In the first
step, we derive a set of individual and a global topic-vector starting with the
pooled representation of the image. This is followed by paragraph synthesis.

Topic Generation: The Topic Generation Net (G, {(Ti, ui)}S
i=1) = ΓwT

(x)
constructs a set of relevant topics Ti for subsequent paragraph generation given
an image x. Figure 2 provides a schematic of the proposed topic generation mod-
ule. At first, the pooled visual representation of the image, v, is used as input
for the SentenceRNN. The SentenceRNN is a single layer Gated Recurrent Unit
(GRU) [6], parameterized by wT . It takes an image representation v as input and
produces a probability distribution ui, over the labels ‘CONTINUE’ or ‘STOP,’
while its hidden state is used to produce the topic vector Ti ∈ R

H via a 2-layer
densely connected deep neural network. A ‘CONTINUE’ label (ui > 0.5), indi-
cates that the recurrence should proceed for another time step, while a ‘STOP’
symbol terminates the recurrence.

However, automatic description of an image via paragraphs necessitates tying
all the sentences of the paragraph to a ‘big picture’ underlying the scene. For
example, in the first image in Fig. 1, the generated paragraph should ideally
reflect that it is an image captured in a ‘city’ setting. To encourage this ability
we construct a Global Topic Vector G ∈ R

H for a given input image (see Fig. 2).
Intuitively, we want this global topic vector to encode a holistic understand-

ing of the image, by combining the aforementioned individual topic vectors as
follows:

G =
n∑

i=1

αiTi where αi =
||Ti||2∑
i||Ti||2 . (1)

Our intention is to facilitate representation of ‘meta-concepts’ (like ‘city’) as a
weighted combination of its potential constituents (like ‘car,’ ‘street,’ ‘men,’ etc.).
The synthesized global vector and the topic vectors are then propagated to the
sentence generation net which predicts the words of the paragraph.

Sentence Generation: Given the individual topic vectors Ti and the global
topic vector G, the Sentence Generation Net synthesizes sentences of the para-
graph by computing word probabilities {pi,j}Ni

j=1 = Γws(Ti, G), conditioned on
the previous set of synthesized words (see Fig. 3). One sentence is generated for
each of the S individual topic vectors T1, . . . , TS . Synthesis of the ith sentence
commences by combining via the Coupling Unit the topic vector Ti, the global
topic vector G, and the consistency ensuring Coherence Vector Ci−1 ∈ R

H .
The Coupling Unit produces a modified topic vector (T ′

i ∈ R
H), which is

propagated to the WordRNN to synthesize the sentence. The WordRNN is a
2-layer GRU, which generates a sentence, yi, one word at a time, conditioned on
the previously synthesized words. The jth word of the ith sentence is obtained
by selecting the word with the highest posterior probability, pi,j , over the entries
of the vocabulary V . A sentence is terminated when either the maximum word
limit per sentence is reached or an ‘EOS’ token is predicted. In the following, we
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describe the mechanism for constructing the coherence vectors, and the coupling
technique referenced above.

Coherence Vectors: An important element of human-like paragraphs is coherence
between the themes of successive sentences, which ensures a smooth flow of the
line of thought in a paragraph.

Fig. 4. The internal architecture of the ‘Coupling Unit’.

As shown in Fig. 3, we encourage topic coherence across sentences by con-
structing Coherence Vectors. In the following we describe the process of building
these vectors. In order to compute the coherence vector for the (i − 1)th sen-
tence, we extract the hidden layer representation (∈ R

H) from the WordRNN,
after having synthesized the last token of the (i − 1)th sentence. This encoding
carries information about the (i − 1)th sentence, and if favorably coupled with
the topic vector Ti of the ith sentence, encourages the theme of the ith sentence
to be coherent with the previous one. However, for the aforementioned coupling
to be successful, the hidden layer representation of the (i − 1)th sentence still
needs to be transformed to a representation that lies in the same space as the
set of topic vectors. This transformation is achieved by propagating the final
representation of the (i − 1)th sentence through a 2-layer deep net of fully con-
nected units, with the intermediate layer having H activations. We used Scaled
Exponential Linear Unit (SeLU) activations [21] for all neurons of this deep net.
The output of this network is what we refer to as ‘Coherence Vector,’ C(i−1).

Coupling Unit: Having obtained the coherence vector Ci−1 from the (i − 1)th

sentence, a Coupling Unit combines it with the topic vector of the next sentence,
Ti, and the global topic representation G. This process is illustrated in Fig. 4.

More specifically, we first combine Ci−1 and Ti into a vector TC
i ∈ R

H which
is given by the solution to the following optimization problem:

TC
i = arg min

T̂ C
i

α||Ti − T̂C
i ||22 + β||Ci−1 − T̂C

i ||22 with α, β ≥ 0.

The solution, when α, β both are not equal to 0, is given by:

TC
i =

αTi + βCi−1

α + β
.

We refer the interested reader to the supplementary for this derivation. Intu-
itively, this formulation encourages TC

i to be ‘similar’ to both the coherence
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vector, Ci−1 and the current topic vector, Ti – thereby aiding cross-sentence
topic coherence. Moreover, the closed form solution of this formulation permits
an efficient implementation as well.

The obtained vector TC
i is then coupled with the global topic vector G, via

a gating function. We implement this gating function using a single GRU layer
with vector TC

i as input and global topic vector G as its hidden state vector. The
output of this GRU cell, T ′

i , is the final topic vector which is used to produce
the ith sentence via the WordRNN.

Fig. 5. General framework of our VAE formulation.

Loss Function and Training: Both Topic Generation Net and Sentence Gen-
eration Net are trained jointly end-to-end using labeled training data, which
consists of pairs (x, y) of an image x and a corresponding paragraph y. If one
image is associated with multiple paragraphs, we create a separate pair for
each. Our training loss function �train(x, y) couples two cross-entropy losses: a
binary cross-entropy sentence-level loss on the distribution ui for the ith sentence
(�s(ui,1i≤S)), and a word-level loss, on the distribution pi,j for the jth word of
the ith sentence (�w(pi,j , yi,j)). Assuming S sentences in the ground-truth para-
graph, with the ith sentence having Ni words, our loss function is given by:

�train(x, y) = λs

S∑

i=1

�s(ui,1i=S) + λw

S∑

i=1

Ni∑

j=1

�w(pi,j , yi,j), (2)

where 1{·} is the indicator function, λs, λw are the weights. Armed with this
loss function our method is trained via the Adam optimizer [19] to update the
parameters wT and ws.

3.3 Diverse Coherent Paragraph Generation

The aforementioned scheme for generating paragraphs lacks in one key aspect:
it doesn’t model the ambiguity inherent to a diverse set of paragraphs that fit a
given image. In order to incorporate this element of diversity into our model, we
cast the designed paragraph generation mechanism into a Variational Autoen-
coder (VAE) [20] formulation, a generic architecture of which is shown in Fig. 5.
Note that we prefer a VAE formulation over other popular tools for modeling
diversity, such as GANs, because of the following reasons: (1) GANs are known
to suffer from training difficulties unlike VAEs [3]; (2) The intermediate sampling
step in the generator of a GAN (for generating text) is not differentiable and
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thus one has to resort to Policy Gradient-based algorithms or Gumbel softmax,
which makes the training procedure non-trivial. The details of our formulation
follow.

Fig. 6. Architecture of the encoder and decoder of our VAE formulation.

VAE Formulation: The goal of our VAE formulation is to model the log-
likelihood of paragraphs y conditioned on images x, i.e., ln p(y|x). To this end,
a VAE assumes that the data, i.e., in our case paragraphs, arise from a low-
dimensional manifold space represented by samples z. Given a sample z, we
reconstruct, i.e., decode, a paragraph y by modeling pθ(y|z, x) via a deep net.
The ability to randomly sample from this latent space provides diversity. In the
context of our task the decoder is the paragraph generation module described
in Sect. 3.2, augmented by taking samples from the latent space as input. We
subsequently denote the parameters of the paragraph generation module by θ =
[wT , ws]. To learn a meaningful manifold space we require the decoder’s posterior
pθ(z|y, x). However computing the decoder’s posterior pθ(z|y, x) is known to
be challenging [20]. Hence, we commonly approximate this distribution using
another probability qφ(z|y, x), which constitutes the encoder section of the model,
parameterized by φ. Further, let p(z) denote the prior distribution of samples in
the latent space. Using the aforementioned distributions, the VAE formulation
can be obtained from the following identity:

ln p(y|x)−KL(qφ(z|y, x), pθ(z|y, x))=Eqφ(z|y,x)[ln pθ(y|z, x)]−KL(qφ(z|y, x), p(z)),

where KL(·, ·) denotes the KL divergence between two distributions. Due to the
non-negativity of the KL-divergence we immediately observe the right hand side
to be a lower bound on the log-likelihood ln p(y|x) which can be maximized
w.r.t. its parameters φ and θ. The first term on the right hand side optimizes
the reconstruction loss, i.e., the conditional likelihood of the decoded paragraph
(for which we use the loss in Eq. 2), while the second term acts like a distribu-
tional regularizer (ensuring smoothness). Training this system end-to-end via
backpropagation is hard because of the intermediate, non-differentiable, step of
sampling z. This bottleneck is mitigated by introducing the Re-parameterization
Trick [20]. The details of the encoder and decoder follow.

Encoder: The encoder architecture is shown in Fig. 6. Given the image x and
a ground-truth paragraph y we encode the sample (x, y) by passing it through
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the topic and sentence generation nets. We then extract the hidden state vector
(E ∈ R

H) from the final WordRNN of the Sentence Generation net. This vector
is passed through a 1-layer densely connected net, the output layer of which
has 2H neurons. We assume the conditional distribution underlying the encoder,
qφ(z|y, x) to be a Gaussian, whose mean μ is the output of the first H neurons,
while the remaining H neurons give a measure of the log-variance, i.e., lnσ2.

Decoder: The decoding architecture is also shown in Fig. 6. While decoding, we
draw a sample z ∼ N (0, I) (z ∈ R

H , for training: we additionally shift and scale
it by: z = μ + σε, where ε ∼ N (0, I)) and pass it to the SentenceRNN, via a
single-layer neural net with I output neurons. The hidden state of this RNN
is then forward propagated to the SentenceRNN unit, which also receives the
pooled visual vector v. Afterwards, the decoding proceeds as discussed before.

4 Experimental Evaluations

Datasets: We first conduct experiments on the Stanford image-paragraph
dataset [22], a standard in the area of visual paragraph generation. The
dataset consists of 19,551 images from the Visual Genome [23] and MS COCO
dataset [27]. These images are annotated with human-labeled paragraphs, 67.50
words long, with each sentence having 11.91 words, on average. The experimen-
tal protocol divides this dataset into 14,575 training, 2,487 validation, and 2,489
testing examples [22]. Further, in order to exhibit generalizability of our app-
roach, different from prior work, we also undertake experiments on the much
larger, Amazon Product-Review dataset (‘Office-Products’ category) [30] for the
task of generating reviews. This is a dataset of images of common categories of
office-products, such as printer, pens, etc. (see Fig. 7), crawled from amazon.com.
There are 129,970 objects in total, each of which belongs to a category of office
products. For every object, there is an associated image, captured in an unclut-
tered setting with sufficient illumination. Accompanying the image, are multiple
reviews by users of the product. Further, each review is supplemented by a star
rating, an integer between 1 (poor) and 5 (good). On an average there are 6.4
reviews per star rating per object. A review is 71.66 words long, with 13.52 words
per sentence, on average. We randomly divide the dataset into 5,000 test, and
5,000 validation examples, while the remaining examples are used for training.

Baselines: We compare our approach to several recently introduced and our
own custom designed baselines. Given an image, ‘Image-Flat’ directly synthe-
sizes a paragraph, token-by-token, via a single RNN [18]. ‘Regions-Hierarchical’
on the other hand, generates a paragraph, sentence by sentence [22]. Liang
et al. [26] essentially train the approach of Krause et al. [22] in a GAN set-
ting (‘RTT-GAN’), coupled with an attention mechanism. However, Liang et al.
also report results on the Stanford image-paragraph dataset by using additional
training data from the MS COCO dataset, which we refer to as ‘RTT-GAN
(Plus).’ We also train our model in a GAN setting and indicate this baseline as
‘Ours (GAN).’ Additionally, we create baselines for our model without coherence
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vectors, essentially replacing them with a zero vector for every time-step. We refer
to this baseline as ‘Ours (NC).’ In another setting, we only set the global topic
vector to zero for every time-step. We refer to this baseline as ‘Ours (NG).’

Evaluation Metrics: We report the performance of all models on 6 widely
used language generation metrics: BLEU-{1, 2, 3, 4} [32], METEOR [9], and
CIDEr [37]. While the BLEU scores largely measure just the n-gram precision,
METEOR, and CIDEr are known to provide a more robust evaluation of lan-
guage generation algorithms [37].

Implementation Details: For the Stanford dataset, we set the dimension of
the pooled visual feature vector, v, to be 1024. For the Amazon dataset, however,
we use a visual representation obtained from VGG-16 [36]. Since, these images
are generally taken with just the principal object in view (see Fig. 7), a standard
CNN suffices. We extract representations from the penultimate fully connected
layer of the CNN, giving us a vector of 4,096 dimensions. Hence, we use a single-
layer neural network to map this vector to the input vector of 1,024 dimensions.
For both SentenceRNN and WordRNN, the GRUs have hidden layers (H) of 512
dimension. For the Amazon dataset, we condition the first SentenceRNN, with
an H-dimensional embedding of the number of stars. We set λs, λw to be 5.0,
and 1.0 respectively, the maximum number of sentences per paragraph, Smax,
to be 6, while the maximum number of words per sentence is set to be 30, for
both datasets. In the coupling unit, α is set to 1.0, and β is set to 1.5 for the
Stanford dataset, while for the Amazon dataset the corresponding values are 1.0
and 3.0. The learning rate of the model is set to 0.0001 for the first 5 epochs and
is halved every 5 epochs after that, for both datasets. These hyper-parameters
are chosen by optimizing the performance, based on the average of METEOR
and CIDEr scores, on the validation set for both datasets. We use the same
vocabulary as Krause et al. [22], for the Stanford dataset, while a vocabulary size
of the 11, 000 most frequent words is used for the Amazon dataset. Additional
implementational details can be found on the project website1. For purposes of
comparison, for the Amazon dataset, we run our implementation of all baselines,
with their hyper-parameters picked based on a similar protocol, while for the
Stanford dataset we report performance for prior approaches directly from [26].

Results: Tables 1 and 2 show the performance of our algorithm vis-à-vis other
comparable baselines. Our model, especially when trained in the VAE setting,
outperforms all other baselines (on all 6 metrics). Even the models trained under
the regular (non-VAE) setup outperform most of the baselines and are compa-
rable to the approach of Liang et al. [26], an existing state-of-the-art for this
task. Our performance on the rigorous METEOR and CIDEr metrics, on both
datasets, attest to our improved paragraph generation capability. The capacity
to generate diverse paragraphs, using our VAE setup, pays off especially well on
the Amazon dataset, since multiple reviews with the same star rating are asso-
ciated with an object, creating an inherent ambiguity. Noticeably, our model is
worse off in terms of performance, when trained under the GAN setting. This
1 https://sites.google.com/site/metrosmiles/research/research-projects/capg revg.

https://sites.google.com/site/metrosmiles/research/research-projects/capg_revg
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Table 1. Comparison of captioning performance on the stanford dataset

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Image-flat [18] 34.04 19.95 12.2 7.71 12.82 11.06

Regions-hierarchical [22] 41.9 24.11 14.23 8.69 15.95 13.52

RTT-GAN [26] 41.99 24.86 14.89 9.03 17.12 16.87

RTT-GAN (Plus) [26] 42.06 25.35 14.92 9.21 18.39 20.36

Ours (NC) 42.03 24.84 14.47 8.82 16.89 16.42

Ours (NG) 42.05 25.05 14.59 8.96 17.26 18.23

Ours 42.12 25.18 14.74 9.05 17.81 19.95

Ours (with GAN) 42.04 24.96 14.53 8.95 17.21 18.05

Ours (with VAE) 42.38 25.52 15.15 9.43 18.62 20.93

Human (as in [22]) 42.88 25.68 15.55 9.66 19.22 28.55

Table 2. Comparison of captioning performance on the amazon dataset

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Image-flat [18] 40.31 30.63 25.32 15.64 10.97 9.63

Regions-hierarchical [22] 45.74 34.8 27.54 16.67 14.23 12.02

RTT-GAN [26] 45.93 36.42 28.28 17.26 16.29 15.67

Ours (NC) 45.85 35.97 27.96 16.98 15.86 15.39

Ours (NG) 45.88 36.33 28.15 17.17 16.04 15.54

Ours 46.01 36.86 28.73 17.45 16.58 16.05

Ours (with GAN) 45.86 36.25 28.07 17.06 15.98 15.43

Ours (with VAE) 46.32 37.45 29.42 18.01 17.64 17.17

observation is along the lines of prior work [8]. We surmise that this results
from the difficulty of training GANs [3] in conjunction with the fact that the
GAN-based setup isn’t trained directly with maximum-likelihood.

Qualitative Results: Figure 7 presents a sampling of our generated paragraphs.
The first example in the figure (the first row) shows that our model can gener-
ate coherent paragraphs, while capturing meta-concepts like ‘car-park’ or ‘parking
lot,’ from images with complex scenes. Regions-Hierarchical [22] faces challenges
to incorporate these ‘meta-concepts’ into the generated paragraphs. For several of
the instances in the Amazon dataset (such as the images in the third and fourth
rows), both our method and Regions-Hierarchical [22] successfully detect the prin-
cipal object in the image. We speculate that this is due to easy object recognition
for images of the Amazon dataset, and to a lesser extent due to an improved para-
graph generation algorithm. Additionally in the VAE setting, we are able to gen-
erate two distinctly different paragraphs with the same set of inputs, just by sam-
pling a different z each time (the two rightmost columns in Fig. 7), permitting our
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results to be diverse. Moreover, for the Amazon dataset (third and fourth rows in
Fig. 7) we see that our model learns to synthesize ‘sentiment’ words depending on
the number of input stars. We present additional visualizations in the supplemen-
tary material.

There is a brown truck in a car park. 
A building is in the background. 
Next to the truck is a white car. 
Many cars are parked in the background. 
There is a green sign in the background. 
The background has many trees.

A brown truck and a white car are in a car park. 
The white caris parked next to the brown truck. 
The background has a building. 
There are many green trees next to the building. 
The background has many cars that are parked. 
There is a green sign behind the car. 

A brown truck is parked outside in a parking lot. 
A white car is parked next to a brown truck. 
There are many trees in the background. 
In the background there is a building. 
There are multiple cars and a green sign in the  
background. 
It is a sunny day.

A brown truck is parked in a parking lot on a  
sunny day. 
The truck is parked outside. 
Next to the truck is a white car. 
There are trees with green leaves in the background. 
There is a building next to the trees. 
The background gas a green sign.

This black printer is of a good quality. 
The printer is tall. 
It has trays and buttons  
for use. 
The scanner use is convenient. 
The ink cartridge is available. 
The printer has yellow buttons on it.

This black printer is lightweight. 
The printer has many buttons and has a scanner. 
The ink cartridge lasted for several years. 
The print is impressive. 
The packaging is good. 
It comes for a cheap price.

The black printer comes with a scanner. 
It has paper cases. 
It comes with buttons. 
It comes with a warranty. 
It is available for good price. 
The printer use is convenient.

A black printer with paper feed. 
The printer has a scanner and buttons for use. 
It is light weight. 
It prints good color. 
It has good availability. 
It has a good price. 
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 5

Ours (NC) Ours Ours (with VAE) - I Ours (with VAE) - II 

A brown truck is parked on the street. 
There is a white truck beside it. 
The background has a green sign. 
In the background there is a building. 
Behind the truck there are trees with  
green leaves. 
Next to the trees there are many cars.

This is a black printer with buttons on it. 
The printer has color printing. 
The ink cartridge lasts long.  
The printer has multiple paper trays. 
The printer has yellow buttons. 
It has a display screen.

Regions -
Hierarchical

A man in white shirt is walking on a  
city street. 
There is another man next to him. 
A bike is driving beside the building. 
Vehicles are parked in a parking lot in  
the background. 
A car is parked on the city street. 
There is a sign next to the car.

Two men are walking on a city street. 
The men are beside a building. 
They are walking by a car. 
A bike is next to the building. 
The background has many vehicles. 
The background has a tall tree with long  
branches.

Two men are walking outside on a city street. 
It is a sunny day. 
The men are walking next to a car. 
A bike is riding next to a building. 
A tall tree with leaves is in the background. 
There is a sign in front of the tree.

A bike with people is riding on the city street on a  
sunny day. 
Behind them is a tree with long branches. 
A car is parked next to the tree. 
Men are walking past the car. 
In the background there is a large building with  
windows. 
In the background there is a parking lot. 

A bike with people is riding on the street. 
There is a wall beside the tree. 
In the background several bikes are  
parked. 
Two men are walking past the bike. 
The background has a large building. 
There is a car parked in the background. 
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 1 This is a black safe which is large. 
The safe is heavy. 
It is  inconvenient to carry it around.  
It is very expensive as well. 
The safe has a handle grip to the side. 
It is inconvenient to replace it.

This is a safe which has a steel case. 
It opens with a key. 
On the side of the safe there is a handle grip. 
This is one of the worst ever. 
It comes with a high price. 
It is very heavy.

This is a black safe with a black steel  
case. 
The case is very large. 
It is very pricy.  
It is very heavy. 
The safe comes with two handle grips. 
It has a dark border. 

This is a black safe with a steel case. 
The safe is large. 
It has a black colored handle grip. 
The safe opens with a key. 
It is very pricy. 
It is not very portable.

This black safe has a steel case. 
It comes with a handle grip on two sides. 
The space inside the safe is little. 
The safe is heavy and inconvenient. 
Other models are far better. 
It is very expensive.

Fig. 7. Paragraphs generated under different settings with our developed approach,
vis-à-vis regions-hierarchical [22]. The first, and second images are from the Stanford
dataset, while the third and fourth images are from the amazon dataset.

Ablation Study: In one setting, we judge the importance of coherence vectors,
by just using the global vector and setting the coherence vectors to 0, in the
sentence generation net. The results for this setting (‘Ours (NC)’) are shown
in Tables 1 and 2, while qualitative results are shown in Fig. 7. These numbers
reveal that just by incorporating the global topic vector it is feasible to generate
reasonably good paragraphs. However, incorporating coherence vectors makes
the synthesized paragraphs more human-like. A look at the second column of
Fig. 7 shows that even without coherence vectors we are able to detect the central
underlying image theme, like ‘car-park’ but the sentences seem to exhibit sharp
topic transition, quite like the Regions-Hierarchical [22] approach. We rectify
this by introducing coherence vectors.

In another setting, we set the global topic vector to 0, at every time-step,
while retaining the coherence vectors. The performance in this setting is indi-
cated by ‘Ours (NG)’ in Tables 1 and 2. The results suggest that incorporating
the coherence vectors is much more critical for improved paragraph generation.

5 Conclusions and Future Work

In this work, we developed ‘coherence vectors’ which explicitly ensure consis-
tency of themes between generated sentences during paragraph generation. Addi-
tionally, the ‘global topic vector’ was designed to capture the underlying main
plot of an image. We demonstrated the efficacy of the proposed technique on
two datasets, showing that our model when trained with effective autoencoding
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techniques can achieve state-of-the-art performance for both caption and review
generation tasks. In the future we plan to extend our technique for the task of
generation of even longer narratives, such as stories.

Acknowledgments. This material is based upon work supported in part by the
National Science Foundation under Grant No. 1718221, Samsung, and 3M. We thank
NVIDIA for providing the GPUs used for this research.
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