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Abstract. This paper tackles a problem in line-assisted VO/VSLAM:
accurately solving the least squares pose optimization with unreliable 3D
line input. The solution we present is good line cutting, which extracts the
most-informative sub-segment from each 3D line for use within the pose
optimization formulation. By studying the impact of line cutting towards
the information gain of pose estimation in line-based least squares prob-
lem, we demonstrate the applicability of improving pose estimation accu-
racy with good line cutting. To that end, we describe an efficient algo-
rithm that approximately approaches the joint optimization problem of
good line cutting. The proposed algorithm is integrated into a state-
of-the-art line-assisted VSLAM system. When evaluated in two target
scenarios of line-assisted VO/VSLAM, low-texture and motion blur, the
accuracy of pose tracking is improved, while the robustness is preserved.
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1 Introduction

Visual Odometry (VO) and Visual SLAM (VSLAM) methods typically exploit
point features as they are the simplest to describe and manage. A sensible alter-
native or addition is to consider lines given that edges are also fairly abundant
in images; especially within man-made environments where sometimes the quan-
tity of points may be lacking to the detriment of VO/VSLAM. The canonical
examples being corridors and hallways, whose low-texture degrades the perfor-
mance of point features methods. Under these circumstances, lines become more
reliable constraints versus points.

Compared to points, additional benefits of lines is that their detection is less
sensitive to the noise associated to video capturing, and that lines are trivially
stable under a wide range of viewing angles [1,2]. Additionally, lines are more
robust to motion blur [3]. Even with heavily blurred input image, one would
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expect some lines that are parallel to the local direction of blur to remain track-
able. That said, lines don’t provide as strong a motion constraint as points, so
incorporating whatever points exist within the scene is usually a good idea.

Rather than explicitly tracking points and lines, direct VO/VSLAM methods
implicitly associate these strong features over time [4,5]. Direct SLAM optimizes
the photometric error of sequential image registration over the space of possible
pose changes between captured images. Since feature extraction is no longer
needed, direct methods typically require less computational power. However,
compared to feature-based methods, direct methods are more sensitive to several
factors: image noise, geometric distortion, large displacement, lighting change,
etc. Therefore, feature-based methods are more viable as SLAM solutions for
robust and accurate pose tracking.

Adding line features to VO/VSLAM is not a trivial task. Significant progress
has been made in line detection [6] and matching [7]. Yet triangulation of 3D
lines still remains problematic. Triangulating a 3D line from 2D measurements
requires more measurements and is more sensitive to measurement noise, com-
pared to points. Lines are generally weak in constraining the correspondence
along its direction of expansion. It is hard to establish reliable point-to-point
correspondence between two lines (as segments), which degrades triangulation
accuracy. In addition, lines are usually partially-occluded, which brings the chal-
lenge of deciding the endpoint correspondence. Accurately solving line-based
pose estimation requires resolving the low-reliability of triangulated 3D lines.

Fig. 1. A toy case illustrating the proposed good line cutting approach. Left: Giv-
ing 3 line matchings with confidence ellipsoids (dashed line), the least squares pose
estimation has high uncertainty. Right: Line-cutting applied to the line-based least
squares problem. The cut line segments and their corresponding confidence ellipsoids
are in red. The confidence ellipsoid of the new pose estimation improves. (Color figure
online)

To reduce the impact of unreliable 3D lines, a common practice is to model
the uncertainty of the 3D line, and weight the contribution of each line accord-
ingly in pose optimization. The information matrix of the line residual [8–11] is
one of such weighting terms. The residuals of uncertain lines get less weight so
that the optimized pose is biased in favor of the certain lines. However, uncer-
tainty of line residual does not immediately imply incorrect pose estimation
(though there is some correlation): a certain line residual term might barely
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contribute to pose estimation, whereby it would make no sense to weight it
highly. We posit that, in lieu of the uncertainty of line residual, the uncertainty
of pose estimation should be assessed and exploited.

Another way to reduce uncertainty is to simply drop highly-uncertain lines
when numerically constructing the pose optimization problem. However, line
features are typically low in quantity (e.g. tens of lines). Too much information
could be lost by dropping line features. Furthermore, there is a high risk of
forming ill-conditioned optimization problem.

As opposed to line weighting and dropping, this paper aims to improve pose
optimization through the concept of good line cutting. The goal of good line
cutting is simple: for each 3D line, find the line segment that contributes the
largest amount of information to pose estimation (a.k.a. a good line), and select
only those informative segments to solve pose optimization. With line cutting,
the conditioning of the optimization problem improves, leading to more accurate
pose estimation than the original problem. An illustration of good line cutting
can be found at Fig. 1. To the best of the authors’ knowledge, this is the first
paper discussing the role of line cutting in line-based pose optimization. The
contributions of this paper are:

(1) Demonstration that good line cutting improves the overall conditioning of
line-based pose optimization;

(2) An efficient algorithm for real-time applications that approaches the com-
putationally more involved joint optimization solution to good line cutting;
and

(3) Integration of proposed algorithm into a state-of-the-art line-assisted
VSLAM system. When evaluated in two target scenarios (low-texture and
motion blur), the proposed line cutting leads to accuracy improvements over
line-weighting, while preserving the robustness of line-assisted pose tracking.

2 Related Work

This section first reviews related work on line-assisted VO/VSLAM, then exam-
ines the literature of feature selection(targeted for point features mostly), and
discusses the connection between (point) feature selection and the proposed good
line cutting method.

2.1 Line-Assisted VO/VSLAM

There has been continuous effort investigating line features in the SLAM com-
munity. In the early days of visual SLAM, lines are used to cope with large view
change of monocular camera tracking [1,2]. In [1], the authors integrate lines into
a point-based monocular Extended Kalman Filter SLAM (EKF-SLAM). Real-
time pose tracking with lines only are demonstrated in [2] by using a Unscented
Kalman Filter (UKF). Both methods model 3D lines as endpoint-pairs, project
lines to image, then measure the residual. Alternatively, edges are extracted and
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utilized [3]. For the convenience of projection, a 12-DOF over-parameterization
is used to model 3D edge. Again, the edge residual is measured after 3D-to-2D
projection.

More recently, line-assisted VO/VSLAM are extended to 3D visual sensors,
such as RGB-D sensor and stereo camera. In [8], a line-assisted RGB-D odometry
system is proposed. It involves parameterizing the 3D lines as 3D endpoint-pairs
and minimizing the endpoint residual in SE(3). However, directly working in
SE(3) has the disadvantage of being sensitive to inaccurate depth measurements.
With the progress in line detectors (e.g. LSD [6]) and descriptors (e.g. LBD [7]),
growing attention has been paid towards stereo-base line VO/VSLAM, e.g. [11–
13]. Though alternative parameterizations have been explored (e.g. Plücker coor-
dinate [14], orthonormal representation [15]), most line-assisted VO/VSLAM
continued to use the 3D endpoint-pair parametrization because it conveniently
combines with the well-established point-based optimization. Pose estimation
typically jointly minimizes the reprojection errors of both point and line matches.
For line features, the endpoint-to-line distance is commonly used as the repro-
jection error term, i.e., the line residual. To cope with the 3D line uncertainty,
a covariance matrix is maintained for each 3D line. Each line residual term is
weighted by the inverse of the covariance matrix obtained by propagating the
covariance from the 3D line to the endpoint-to-line distance.

Line features within monocular VO/VSLAM also gained attention recently
[10,16,17]. The pipeline of [16] is similar to that of stereo pipelines. A more
robust variant for the endpoint-to-line distance is defined in [9]. Line-assisted
methods building from direct VO/VSLAM have also been developed [10,17].
Interestingly, neither of them use direct measurements (e.g. photometric error)
for line terms in the joint optimization objective. Instead, the line residual is
the least squares of endpoint-to-line distance, which is identical to other feature-
based approaches.

Research into line-assisted VO/VSLAM is still ongoing. Among the systems
described above, modules commonly employed are: (1) 3D lines parameterized
as 3D endpoint-pairs; (2) endpoint-to-line distance and variants serve as the line
residual; (3) in the optimization objective (pose only and joint), line residuals are
weighted by some weighting matrix. The proposed good line cutting approach
in this paper expands on these three modules.

2.2 Feature Selection

Feature selection has been part of VO/VSLAM for a long time. The goal of
feature selection is to find subset of features with best value for pose estimation,
so as to improve the efficiency and accuracy of VO/VSLAM. Two sources of
information are typically used to guide the selection: image appearance and
structural & motion information. Our work is a variant of the second one.

It is well-understood that covariance/information matrix captures the
structural & motion information: it approximately represents the uncer-
tainty/confident ellipsoid of pose estimation. Feature selection is effectively mod-
eled as an optimization problem: the goal is to select a subset of features that



Good Line Cutting 531

minimize the covariance matrix (i.e. maximize the information matrix) under
some metrics, e.g. information gain [18,19], entropy [20], covariance ratio [21],
trace [22], minimum eigenvalue [23,24], and log-determinant [25].

The basic assumption of (point) feature selection is the availability of a large
number of features (e.g. hundreds of points). In such case, the pose optimization
problem will remain well-determined with only a subset of features. Since line
features occur in low quantities, there is a high risk of forming an ill-conditioned
optimization problem when a subset of lines are selected and utilized. Instead,
identify the (sub-)segment of each line that contributes the largest amount of
information so that all line segments get used for pose optimization. Doing so
avoids the risk of ill-conditioning.

3 Least Squares Pose Optimization with Lines

In line-assisted VO/VSLAM, the goal of pose optimization is to estimate the
pose x of calibrated camera(s) given a set of 3D features, i.e. points {Pi} and
lines {Li}, and their corresponding 2D projections, i.e. points {pi} and lines {li},
in the image. As aligned with the current practice, endpoint-pairs are used to
represent 3D lines {Li}. Without loss of generality, the least squares objective
of pose optimization with both point and lines can be written as,

x̂ = arg min{‖p − h(x, P )‖2 +
∥
∥lT h(x,L)

∥
∥
2} (1)

where p and l are stacked matrices of 2D point measurements {pi} and 2D line
coefficients {li}, respectively. P is the stacked matrix of 3D points {Pi}, while L is
the stacked matrix of all endpoints from the 3D line set {Li}. h(x, P ) consists of
the pose transformation (decided by x) and pin-hole projection. Some researchers
[16] suggest using the dual form of the line residual term in (1), which minimizes
the distance between projection of 3D line and measured endpoint. Though we
follow the definition of line residual as in (1) in this paper, the proposed good
line cutting can be updated to the dual form easily. For simplicity, the least
squares (1) is referred to as line-LSQ problem.

Solving the line-LSQ (1) often involves the first-order approximation of the
non-linear measurement function. For instance, the endpoint-to-line distance
h(x,L) on image plane can be approximated as,

h(x,L) = h(x0, L) + Hx(x − x0) (2)

so that the least squares of line residual term can be minimized with Gauss-
Newton method, which iteratively updates the pose estimate:

x̂ = x0 − (lT Hx)+lT (h(x0, L)) (3)

Accuracy of x̂ is affected by two types of error in line features: 2D line
measurement error and 3D line triangulation error. As mentioned earlier, 3D line
triangulation is sensitive to noise and less-reliable than 3D point triangulation.
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Therefore, here we only consider the error of 3D line endpoint L while assuming
the 2D measurement l is accurate. Again, with the first-order approximation of
h(x0, L) at the initial pose x0 and triangulated 3D endpoint L0, we may connect
the pose optimization error εx and 3D line endpoint error εL,

εx = (lT Hx)+lT HLεL = HT εL (4)

where HT = (lT Hx)+(lT HL). Here we intentionally ignore the error in point
residual term. The reason is, when available, point features are known to be
more accurate. Therefore, the main source of error in line-LSQ problem is from
3D line triangulation εL, which is propagated by factor H.

3.1 Information Matrix in Line-LSQ Problem

Common practice models the 3D endpoint-pair error εL as i.i.d. Gaussian under
the proper parametrization, e.g. inverse-depth. With first-order approximation
(4), we may write the pose information matrix Ωx as,

Ωx = HT ΩLH =
∑

HT
i ΩLi

Hi (5)

where Hi is the corresponding row block in H for line Li, and ΩLi
is the infor-

mation matrix of 3D endpoint-pair used to parametrize Li. Notice that ΩLi
is

a block diagonal matrix under the i.i.d. assumption on 3D endpoint error. Set
ΩLi(0), ΩLi(1) as the two diagonal blocks of ΩLi

, and Hi(0), Hi(1) the corre-
sponding row block in Hi, then (5) can be further broken down into:

Ωx =
∑

[HT
i (0)ΩLi(0)Hi(0) + HT

i (1)ΩLi(1)Hi(1)]

=
∑

HT
i (αi)ΩLi(αi)Hi(αi)

(6)

where we extend the range of i from n lines to 2n endpoints, and set [αi] as a
2n × 1 chessboard vector filled with 0 and 1.

As pointed out in the literature of point-feature selection [22–25], the spectral
property of the pose information matrix has strong connection with the error
of least squares pose optimization. For example, the worst-case error variance
is quantified by the inverse of minimum eigenvalue of Ωx [23,24]. Large min-
eigenvalue of Ωx is preferred to avoid fatal error in line-LSQ solving. Also, the
volume of the confidence ellipsoid in pose estimation can be effectively measured
with the log-determinant of Ωx [25]. For accurately solving the line-LSQ problem,
large log-determinant of Ωx is pursued. In what follows, we quantify the spectral
property of Ωx with log-determinant, i.e. log det(Ωx).

As mentioned early, line selection/dropping has a high risk of forming ill-
conditioned line-LSQ problem. In what follows, we will describe an alternative
method to improve log det(Ωx), which is a better fit for line-LSQ problem.
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4 Good Line Cutting in Line-LSQ Problem

4.1 Intuition of Good Line Cutting

Compared with points that are typically modeled as sizeless entity, lines are mod-
eled to be able to extend along one certain dimension. For a 3D line Li defined
by endpoint-pair Li(0) and Li(1) in Euclidean space, the following equations
hold for any intermediate 3D point Li(α) that lies on Li:

Li(α) = (1 − α)Li(0) + αLi(1)

ΩLi(α) = Σ−1
Li(α) = {(1 − α)2ΣLi(0) + α2ΣLi(1)}−1,

where α is the interpolation ratio, and ΣLi(∗) is the covariance matrix of 3D
point Li(∗).

The covariance matrix of the intermediate 3D point, ΣLi(α), is convex to
the interpolation ratio α, as both ΣLi(0) and ΣLi(1) are positive semi-definite.
At some specific αm ∈ [0, 1], ΣLi(αm) reaches a global minimum (and ΩLi(αm) a
global maximum). In other word, at some intermediate 3D position Li(αm) (both
endpoints included) the corresponding 3D uncertainty is minimized. The same
conclusion holds when extending from a single 3D point to the 3D point-pair
〈Li(α1), Li(α2)〉 lying on the 3D line Li: both 3D points share the least-uncertain
position Li(αm). To minimize the amount of uncertainty introduced with 3D line
endpoints, the 3D line Li will shrink to a single 3D point!

However, the pose information Ωx is not only dependent on endpoint informa-
tion matrix ΩLi(α), but also the Jacobian term Hi(α) = (lTi Hx(α))+(lTi HL(α)).
Cutting 3D line into smaller segments will affect the corresponding Jacobian term
as well. Intuitively, line cutting could hurt the spectral property of measurement
Jacobian block Hx(α): if a 3D line gets cut to a single point, the corresponding
measurement Jacobian will degenerate from rank-2 to rank-1, thereby losing one
of the two constraints provided by the original 3D line matching.

Therefore, the objective of good line cutting can be written as follow,

[αi] = arg max log det(Ωx) (7)

= arg max log det[
∑

HT
i (αi)ΩLi(αi)Hi(αi) + Ωpt

x ]

where we include a constant term Ωpt
x to capture the information from point

features, if applicable. Naturally, this objective can be solved with nonlinear
optimization techniques.

4.2 Validation of Good Line Cutting

Before describing the optimization of (7), we would like to validate the idea of line
cutting. One natural question towards line cutting with (7) being, is it possible
that the Jacobian term HT

i (αi) has much stronger impact towards (7) than 3D
uncertainty reduction, so that one should always use the full-length of 3D
line? To address this question, we study the minimal case, single line cutting:
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only one pair of cutting ratio 〈α1, α2〉 can be changed, while the remaining n−1
lines are not cut.

It is cumbersome to derive the function from line cut ratio α to Jacobian term
Hi(α): it is highly non-linear, and the Jacobian term vary under different SE(3)
parameterizations of camera and 3D lines. Instead, a set of line-LSQ simulation
are conducted to validate line cutting.

The testbed is developed based on the simulation framework of [26]. A set
of 3D lines that form a cuboid are simulated, under homogeneous-points line
(HPL) parameterization. To simulate the error in 3D line triangulation, the
endpoints of 3D lines are perturbed with zero-mean Gaussians in inverse-depth
space, as illustrated with blue lines in Fig. 2 left. For the 3D line in red, the
optimal line cutting ratio, found through brute-force search, is plotted versus
camera pose in Fig. 2 right. The boxplots indicate that cutting happens when
the 3D line is orthogonal or parallel to the camera frame. In these cases, the
measurement Jacobian of the red 3D line scales poorly with line length. Taking
a smaller segment/point is preferred so as to introduce less noise into the least
squares problem. According to Fig. 2, line cutting adapts to the information and
uncertainty of the tracked lines based on the relative geometry.

Fig. 2. Line cutting behavior under different camera poses. A pair 〈0, 100〉 indicates
full line selection. Identical ratio pair, e.g. 〈45, 45〉 indicates cutting to a point. (Color
figure online)

To visualize the outcomes of different line cutting ratios, we used brute-force
sweep to generate the surface of log det(Ωx) as a function of the line cutting
ratio parameters. Three example surfaces are illustrated in Fig. 3. In the 1st
example, global maximum of log det(Ωx) is at 〈α1 = 0, α2 = 1.0〉, which indicates
the full-length of 3D line should be used. The 2nd one has global maximum at
〈α1 = 0, α2 = 0.76〉, which encourages cutting out part of the line. In column 3,
log det(Ωx) is maximized at 〈α1 = 0.52, α2 = 0.52〉, which means the original 3D
line should be aggressively cut to a 3D point. To maximize pose information,
line cutting is definitely preferred in some cases (e.g. Fig. 3 columns 2 and 3).



Good Line Cutting 535

Fig. 3. Example surfaces of log det(Ωx) in single line cutting set-up and HPL parame-
terization. The global maximum of log det(Ωx) is marked with red cross. (Color figure
online)

5 Efficient Line Cutting Algorithm

5.1 Single Line Cutting

To begin with, consider the single line cutting problem as simulated previously.
Based on Fig. 3, we notice the mapping from 〈α1, α2〉 to log det(Ωx) is contin-
uous, and concave within a certain neighborhood. Therefore, by doing gradi-
ent ascent in each of the concave regions, the global maximum of log det(Ωx)
is expected to be found. One possible triplet of initial pairs are: full-length
〈α1 = 0, α2 = 1.0〉, 1st endpoint only 〈α1 = 0, α2 = 0〉, and 2nd endpoint only
〈α1 = 1.0, α2 = 1.0〉.

The effectiveness of the multi-start gradient ascent is demonstrated with
100-run repeated test. Two commonly used endpoint-pair parameterizations of
3D lines [26] are tested here: homogeneous-points line (HPL) and inverse-depth-
points line (IDL). The error of endpoint estimation is simulated with i.i.d. Gaus-
sian in inverse-depth space (standard deviation of 0.005 and 0.015 unit are used),
and propagated to SE(3) space. Five different sizes (6, 10, 15, 20 and 30) of 3D
line set are tested. Under both HPL and IDL parametrization, we compare the
best pair from the 3 gradient ascends with the brute-force result. The differences
of line cutting ratios are smaller than 0.01 for over 99% of the cases. Therefore,
single line cutting problem can be solved effectively using the outcomes from a
combination of three gradient ascents.

5.2 Joint Line Cutting

Now extend the single line cutting to the complete problem of joint line cut-
ting: how to find the line cutting ratios for all n 3D lines, so that the log det of
pose information matrix generated from n line matchings is maximized?

Naturally, the joint line cutting objective (7) can be approached with nonlin-
ear optimizers, e.g. interior-point [27], active-set [28]. Meanwhile, an alternative
approach would be simple greedy heuristic: instead of optimizing the joint prob-
lem (or a smaller subproblem), simply searching for the local maximum for each
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3D line as single line cutting problem, and iterating though all n lines. As demon-
strated previously, single line cutting can be effectively solved with a combination
of 3 gradient ascends. Besides, the 3 independent gradients ascends can execute
in parallel. Compared with nonlinear joint optimization that typically requires
O(ε−c) iterations of the full problem (c some constant), greedy approach has a
much well-bounded computation complexity. It takes n iterations to complete,
while at each iteration the single line cutting is solved in O(m) (m the maximum
number of steps in gradient ascend). The efficiency of joint line cutting is crucial,
since only minimum overhead (e.g. milliseconds) shall be introduced to the real
time pose tracking of targeted line-assisted VO/VSLAM applications.

The greedy algorithm for efficient joint line cutting is described in
Algorithm 1. The component of pose information matrix from a full-length line
Li is denoted by Ωi

x(0, 1), while a line cut from 〈α1, α2〉 is denoted by Ωi
x(α1, α2).

With the line-LSQ simulation platform, the effectiveness of greedy joint line cut-
ting is demonstrated with 100-run repeated test. The Matlab implementations
of interior-point [27], as well as three variants of active-set [28], are chosen to
compare against the greedy algorithm. The results are presented as boxplots in
Fig. 4. Under both 3D line parameterizations (HPL and IDL), greedy algorithm
provides the largest increase of log det(Ωx) (on average and in the worst case).

Algorithm 1. Efficient greedy algorithm for joint line cutting.

Data: 3D line set {L(i)}n, 2D measurement set {l(i)}n

Result: {〈α1(i), α2(i)〉}n

1 Ωx =
∑

Ωi
x(0, 1);

2 for i = 1 : n do
3 Ωr

x = Ωx − Ωi
x(0, 1);

4 〈α1(i), α2(i)〉 = arg max log det(Ωi
x(α1, α2) + Ωr

x);

5 Ωx = Ωr
x + Ωi

x(α1(i), α2(i));

6 Experiments on Line-Assisted VSLAM

This section evaluates the performance of the proposed line cutting approach.
Two target scenarios of line-assisted VSLAM are set up for experiments: low-
texture and motion blur.

We base the line cutting experiment on a state-of-the-art line-assisted
VSLAM system, PL-SLAM [11]. As a stereo vision based system, it tracks both
ORB [29] point features and LSD [6] line features between frames, and per-
form an on-manifold pose optimization with weighted residual terms of both
feature types. One weakness of the original PL-SLAM1 is that the point feature
front-end is not as well tuned as other point-only VSLAM system, e.g. ORB-
SLAM2 [30]. Two modifications were made by us in response: (1) replacing the

1 https://github.com/rubengooj/pl-slam.

https://github.com/rubengooj/pl-slam
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Fig. 4. Boxplots of joint line cutting with different approaches. Left: with HPL
parametrization. Right: with IDL parametrization. Boxplots are presented in order:
(1) original log det(Ωx), (2) after line cutting with greedy approach, (3)–(6) after line
cutting with nonlinear joint optimizers.

OpenCV ORB extractor with the ORB-SLAM2 implementation, which provides
a larger number of (and well-distributed) point matchings than the original ver-
sion; (2) changing the point feature matching strategy from global brute force
search to local search (similar to ORB-SLAM2 implementation), which handles
the increasing amount of point features efficiently.

The proposed good line cutting algorithm is integrated into the modified
PL-SLAM in place of the original line-weighting scheme. It takes all feature
matchings as input: lines are to be refined with line cutting, while points serve
as constant terms in the line cutting objective. After line cutting, all features
(points and cut lines) are sent to pose optimization. The loop closing module of
PL-SLAM is turned off since the focus of this paper is real-time pose tracking.

For comprehensively evaluating the value of line cutting, five variants of the
modified PL-SLAM are assessed: (1) point-only SLAM (P ), (2) line-only SLAM
(L), (3) line-only SLAM with line cutting (L + Cut), (4) point & line SLAM
(PL), and (5) point & line SLAM with line cutting (PL + Cut). To better
benchmarking the performance of point features, we also report the results of
ORB-SLAM22 [30] (referred as ORB2) and SV O23 [4]. SV O2 is a state-of-the-
art direct VO system that supports stereo input. It tracks both image patches
and edgelets. All systems above were running on an Intel i7 quadcore 4.20 GHz
CPU (passmark score of 2583 per thread).

Accuracy of real-time pose tracking is evaluated with two relative metrics
between ground truth track and SLAM estimated track: (1) Relative Position
Error(RPE) [31], which captures the average drift of pose tracking in a short
period of time; (2) Relative Orientation Error(ROE), which captures the
average orientation error of pose tracking with the same estimation pipeline
as RPE. Both RPE and ROE are estimated with a fixed time window of 3 s.

2 https://github.com/raulmur/ORB SLAM2.
3 http://rpg.ifi.uzh.ch/svo2.html.

https://github.com/raulmur/ORB_SLAM2
http://rpg.ifi.uzh.ch/svo2.html
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Compared with the absolute metrics (e.g. RMSE of whole track), relative metrics
are more suited for measuring the drift in real-time pose tracking [31].

Due to the fact that most SLAM systems have some level of randomness (e.g.
feature extractor, multi-thread), all experiments in the following are repeated
with 10 times. For those failed more than 2 times in 10 trials, we ignore the
results due to the lack of consistency. For the rest, the average of relative metrics
(RPE and ROE) are reported.

Fig. 5. Example frames of line cutting PL-SLAM running in challenging scenarios: (1)
low-texture, (2) motion blur, (3) lighting change. Detected features are in green, while
projected are in red. Notice the length of projected line being much shorter than the
measurement, after line cutting. (Color figure online)

6.1 Low-Texture

To the authors’ knowledge, no publicly available, low-texture stereo benchmark
exists. To evaluate the proposed approach, we synthesized a low-texture stereo
sequence with Gazebo. An example frame of the low-texture sequence is provided
as the 1st plot in Fig. 5.

Relative errors are summarized in Table 1. After applying line cutting to
line-assisted baseline (L and PL), the average relative errors are cut down by
almost 40%, as highlighted in bold. The lowest tracking error (i.e. best accuracy)
is achieved when combining point and line features, and cutting the lines with
the proposed method (PL + Cut). Meanwhile, systems that only utilize point
features perform poorly: point-only SLAM (P ) has high ROE; ORB-SLAM2
(ORB2) failed to track. The direct approach SV O2 succeeded in tracking the
whole low- texture sequence, but has the highest relative errors.

The evaluation results suggest that, line features are valuable for pose track-
ing in low-texture scenarios. However, simply using the full-length of lines for
pose optimization may cause large tracking error. With the proposed line cut-
ting, the accuracy of line-assisted pose tacking improves.

6.2 Motion Blur

Motion blur happens when the camera is moving too fast (e.g. on a flying vehicle)
or when the scenario contains rapidly moving objects. Though the second case
is also challenging for VO/VSLAM, it is beyond the scope of this work (as it
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Table 1. Relative error on synthetic low-texture sequence

Metric Approach

L L + Cut PL PL + Cut P ORB2 SV O2

RPE(m/s) 0.246 0.141 0.242 0.126* 0.222 - 0.372

ROE(deg/s) 4.78 3.01 3.83 1.68* 5.13 - 8.83

violates the common assumption of static world). Here we focus on tracking the
pose of a fast-moving camera, under different levels of motion blur.

The dataset chosen is the EuRoC MAV dataset [32]. It contains 11 sequences
of stereo images recorded from a micro aerial vehicle. For each sequence, a precise
ground-truth track is provided with external motion capture systems (Vicon &
Leica MS50). Instead of running on all 11 sequences, only 6 fast-motion sequences
recorded in a Vicon-equipped room (with high potential to exhibit motion blur)
are used for motion blur evaluation. The RPEs are summarized in the upper
half of Table 2. For each sequence, we compare the line-assisted baseline with the
line cutting version, and highlight the better one in bold. Among all 7 methods
evaluated here, the one that leads to the lowest error is marked with a star sign.

Compared with the line-assisted baselines (L and PL), the line cutting ver-
sions (L + Cut and PL + Cut) clearly have lower level of RPEs on most
sequences. The improvement is less significant on V1-01-easy, mostly due to
the relative accurate line triangulation (the RPE of L is close to the lowest).
Meanwhile, the performance of ORB2 is not as consistent: when tracking suc-
ceed, ORB2 has the lowest RPE among all 7 methods. However it failed to
function reliably on the last 2 sequences. This is not surprising: when available,
point features are known to be more accurate for pose tracking; they are just
not as robust as lines under motion blur. Lastly, the direct SV O2 failed to track
on 4 out of 6 sequences, similar to the results reported in [4] (failed on 3 out
of 6). It is expected since direct approach are more sensitive to fast motion and
lighting changes (e.g. the 3rd plot in Fig. 5) than feature-based ones.

The level of motion blur for the original EuRoC sequence is not severe: the
shot of each camera is strictly controlled, and the vehicle is only doing fast motion
at several moments during the entire sequence. To assess the performance under
severe motion blur, we smooth the 6 Vicon sequences with a 5×5 box filter, and
rerun all 7 VO/VSLAM methods on the blurred ones. Corresponding results are
reported in the bottom half of Tables 2 and 3.

Under the severe motion blur, point-based approaches (P and ORB2) become
much less accurate than before, while also easy to loss track. Meanwhile, the
line-assisted approaches are more robust to the blur. More importantly, the
accuracy of line-assisted approaches are clearly improved with line cutting: PL +
Cut reaches the lowest RPE on 3 sequences, while L + Cut wins on another
one. One exception is on V2-01-easy blurred, where PL is already accurate and
line cutting leads to slight degeneracy. Last, SV O2 does slightly better than
PL + Cut on sequence V2-03-dif blurred, while has the highest RPE on other
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5 sequences. One potential reason that SV O2 tracks on all 6 blurred sequences
while failing on 4 original ones is that the blurring acts to pre-condition the direct
objective (original highly non-smooth). The convergence rate of optimizing the
direct objective improves and positively impacts the tracking rate.

Similarly, we also report the ROE in Table 3. The outcomes are consistent
with the RPE outcomes and analysis. Compared to point features, line features

Table 2. Relative position(m/s) error on EuRoC sequences with fast motion

Sequence Approach

L L + Cut PL PL + Cut P ORB2 SV O2

V1-01-easy 0.044 0.043 0.048 0.048 0.058 0.041* 0.128

V1-02-med 0.135 0.059 0.046 0.043 0.072 0.034* -

V1-03-dif 0.169 0.133 0.164 0.156 0.402 0.108* -

V2-01-easy 0.100 0.059 0.042 0.030 0.053 0.011* 0.109

V2-02-med 0.126 0.112* 0.179 0.126 - - -

V2-03-dif 0.483 0.450 0.431 0.364* - - -

V1-01-easy blurred 0.054 0.047* 0.054 0.052 0.062 0.048 0.126

V1-02-med blurred 0.076 0.068 0.052 0.049* 0.129 0.178 0.357

V1-03-dif blurred 0.233 0.206 - 0.148* - - 0.277

V2-01-easy blurred 0.144 0.054 0.034* 0.037 0.040 0.049 0.096

V2-02-med blurred 0.166 0.138 0.171 0.127* - 0.162 0.270

V2-03-dif blurred - - - 0.391 - - 0.289*

Table 3. Relative orientation(deg/s) error on EuRoC sequences with fast motion

Sequence Approach

L L + Cut PL PL + Cut P ORB2 SV O2

V1-01-easy 0.52 0.49 0.61 0.63 0.83 0.43* 4.23

V1-02-med 3.01 1.52 0.71 0.64 1.71 0.32* -

V1-03-dif 4.99 3.82 2.38 2.85 9.58 1.96* -

V2-01-easy 3.58 2.56 0.86 0.77 0.88 0.26* 4.49

V2-02-med 2.14* 2.35 4.38 3.47 - - -

V2-03-dif 12.67 11.77 10.77* 12.05 - - -

V1-01-easy blurred 0.80 0.63* 0.77 0.73 0.95 0.66 4.24

V1-02-med blurred 1.69 1.62 0.84 0.76* 3.08 2.63 8.63

V1-03-dif blurred 7.35 6.65 - 3.17* - - 10.49

V2-01-easy blurred 2.94 2.08 0.99 1.07 0.92* 2.25 3.96

V2-02-med blurred 3.47 2.67 3.15 2.62* - 5.48 8.38

V2-03-dif blurred - - - 10.60 - - 8.58*
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are robust to motion blur while preserving accurate position information. The
proposed line cutting further improves the tracking accuracy of line-assisted
VO/VSLAM.

Lastly, we briefly discuss the computation cost of line cutting. Since the
baseline PL-SLAM does not maintain covariance matrix for each 3D line, we do
so with a simple error model: (1) assume a constant i.i.d. Gaussian at the inverse-
depth space of each 3D line endpoint; (2) propagate the endpoint covariance
matrix from inverse-depth space of the previous frame to the Euclidean space
of current frame. Then we run the greedy line cutting algorithm (Algorithm1)
with these covariance/information matrices. Most of compute time is spent on
the iterative greedy algorithm. When averaged over the EuRoC sequences, the
line cutting module takes 3 ms to process 60 lines per frame.

7 Conclusion and Future Work

This paper presents good line cutting, which deals with the uncertain 3D line
measurements to be used in line-assisted VO/VSLAM. The goal of good line
cutting is to find the (sub-)segment within each uncertain 3D line that con-
tributes the most information towards pose estimation. By only utilizing those
informative (sub-)segments, line-based least squares is solved more accurately.
We also describe an efficient, greedy algorithm for the joint line cutting prob-
lem. With the efficient approximation, line cutting is integrated into a state-of-
the-art line-assisted VSLAM system. When evaluated on two target scenarios
of line-assisted VO/VSLAM(low-texture; motion blur), accuracy improvements
are demonstrated, while robustness is preserved. In the future, we plan to extend
line cutting to other 3D line parametrization, e.g. Plücker coordinates. The joint
feature tuning problem, namely point selection & line cutting, is also worth
exploring further.

References

1. Smith, P., Reid, I.D., Davison, A.J.: Real-time monocular SLAM with straight
lines (2006)

2. Gee, A.P., Mayol-Cuevas, W.: Real-time model-based SLAM Using line segments.
In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 354–363. Springer,
Heidelberg (2006). https://doi.org/10.1007/11919629 37

3. Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: Forsyth,
D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 802–815.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4 59

4. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidi-
rect visual odometry for monocular and multicamera systems. IEEE Trans. Robot.
33, 249–265 (2016)

5. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (2018)

6. von Gioi, R.G., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a line segment
detector. Image Process. Line 2, 35–55 (2012)

https://doi.org/10.1007/11919629_37
https://doi.org/10.1007/978-3-540-88688-4_59


542 Y. Zhao and P. A. Vela

7. Zhang, L., Koch, R.: Line matching using appearance similarities and geometric
constraints. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM
2012. LNCS, vol. 7476, pp. 236–245. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32717-9 24

8. Lu, Y., Song, D.: Robust RGB-D odometry using point and line features. In: IEEE
International Conference on Computer Vision, pp. 3934–3942 (2015)

9. Vakhitov, A., Funke, J., Moreno-Noguer, F.: Accurate and linear time pose esti-
mation from points and lines. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9911, pp. 583–599. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46478-7 36

10. Yang, S., Scherer, S.: Direct monocular odometry using points and lines. In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 3871–3877.
IEEE (2017)

11. Gomez-Ojeda, R., Moreno, F.-A., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-
SLAM: a stereo SLAM system through the combination of points and line seg-
ments. arXiv preprint arXiv:1705.09479 (2017)

12. Koletschka, T., Puig, L., Daniilidis, K.: MEVO: multi-environment stereo visual
odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 4981–4988. IEEE (2014)

13. Gomez-Ojeda, R., Gonzalez-Jimenez, J.: Robust stereo visual odometry through
a probabilistic combination of points and line segments. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2521–2526. IEEE (2016)
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