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Abstract. Unsupervised domain adaptation has caught appealing
attentions as it facilitates the unlabeled target learning by borrowing
existing well-established source domain knowledge. Recent practice on
domain adaptation manages to extract effective features by incorpo-
rating the pseudo labels for the target domain to better solve cross-
domain distribution divergences. However, existing approaches separate
target label optimization and domain-invariant feature learning as dif-
ferent steps. To address that issue, we develop a novel Graph Adaptive
Knowledge Transfer (GAKT) model to jointly optimize target labels and
domain-free features in a unified framework. Specifically, semi-supervised
knowledge adaptation and label propagation on target data are coupled
to benefit each other, and hence the marginal and conditional disparities
across different domains will be better alleviated. Experimental evalua-
tion on two cross-domain visual datasets demonstrates the effectiveness
of our designed approach on facilitating the unlabeled target task learn-
ing, compared to the state-of-the-art domain adaptation approaches.

Keywords: Domain adaptation · Adaptive graph
Semi-supervised learning

1 Introduction

In the real-world applications, there often exists a challenge that we can get
access to the abundant target data but with limited or even no labels [1,2]. How-
ever, it would be extremely time-consuming and expensive to manually annotate
the data. Domain adaptation has shown appealing performance in handling such
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a challenge through knowledge transfer from an external well-established source
domain, which lies in a different distribution from the target domain [3–12]. The
mechanism of domain adaptation is to uncover the common latent factors across
source and target domains, and adopt them to reduce both the marginal and
conditional mismatch in terms of the feature space between domains. Follow-
ing this, different domain adaptation techniques have been developed, including
feature alignment and classifier adaptation (Fig. 1).

Source 

Target

Jointcouple

Fig. 1. Illustration of our proposed algorithm, where source and target domains are
lying in different distributions under the original feature space. We jointly seek two
coupled projections Ps/t to map the original data to a domain-invariant space. (a) A
semi-supervised class-wise adaptation strategy is proposed via assigning every target
data point with a probabilistic label. (b) When source and target data have smaller
domain mismatch, graph-based label propagation strategy could assign target labels
more accurately.

Recent research efforts on domain adaptation have already witnessed appeal-
ing performance via learning effective domain-invariant features from two dif-
ferent domains, such that source knowledge could be adapted to facilitate the
recognition task in target domain [3,5,7,8,10–19]. Among them, Maximum Mean
Discrepancy (MMD) [20] is one of the most widely used strategies to measure the
distribution difference between source and target domains [3,7,10,16,21]. Later
on, many domain adaptation approaches were proposed to design a revised class-
wise MMD by incorporating the pseudo labels of target data. Those algorithms
target at iteratively assigning temporal labels for the target samples and then
further refining the class-wise domain adaptation regularizer. However, all the
existing methods optimize the target labels in a separate step along with the
domain-invariant feature learning. Thus, they may fail to benefit each other in
an effective manner.

In this paper, we develop an effective Graph Adaptive Knowledge Transfer
(GAKT) framework by unifying domain-invariant feature learning and target
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label optimization into a joint learning framework. The key idea is to jointly
optimize the probabilistic class-wise adaptation term and the graph-based label
propagation in a semi-supervised scheme. Thus, two procedures could benefit
each other for promising knowledge transfer. To our best knowledge, this would
be the first work to jointly model knowledge transfer and label propagation in a
unified framework. To sum up, we have two-fold contributions as follows:

– We attempt to seek a domain-invariant feature space by designing a
domain/class-wise adaptation strategy, where marginal/conditional distribu-
tion gap between source and target domains could be both leveraged. Specifi-
cally, we develop an iterative refinement scheme to optimize the probabilistic
class-wise adaptation term by involving the soft labels for target samples from
a graph-based label propagation perspective.

– Simultaneously, graph-based label propagation manages to capture more
intrinsic structure across source and target domains in the domain-free feature
space, and thus, the labeled source data could better predict the unlabeled
target through an effective cross-domain graph. Therefore, well-established
source knowledge can be well reused to recognize unlabeled target samples.

2 Related Work

In this part, we present the related research on domain adaptation and discuss
the difference between our method and others.

Domain adaptation has been shown as an attractive approach in lots of real-
world applications when we have sparsely or none label information for the target
domain [2]. Specifically, domain adaptation attempts to enhance the target learn-
ing by borrowing the labeled source knowledge, which is lying in the different
distributions with the target domain. For instance, we tend to take a picture
with cellphone and search in the Amazon pool to recognize what is the object.
Generally, there is a distribution gap between the cellphone picture (low resolu-
tion and complex background) and Amazon gallery images (clear background).
Hence, the core challenge turns to adapting any one domain or both domains to
reduce the distribution mismatch.

Generally, domain adaptation techniques can be split into two different lines
based on the accessibility of labeled information in the target domain, one is
semi-supervised domain adaptation, and the other is unsupervised domain adap-
tation. For semi-supervised scenario [22,23], we are accessible to a small amount
of labeled target data, which makes the domain adaptation easier. A more chal-
lenge case is unsupervised domain adaptation [3,24], in which we aim to deal
with totally unlabeled target domain. Thus, unsupervised domain adaptation
attracts more attention. Along this line, domain-invariant feature learning and
classifier adaption are two strategies to fight off unsupervised domain adap-
tation. Specifically, domain-invariant feature learning includes traditional sub-
space learning [7,8,13,21,25–27] and deep learning methods [5,19,28,29]. Among
them, subspace-based domain adaptation approaches have been verified with
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promising results by aligning two different domains into a domain-invariant low-
dimensional feature space. Deep domain adaption methods aim to seek an end-
to-end deep architecture to jointly mitigate the domain shift and seek a general
classifier. Besides, subspace-based domain adaptation can still improve the adap-
tation ability over deep domain adaptation with the effective deep features, e.g.,
DeCAF features.

Hence, we equip subspace learning technique to address marginal/conditional
divergences across two different domains. Meanwhile a cross-domain graph built
on the source and target would better transfer the label information by capturing
the intrinsic structure in the shared space. Specifically, label propagation [30,31]
would be jointly unified into the domain-invariant feature learning framework
to refine the class-wise adaption term, which would benefit the effective feature
learning. That is being said, the soft labels and their probability are not only
needed, but also effective. This is the most significant difference compared to
the existing works. More interestingly, we can adapt the newly designed loss
function to deep architecture to fine-tune the network parameters in a unified
deep domain adaption framework [18,32].

3 The Proposed Algorithm

Given a labeled source domain with ns data points and feature dimension d from
C categories: {Xs, Ys} = {(xs,1, ys,1), · · · , (xs,ns

, ys,ns
)} in which xs,i ∈ R

d is the
feature vector while ys,i ∈ R

C is its corresponding one-hot label vector. Define Xt

as an unlabeled target domain with nt data points, i.e., Xt = {xt,1, · · · , xt,nt
}, in

which xt,i ∈ R
d. In the domain adaptation problem, source and target domains

shall have the consistent label information and the goal is to recognize the unla-
beled target samples.

Since source and target samples are distributed in different feature spaces,
i.e., Xs � span(Xt), we devote to seek a latent common space shared across
source and target domains through two coupled projections Ps/t ∈ R

d×p. p is
the dimension of the low-dimensional space (p � d). In this way, the domain
shift between source and target could be well addressed, and hence, the discrim-
inative knowledge within well-established source could be reused to facilitate the
unlabeled target classification.

3.1 Motivation

Existing transfer subspace learning approaches [3,10,13] iteratively predict
pseudo labels of the target data through classifiers, e.g., support vector machines
(SVM). Most recently, Hou et al. improved the performance through further
refining the pseudo labels using label propagation after initial labels from clas-
sifiers [7]. Moreover, Yan et al. explored a weighted MMD to account for class
weight bias and enhance domain adaptation performance [12]. However, they
built the revised MMD by assigning each target data point with only a single
specific label. This could hurt the knowledge transfer since target samples might
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be predicted wrongly in the beginning. Moreover, when target samples from
two classes have overlap distribution, it would easily undermine the intrinsic
structure within the data by assigning only one hard label to those samples.

Another phenomenon is that we could acquire better target label prediction
performance with more iterations during model optimization. Hence, the label
probability to the true class for the unlabeled target samples would be triggered
to a higher level. When we predict target data with inaccurate labels, they
are unable to contribute during the designed class-wise adaptation term. For
those reasons, we consider each target sample could be assigned to the entire
label pool but with different probabilities, which we refer to as “soft label”.
In another word, although the label probability to the true class is a little bit
lower in the early stage, it could still benefit the label propagation stage. To
further extract effective features, we design an effective probabilistic class-wise
adaptation regularizer to convey knowledge transfer by capturing the intrinsic
structure of target domain. On the other hand, the label propagation turns
out to be more effective with more discriminative domain-invariant features.
Finally, these two strategies tend to trigger and benefit each other during the
model optimization, which could also be formulated into the unified perspective
of multi-view representation [2].

3.2 Probabilistic Class-Wise Domain Adaptation

We first go over the empirical Maximum Mean Discrepancy (MMD) [3], a widely
used approach to alleviating marginal distribution disparity. MMD actually
contrasts various distributions through the sample mean distance across two
domains under the projected feature space, namely

M(Ps, Pt) =
∥
∥
∥

1
ns

ns∑

i=1

P�
s xs,i − 1

nt

nt∑

j=1

P�
t xt,j

∥
∥
∥

2

2
=

∥
∥
∥

P�
s Xs1ns

ns
− P�

t Xt1nt

nt

∥
∥
∥

2

2
,

(1)
in which xs/t,i/j denotes the i/j-th sample of Xs/t while 1ns/t

is an all one
column vector with size of ns/t.

Such an MMD strategy in Eq. (1) is capable of reducing the disparity of
the marginal distributions, but it fails to approach the conditional distribution
divergence of two domains. In classification problems, it is essential to reduce the
conditional distribution mismatch between two different domains. When target
samples are completely not annotated, alignment of the conditional distributions
becomes nontrivial, even through exploring sufficient statistics of the distribu-
tions. To that end, we develop a probabilistic class-wise adaptation formula to
effectively guide the intrinsic knowledge transfer. In this way, the predicted soft
labels for the target samples could also benefit the domain alignment as well
even when little knowledge of them can be accessible at the beginning.

Suppose F j
t ∈ R

c as the probabilistic label to the j-th target data point, in
which every element f

(c,j)
t (f (c,j)

t ≥ 0 and
∑C

c=1 f
(c,j)
t = 1) means the probability

for the j-th unlabeled target data point belonging to the c-th category. In other
words, each target sample partially contributes to various classes during label
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prediction. For instance, the “computer” will be most likely linked to the “mon-
itor”, rather than “mug”, because computers and monitors look more visually
similar. Hence, such probabilities and linkage between different concepts would
pave the way for the label propagation.

To promote the usage of soft labels in multiple classes and thus address the
conditional distribution divergences across two domains, we bring forward the
probabilistic labels to the MMD modeling and design a novel weighted class-wise
adaption loss function as follows:

C(Ps, Pt, Ft) =
C∑

c=1

∥
∥
∥

1
nc

s

nc
s∑

i=1

P�
s xc

s,i − 1
nc

t

nt∑

j=1

f
(c,j)
t P�

t xt,j

∥
∥
∥

2

2
,

= ‖P�
s XsYsNs − P�

t XtFtNt‖2F,

(2)

in which ‖·‖F indicates the Frobenius norm and nc
s means the source sample size

of the c-th class. nc
t denotes the target sample size for the c-th category, which is

neither an integer nor directly provided (We cannot obtain the true target sample
size of each class). Thus, we approximately compute the nc

t by nc
t =

∑nt

j=1 f
(c,j)
t .

Note, Ns/t ∈ R
C×C are diagonal matrices with the c-th diagonal element as 1

nc
s/t

.

In fact, our probabilistic class-wise adaptation term (Eq. (2)) is able to fight off
the impact of class weight bias, by considering prior category distributions.

The above Eqs. (1) and (2) learn two domain-specific projections individu-
ally, and we also want to mitigate the discrepancy across different domains via
constraining the source and target projections similar. Along with this line, an
auxiliary mapping function M was explored to link the source projection with
the target one, i.e., ‖Ps − MPt‖2F [33,34], while Zhang et al. jointly optimized
them and adopted ‖Ps − Pt‖2F to preserve the source discriminative information
and the target variance [35]. However, they ignored the domain-specific parts
and focused on the domain-shared projection bases. In this paper, we consider
both uncovering more shared bases across source and target domains, and pre-
serving the domain-specific bases, and thus, we explore l2,1-norm to constrain
two projections, i.e., ‖Ps − Pt‖2,1. By integrating Eq. (1), Eq. (2), and projec-
tion alignment, we have the objective with constraints P�

s XsHsX
�
s Ps = Ip and

P�
t XtHtX

�
t Pt = Ip:

D(Ps, Pt, F ) = ‖P�
s XsȲsN̄s − P�

t XtF̄tN̄t‖2F + α‖Ps − Pt‖2,1, (3)

where Ȳs = [1ns
, Ys], F̄t = [1nt

, Ft], and N̄s/t = diag( 1
ns/t

, Ns/t), Hs/t = Ins/t
−

1
ns/t

Ins/t
denotes the centering matrix while Ins/t

means the n × ns/t matrix of
ones. As discussed in [3,7], such a constraint would help keep the data variance
after adaptation, which further brings in additional data discriminating ability
during the learning of Ps/t.

3.3 Joint Knowledge Transfer and Label Propagation

Suppose G is an undirected graph defined on the mixture of the source and target
with n = ns + nt samples and W is its corresponding weight matrix. We could
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model a smooth Label Propagation through the graph Laplacian regularization
[30,31,36]:

min
F

tr(F�LF ), s.t. Fs = Ys, F ≥ 0. (4)

where F = [Fs;Ft] ∈ R
n×C and L = W − D ∈ R

n×n represents the graph
Laplacian [31,36–38]. Meanwhile, D denotes a diagonal matrix with the diagonal
entries as the column sums of W . Specifically,

L =
[

Lss, Lst

Lts, Ltt

]

=
[

Wss − Dss, Wst

Wts, Wtt − Dtt

]

,

where Wst = W�
ts ∈ R

ns×nt is a weight matrix across source and target samples.
Note the above graph Laplacian shares the same learning target Ft, and we

may merge the two learning problems and formulate the final learning objective
for joint knowledge adaption:

min
Ps,Pt,F

‖P�
s XsȲsN̄s − P�

t XtF̄tN̄t‖2F + α‖Ps − Pt‖2,1 + λtr(F�LF ),

s.t. P�
s/tXs/tHs/tX

�
s/tPs/t = Ip, F ≥ 0, F1C = 1n, Fs = Ys.

(5)

To deal with the constraint Ft1C = 1nt
efficiently, we relax the equality con-

dition by incorporating a penalty regularizer γ‖Ft1C − 1nt
‖22 into the objective

formula (Eq. (5)), in which γ is the positive penalty parameter.

Remark: Our proposed approach joints effective domain-free feature learning
and target label propagation in a unified knowledge adaptation framework. Thus,
it could benefit each other to improve the recognition for the target domains.
With domain/class-wise adaption, the well-established source information is able
to boost the target recognition. With domain shift mitigated, an effective graph
across source and target could be built so that source labels are able to propagate
the unlabeled target data. Meanwhile, when more accurate labels are assigned
to the target data, probabilistic class-wise adaptation term could transfer more
effective knowledge across two domains. Such an EM-like refinement will facili-
tate the knowledge transfer.

3.4 Optimization Solution

It is easy to check that Ps, Pt and Ft in Eq. (5) cannot be jointly optimized.
To address this optimization problem, we first transform it into the augmented
Lagrangian function by relaxing the non-negative constraint as:

J = ‖P�
s XsȲsN̄s − P�

t XtF̄tN̄t‖2F + α‖Ps − Pt‖2,1 + λtr(F�LF )
+γ‖Ft1C − 1nt

‖22 + tr(ΦF�
t ),

s.t. P�
s/tXs/tHs/tX

�
s/tPs/t = Ip, Fs = Ys,

(6)

where Φ is the Lagrange multiplier for constraint Ft ≥ 0. While it is difficult to
jointly optimize Ft, Ps and Pt, it is solvable over each of them in a leave-one-out
manner. Specifically, we explore an EM-like optimization scheme to update the
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variables. For E-step, we fix Ps, Pt and update Ft and Nt; while for M-step,
we update the subspace projections Ps, Pt using the updated Ft, Nt. Hence, we
optimize two sub-problems iteratively.
E-step: Label Propagation

Given two subspace projections Ps and Pt, we could insert Fs = Ys into
tr(F�LF ) and get tr(F�

t LttFt +2Y �
s LstFt). Thus, we obtain the partial deriva-

tive of J w.r.t. Ft, by setting it to zero as:

∂J
∂Ft

= 2(Zt − Zs) + 2γ(Ft1C − 1nt
)1�

C + 2λQ + Φ = 0,

where

⎧

⎪⎨

⎪⎩

Q = LttFt + L�
stYs,

Zs = X�
s Ps(P�

s XsYsNs)Nt,

Zt = X�
t Pt(P�

t XtFtNt)Nt.

(7)

Using the KKT conditions Φ�Ft = 0 [39] (� denotes the dot product of two
matrices), we achieve the following equations for Ft:

[

(Zt − Zs) + γ(Ft1C − 1nt
)1�

C + λQ
]

� Ft = −Ψ � Ft = 0.

Following [37], we obtain the updating rule:

Ft = Ft �
√

[Zt]+ + [Zs]− + FW

[Zt]− + [Zs]+ + FD
, (8)

where FW = γFt1�
C +λ(WttFt+W�

stYs) and FD = γ1nt
1�

C +λDttFt. Specifically,
[A]+ means the negative elements of the matrix A are replaced by 0. Similarly,
[A]− denotes the positive elements of the matrix A are replaced by 0. When we
achieve Ft, Nt can be updated accordingly.
M-step: Learning Subspace Projection

When Ft and Nt are optimized, we could update the subspace projection
P = [Ps, Pt] with the refined class-wise adaption term. Thus,

P = arg min
P �SP=I2p

‖P�
s XsȲsN̄s − P�

t XtF̄tN̄t‖2F + α‖Ps − Pt‖2,1

= arg min
P �SP=I2p

tr(P�TP ) + αtr(P�GP ), (9)

where

S =
[

XsHsX
�
s , 0

0, XtH
�
t Xt

]

T =
[

XsȲsN̄sN̄sȲ
�
s X�

s , XsȲsN̄sN̄tF̄
�
t Xt

XtF̄tN̄tN̄sȲ
�
s X�

s , XtF̄tN̄tN̄tF̄
�
t Xt

]

G =
[

G,−G
−G,G

]

G is a p × p diagonal matrix with its i-th diagonal element as Gii = 1
‖pi‖2

if
pi �= 0, otherwise Gii = 0. pi is the i-th row vector of Ps−Pt. Equation (9) could
be addressed by a generalized Eigen-decomposition problem: (T+αG)ρ = ηSρ.
The vectors ρi (i ∈ [0, p−1]) are obtained according to its minimum eigenvalues.
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Thus, we achieve updated subspace projection P = [ρ0, · · · , ρp−1]. After we
achieve Ps and Pt, we could optimize G.

By alternating the E and M steps detailed above, we will iteratively optimize
the problem until the objective function becomes converged. What is notewor-
thy is that, we could generally obtain a probabilistic labeling for the unlabeled
target samples with two effective coupled projections. Thus, if we exploit such
a label assignment strategy (Eq. (8)) to improve the projection discriminability
(Eq. (9)) in an iterative fashion, we are able to alternatively enhance the labeling
quality and feature learning. For initialization of Ft, we adopt Label Propaga-
tion (Eq. (4)) from L built on original features of source and target domains.
Furthermore, we can further achieve the partial derivatives with respect to X,
i.e., ∂J

∂X , and then conduct the standard back propagation strategy to optimize
the convolutional neural network weights.

3.5 Time Complexity

In this section, we analyze the model complexity for our approach. There are
two main time-consuming components: (1) Non-negative Ft optimization (Step
1); (2) Subspace projection learning (Step 2).

In detail, the major time-consuming terms in non-negative Ft optimiza-
tion are matrix multiplications in Step 1. Generally, the multiplication for
matrix with the size nt × nt could cost O(n3

t ). Suppose there are l multipli-
cation operations, thus, Step 1 would cost O(ln3

t ). Step 2 could cost O(d3) for
the generalized Eigen-decomposition of Eq. (9) for matrices with size of R

d×d,
which could be reduced to O(d2.376) through the Coppersmith-Winograd method
[40]. Furthermore, we can speed up the operations of large matrices through a
sparse matrix, and state-of-the-art divide-and-conquer approaches. Meanwhile,
we could also store some intermediate computation results which could be reused
in every stage.

4 Experiments

In this part, we first illustrate the benchmarks as well as the experimental set-
tings, and then present the comparative evaluations with existing domain adap-
tation approaches, further with some property analysis.

4.1 Datasets and Experimental Setting

Office-31+Caltech2561 consists of 10 common categories from Office-31 and
Caltech-256 benchmarks, with 3 subsets (Amazon, Webcam, and DSLR) from
Office-31 and one from Caltech-256, respectively. Note that Amazon and Caltech-
256 images are collected online with a clear background, while Webcam and
DSLR images are taken from office environments with different devices. For a
1 http://www-scf.usc.edu/∼boqinggo/domainadaptation.html.

http://www-scf.usc.edu/~boqinggo/domainadaptation.html
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fair comparison, we utilize the 4096-dim DeCAF6 feature and adopt the full-
sample protocol provided by [24] in unsupervised domain adaptation.

Office+Home2 [18] contains 4 domains, each with 65 categories’ daily objects.
Specifically, Art denotes artistic depictions for object images; Clipart means pic-
ture collection of clipart; Product shows object images with a clear background,
similar to Amazon category in Office-31; Real-World represents object images
collected with a regular camera. We adopt deep features of the fc7 layer in the
VGG-F model, pre-trained using the ImageNet 2012 [18].

We mainly compare with six state-of-the-art shallow domain adaptation
approaches to evaluate the effectiveness of our algorithm as follows: Geodesic
Flow Kernel (GFK) [24], Joint Distribution Adaptation (JDA) [3], Closest Com-
mon Space Learning (CCSL) [16], Label Structural Consistency (LSC) [7], Joint
Geometrical and Statistical Alignment (JGSA) [35] and Probabilistic Unsuper-
vised Domain Adaptation (PUnDA) [11]. Moreover, Label Propagation (LP)
[30] is adopted as a baseline, which directly builds a graph on original features
across source and target domains. For LP and our model, we both adopt k-
nearest neighbor graph (k = 5 in our experiment) with heat-kernel weight [30].
We further compare to several deep domain adaptation models, i.e., DAN [32],
DHN [18] and WDAN [12], to show the superiority of our model. Specifically, we
adopt the VGG-F structure for these three methods in terms of fair comparison.
Also, we cite the results reported by other publications when the experimental
settings are exactly the same, or run available source codes under other settings.

In all our experiments, we adopt k-nearest neighbor graph (k = 5 in our
experiment) with heat-kernel weight [30]. We set λ = 10, α = 0.1, and γ = 104

in our experiments to guarantee the sum of each soft label to be 1. We adopt the
top-1 classification accuracy for the unlabeled target sample as the evaluation
metric.

Fig. 2. Recognition rates of 6 approaches on Office-31+Caltech-256, where A = Ama-
zon, C = Caltech-256, D = DSLR and W = Webcam.

2 https://hemanthdv.github.io/officehome-dataset/.

https://hemanthdv.github.io/officehome-dataset/
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Table 1. Recognition rates (%) of 11 algorithms on Office-31+Caltech-256, where A
= Amazon, C = Caltech-256, D = DSLR and W = Webcam.

Methods

\S→T

C→W C→D C→A W→C W→A W→D A→C A→W A→D D→C D→W D→A

LP [30] 80.34 93.63 92.07 78.63 80.82 97.38 86.62 80.36 93.63 85.49 100.00 91.23

GFK [24] 75.08 83.06 87.65 77.38 84.25 99.30 79.07 76.68 79.43 80.41 79.70 84.96

JDA [3] 85.08 90.36 87.65 83.64 87.02 100.00 86.33 83.78 88.54 83.88 97.98 90.28

CCSL [16] 82.37 87.90 93.32 82.90 89.98 96.18 87.18 83.05 87.26 84.06 96.27 90.92

LSC [7] 91.18 95.26 94.28 87.97 93.31 100.00 87.88 88.81 94.90 86.19 99.32 92.37

RTML

[10]

92.46 92.36 90.26 84.65 87.92 100.00 86.86 84.68 90.26 84.62 98.26 90.82

JGSA [35] 85.08 92.36 91.75 84.68 91.44 100.00 85.04 84.75 85.35 85.75 98.64 92.28

PUnDA

[11]

86.76 90.98 93.12 83.28 89.06 99.16 86.64 82.86 85.86 83.48 98.24 89.24

DAN [32] 92.64 90.52 92.03 81.53 92.13 100.00 86.05 91.82 91.74 82.04 98.55 90.02

WDAN

[12]

93.67 93.48 93.11 84.12 92.87 100.00 86.93 92.26 92.87 83.92 99.28 91.87

Ours 95.36 96.42 95.12 88.84 93.84 100.00 88.46 90.18 95.48 86.82 100.00 93.98

Table 2. Recognition accuracies (%) for cross-domain experiments on Office+Home,
where Art (Ar), Product (Pr), Real-World (Rw), and Clipart (Cl).

Config Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr

LP [30] 20.36 36.32 30.24 28.37 36.32 32.28 23.32 28.25 43.23 30.28 30.24 52.38

GFK [24] 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89

JDA [3] 25.34 35.98 42.94 24.52 40.19 40.90 25.96 32.72 49.25 35.10 35.35 55.35

CCSL [16] 23.51 34.12 40.02 22.54 35.69 36.04 24.84 27.09 46.36 34.61 31.75 52.89

LSC [7] 31.81 39.42 50.25 35.46 51.19 51.43 30.46 39.54 59.74 43.98 42.88 62.25

RTML [10] 27.57 36.20 46.09 29.49 44.69 44.66 28.21 36.12 52.99 38.54 40.62 57.80

JGSA [35] 28.81 37.57 48.92 31.67 46.30 46.76 28.72 35.90 54.473 40.61 40.83 59.16

PUnDA [11] 29.99 37.76 50.17 33.90 48.91 48.71 30.31 38.69 56.91 42.25 44.51 61.05

DAN [32] 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73

DHN [18] 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54

WDAN [12] 32.26 43.16 54.98 34.28 49.92 50.26 30.82 38.27 56.87 44.32 39.35 63.34

Ours 34.49 43.63 55.28 36.14 52.74 53.16 31.59 40.55 61.43 45.64 44.58 64.92

4.2 Comparison Experiments

First of all, we evaluate our algorithm and other competitors with source and
target as one single subset. Tables 1 and 2 list the comparison results of 12
different cases based on Office-31+Caltech-256 and Office+Home, respectively.
From the performance, we notice that our proposed approach works better than
other baselines across almost all the cases. Especially in two cases, our model
achieves 100% accuracy. Also in several tasks, e.g., C → W , the performance of
our proposed algorithm is 3% higher than the state-of-the-art approaches.
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Fig. 3. Recognition rates of 3 approaches on two deep features (a) GoogLeNet and (b)
VGGnet-16 from Office-31+Caltech-256, where A = Amazon, C = Caltech-256, D =
DSLR, and W = Webcam.

Secondly, we explore the evaluation on knowledge transfer with multiple sub-
domains. Figure 2 lists the comparison results from different methods on various
imbalanced cross-domain combinations. For x-axis in Fig. 2, either domain con-
sists of multiple sub-domain data, and complete results of different approaches
are listed. From these results, we see our approach works favorably against state-
of-the-art unsupervised domain adaptation algorithms.

Discussion: LP could work well in some cases when the distribution differences
of two domains are not large, e.g., D → W , W → D, A → C and C → A.
However, it cannot achieve appealing performance in some challenging tasks, e.g.,
C → W . While our approach could even improve by 18.9% in C → W , which
verifies the effectiveness of our approach. Another thing is that deep features
pre-trained on large-scale dataset could mitigate the domain shift somehow,
especially for different resolutions.

CCSL is designed for the imbalanced domain transfer, by associating such
data to the capability of keeping discriminative and structural information within
and across domains. However, it is too specific and not general. From the perfor-
mance, we witness that our algorithm is able to consistently outperform CCSL.
JDA and RTML both adopt pseudo labels of the target sample from a spe-
cific classier to refine the class-wise adaptation term. In this way, every target
sample is assigned to a single label, which may bring in problems when they
are assigned with wrong labels. RTML further explores the marginal denoising
reconstruction, and thus achieves better results than JDA.

Besides, LSC adopts a specific classifier to initialize the pseudo labels of the
target, and then refines the labels through label propagation on a cross-domain
graph. However, it still considers the hard labels of the target data to build
the class-wise adaptation. Most importantly, such label prediction and feature
learning are separately learned for JDA, RTML and LSC. Compared with these
methods, we manage to conduct joint feature learning and label propagation
to benefit each other for more effective knowledge transfer. Compared with [7],
while the two models share certain spirits, our method concentrates on building
a joint UDA learning model. The model in [7], however, designs a separate label
propagation after feature alignment, which may hinder the knowledge transfer.
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In addition, [7] still feeds the hard labels back to optimize feature adaption,
which strictly follows the conventional semi-supervised learning. However, we
introduce the soft labels as well as class-wise adaption strategy which is well
integrated with the label propagation framework. That is being said, the soft
labels and their probability are not only needed, but also effective. This is the
most significant difference compared to the existing works. From the results, we
notice that our model performs better in all the cases.

Moreover, JGSA also seeks two linear projections that transform source and
target data into a low-dimensional domain-invariant space in which the geomet-
rical and distribution shift are mitigated jointly. However, it does not consider
the class-wise adaptation to mitigate the conditional distribution difference. Sim-
ilarly, PUnDA also seeks linear transformations per domain to project data into
a shared space, which jointly reduces the domain mismatch while improving the
classifier’s discriminability.

Deep domain adaptation methods manage to simultaneously build deep
architectures and conduct knowledge transfer. From our results, we notice that
such a joint learning strategy could benefit the performance when comparing
with several traditional linear transfer learning models. However, our model
could further outperform those deep domain adaptation models, i.e., DAN, DHN,
WDAN, which indicates that two separate steps in our pipeline can also adapt
knowledge across different domains. Specifically, upon advanced deep features,
our model is able to further improve the performance, which primarily stems from
our probabilistic class-wise adaptation scheme to explore the intrinsic structure
of the data during knowledge transfer. Moreover, traditional deep domain adap-
tation approaches always adopt a pre-trained model, which is similar to the case
that we directly work on the deep features. The difference is that we only fine-
tune the final layer. From our experimental results, we find knowledge transfer
part plays a key role in successful domain adaptation, while fine-tuning deep
structure parameters influences slightly on the final performance. To verify this
point, we further evaluate our model with deep domain adaptation in different
architectures, i.e., GoogLeNet [41] and VGGnet-16 [42]. Our model adopts the
features generated from GoogLeNet and VGG-16, and their dimensionality are
1024 and 4096, respectively. The experimental results are provided in Fig. 3,
where we witness that the proposed approach still obtains better performance
than deep domain adaptation models.

Finally, we notice that the performances of all the algorithms on Office+Home
are much lower than Office-31+Caltech256, due to the fact that there are more
categories and more samples in Office+Home.

4.3 Empirical Evaluation

In this part, we present the convergence analysis, influence of parameters, and
dimensionality of two coupled projections.

First of all, we testify the convergence of our proposed model. The cross-
domain task C → A on Office-31+Caltech256 is adopted for evaluation. The
convergence curve is shown in Fig. 4(a), where we could observe that our app-
roach converges very well.
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Fig. 4. (a) Convergence curve for our proposed approach. (b) Parameter analysis of λ,
where the values of x-axis use log() to rescale the length. (c) The influence of different
dimensions for Ps/t.

Fig. 5. Recognition accuracies (%) for domain adaptation experiments 12 cross-domain
tasks (listed in Table 2) on the Office+Home dataset.

Secondly, we evaluate the influence of parameter λ and show the recognition
results at various values in Fig. 4(b), in which we notice that our model generates
better performance across three different cases when λ ∈ [1, 10]. Generally, we
set λ = 10 as default during the experiments.

Moreover, we verify the dimension property of Ps and Pt. In Fig. 4(c), we
obtain an initially significant increase followed by a stable recognition perfor-
mance, which denotes that our model works very well even when the data are
lying in a low-dimensional space. Thus, we could verify that effective projections
further enhance the knowledge transferability based on the deep features.

Finally, we aim to show that the proposed soft-label MMD is significantly
superior to the hard-label MMD. Specifically, we do a post-processing for each Ft

updating by transforming it to a zero-one matrix. We show the results of this vari-
ant and our proposed model on 12 cross-domain tasks (Office+Home datasets)
in Fig. 5, where we notice that soft-label version could generally improve the
performance over hard-label version 1–2%. On the other hand, we can also get a
rough idea about the advantage of soft labels over the “hard” ones. For example,
our model and LSC [7] used soft-label MMD and hard-label MMD, respectively,
although both used label propagation. From the results, we already notice our
model works better than LSC.

Furthermore, we visualize the soft labels Ft to show that our model could
improve the label prediction through model optimization (An example is shown
in Fig. 6). From the results, we notice that our approach could enhance the
label prediction based on the original LP. That means our “soft label” would be
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Fig. 6. The predicted soft label for “Back Pack” are learned by (a) original LP and
(b) our proposed algorithm, where we notice that the probability of backpack category
increases from 0.26 to 0.43 with our model.

optimized during the model training. We also offer statistics summarizing how
many images are wrongly classified by LP [30] but are correctly classified by the
proposed approach, and vice versa. Specifically, we evaluate on Office+Home
database with 4 sets, i.e., Art (2411 samples); Clipart (4325 samples); Product
(4341 samples); Real World (4308 samples), and the results for 12 cross-domain
tasks are shown in Table 3. We notice our model would wrongly classify some
images which are correctly recognized by LP, which may be caused by some
hurt to the label propagation of LP with further domain alignment. However,
our model is able to significantly correctly classify more samples over LP. This
indicates our joint adaptation could enhance the label prorogation ability across
different labeled source and unlabeled target domains.

Table 3. Statistics summarization. Case 1: how many images are wrongly classified
by LP [30] but correctly classified by ours; Case 2: vice versa.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

Case 1 638 347 1109 203 739 907 227 533 795 372 624 87

Case 2 27 30 30 16 26 7 28 1 11 2 4 33

5 Conclusion

In this paper, we developed a novel Graph Adaptive Knowledge Transfer frame-
work for unsupervised domain adaption. Specifically, we built a probabilistic
class-wise adaptation term by assigning the target samples with multiple labels
through graph-based label propagation. Meanwhile, two effective subspace pro-
jections were learned via the probabilistic class-wise adaption strategy so that
intrinsic information across source and target could be preserved with the graph.
In this way, accurate labels could be assigned to target samples with label propa-
gation. These two strategies worked in an EM-like way to improve the unlabeled
target recognition. Experiments on two cross-domain visual benchmarks verified
the effectiveness of the designed algorithm over other state-of-the-art domain
adaptation models, even deep domain adaptation ones.
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