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Abstract. In order to train learning models for multi-label classification
(MLC), it is typically desirable to have a large amount of fully annotated
multi-label data. Since such annotation process is in general costly, we
focus on the learning task of weakly-supervised multi-label classification
(WS-MLC). In this paper, we tackle WS-MLC by learning deep genera-
tive models for describing the collected data. In particular, we introduce
a sequential network architecture for constructing our generative model
with the ability to approximate observed data posterior distributions.
We show that how information of training data with missing labels or
unlabeled ones can be exploited, which allows us to learn multi-label
classifiers via scalable variational inferences. Empirical studies on various
scales of datasets demonstrate the effectiveness of our proposed model,
which performs favorably against state-of-the-art MLC algorithms.

Keywords: Multi-label classification · Generative models
Semi-supervised learning · Weakly-supervised learning

1 Introduction

Multi-label classification (MLC) solves the problem of assigning multiple labels
to a single input instance, which has been seen in a variety of applications in
the fields of machine learning, computer vision, data mining, and bio-informatics
[2,9,28].

Like most classification algorithms, one typically needs a large number of data
with ground truth labels, so that the associated MLC model can be learned
with satisfactory performance. However, for the task of MLC, collecting fully
annotated data would take extensive efforts and costs. How to alleviate the above
limitation for designing effective MLC models becomes a challenging yet practical
task. To be more specific, it would be desirable to train MLC models using
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training data with only partial labels, or even some training data with empty
label sets observed. Thus, learning MLC models under the above settings can
be formalized as a weakly-supervised setting. The differences between weakly-
supervised MLC and related MLC settings are summarized in Table 1. The goal
of this paper is to present an effective weakly-supervised MLC (WS-MLC) model
by advancing deep learning techniques.

A number of MLC approaches which utilize partially labeled data exist
(i.e., some training data are only with partial ground truth label information
observed) [13,31,32,35]. As a representative work, [31] handles missing labels by
imposing a label smoothness regularization during the learning of their model.
However, this type of approaches cannot easily leverage rich information from
unlabeled training data, which might not be desirable in practical scenarios in
which a majority of collected training data are totally unlabeled.

To address the above challenging (semi-supervised) MLC problems, graph-
based [37] approaches are proposed [5,14,18,20,33]. While they exhibit impres-
sive abilities in handling unlabeled data, take label propagation based algo-
rithms [5,18,20] for example, they only work under the transductive setting but
not the inductive setting. That is, prediction can only be made for the presented
unlabeled data but not for future test inputs. Another family of manifold reg-
ularization based algorithms [14,33], while applicable for inductive settings, are
highly sensitive to graph structures and the associated distance measurements.

Deep generative models, on the other hand, have recently been widely applied
to solving semi-supervised learning tasks [16,24]. Take [16] as an example, it
described a deep generative model for single-label data, and applied variational
inference for semi-supervised learning via observing both labeled and unla-
beled data. Nevertheless, despite the compelling probabilistic interpretation of
observed data, existing works mainly apply deep generative models for single
label learning tasks. While generative approaches for MLC have been investi-
gated in literature [13,23,29], existing solutions typically require training data
to be fully or at least partially labeled. In other words, they cannot be easily
extended to solving semi-supervised MLC or even WS-MLC tasks.

Table 1. Different settings for multi-label classification.

Setting Fully-labeled data Partially-labeled data Unlabeled data

Supervised MLC � × ×
Semi-supervised MLC � × �
MLC with missing label � � ×
WS-MLC (Our work) � � �

In this paper, we tackle the challenging WS-MLC, which includes both semi-
supervised MLC and MLC with missing labels as special cases as illustrated
in Table 1. We achieve so by advancing novel deep generative models [16,17].
Inspired by [8,21,22,30], we approach WS-MLC by viewing MLC as a sequential
prediction problem. We propose a deep sequential generative model to describe
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the multi-label data for WS-MLC with a unified probabilistic framework. In
our proposed model, we present a deep sequential classification model for both
prediction and approximation of posterior inference, and derive efficient learning
algorithms with variational inference for addressing WS-MLC with promising
performances.

The contributions of this paper are highlighted as follows:

– To the best of our knowledge, we are the first to advance deep generative
models to tackle WS-MLC problems.

– We propose a probabilistic framework which integrates sequential prediction
and generation processes with an efficient optimization procedure, so that
information from unlabeled data or data with partially missing labels can be
exploited.

– Our framework results in interpretable MLC models in weakly-supervised
settings, and performs favorably against recent MLC approaches on multiple
datasets.

2 Related Works

Multi-label classification (MLC) is among active research topics and benefits a
variety of real-world applications [2,7,9]. Earlier studies of MLC algorithms typi-
cally utilize linear models as the building block [22,26,28]. Binary relevance [28],
as a well-known example, trains a set of independent linear classifiers for each
label.

In recent years, approaches based on deep neural networks (DNN) [10,21,
30,34] attract the attention of researchers in related fields. For example, [30]
proposes to learn a linear embedding function, with label correlations modeled
with a chain structure by recurrent neural networks (RNN). [21] further inves-
tigates different exploitation of RNN to perform MLC. On the other hand, [34]
proposes to learn nonlinear embedding via deep canonical correlation analysis,
while it decodes outputs labels with co-occurrence information preserved. Never-
theless, despite the success in applying DNN for MLC, training DNNs typically
requires a large amount of labeled data, whose annotation process generally
requires extensive manual efforts.

Weakly-supervised MLC (WS-MLC) is a practical setup that aims to learn
MLC models from the dataset containing fully-labeled plus partially-labeled
and/or unlabeled training data. As noted above, WS setting is particularly
appealing regarding MLC tasks, as the cost to fullying annotate multi-label
data is generally much more expensive than that for single-label data. MLC
algorithms designed for dealing with partially-labeled data (or data with missing
labels) exist [31,32,35]. For example, [32] formulates the problem of MLC with
partially-labeled data as a convex quadratic optimization problems. [31] handles
the missing labels by imposing a label smoothness regularization. Unfortunately,
both [32] and [31] work only under transductive setting, i.e., the data to be pre-
dicted need to be presented during learning. While inductive MLC algorithms
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with missing labels are available [35], their incapability of exploiting information
unlabeled data still makes them less desirable for practical scenarios.

Semi-supervised MLC algorithms which leverage information from both fully-
labeled and unlabeled data have also been studied [5,14,18,20,33]. The majority
of such methods focus on graph-based techniques to utilize the unlabeled data.
Several graph-based algorithms consider label propagation techniques [5,18,20].
[18] is a representative example which designs a dynamic propagation proce-
dures that explicitly considers the label correlation based on k-nearest-neighbors
graph. Other graph-based algorithms exploit the information of unlabeled data
by manifold regularization [14,33]. For example, [14] imposes manifold regular-
ization during the learning of MLC models by enforcing similar predictions for
both labeled and unlabeled data that is also similar in feature space. Neverthe-
less, most label propagation based algorithms also require a transductive setting,
limiting their applicability to real-wolrd scenarios. Manifold regularization based
approaches are mainly inductive. However, the performance of these approaches
critically depends on the predefined graph structures. Moreover, all the above
semi-supervised MLC algorithms fail to generalize to handle data with partially
observed labels.

We note that, generative leaning algorithms for semi-supervised single-label
classification can be found in recent literature [1,16]. Focusing on the task of
MLC, several generative approaches have also been investigated [13,23]. For
example, [23] focuses on the mining of multi-labeled text data, where the data
generative process is formulated based on Latent Dirichlet Analysis. Neverthe-
less, the above algorithms are not designed to handle tarining data with missing
labels or unlabeled training data, and thus cannot be easily extended to WS-
MLC. In the next section, we will introduce our proposed deep generative model
for WS-MLC.

(a) (b)

Fig. 1. Architectures of (a) encoder φ and (b) decoder θ in our DSGM. The former
sequentially encodes the input data and their labels into each stochastic variable zkφ ,
and predicts the following label ŷk of the k-th label conditioned on x and y1, · · · , yk−1.
The latter decodes z to x by sequentially incorporating each label yk into stochastic
variables zkθ . Note that we take three labels y1, y2 and y3 for illustration purposes.
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3 Our Proposed Method

3.1 Problem Formulation

In multi-label classification (MLC), we denote x ∈ R
d as an instance with

y ∈ {0, 1}K as the corresponding label vector (i.e., y[k] = 1 if the instance is
associated with the k-th label (out of K labels), otherwise y[k] = 0). For weakly-
supervised MLC (WS-MLC), we observe a training dataset D = D� ∪ Do ∪ Du,
where D� = {(xi,yi)}N�

i=1 denotes fully-labeled N� instances, Do = {(xj ,yo
j )}No

j=1

is the partially-labeled dataset with No instances, and Du = {x̃m}Nu
m=1 is the

unlabeled one with Nu instances. We use yo to indicates the partially labeled
vector (see detailed settings in experiments). For the sake of simplicity, we omit
the subscripts i, j and m if possible in the remaining of this paper. And, we use
the term “weakly-labeled” when referring to a subset of training data that is
either partially-labeled or unlabeled.

Now, given a training set D, the goal of WS-MLC is to learn a classification
model so that the multi-label vector ŷ of an unseen instance x̂ can be predicted.
In WS-MLC, the size of fully-labeled dataset is typically much smaller than that
of weakly-labeled dataset. Therefore, an effective WS-MLC algorithm to exploit
the information from both Do and Du would be desirable, so that improved MLC
performance can be expected.

3.2 Deep Sequential Generative Models for WS-MLC

Inspired by recent advances in deep generative models (particularly those for
semi-supervised learning [16,17]) and the use of sequential learning models for
MLC [8,21,22,30], we propose a novel Deep Sequential Generative Model
(DSGM) to tackle the challenging problem of WS-MLC. As illustrated in Fig. 1,
our DGSM can be viewed as an extension of conditional variational autoencoder
(CVAE) [25] with sequential layers of stochastic variables {zk

φ}K
k=1 and {zk

θ}K
k=1

decided by each label yk. In particular, our DGSM consists of sequential genera-
tive models which aims at describing the generation of multi-label data, followed
by a deep classification model for MLC. This classification stage would jointly
perform classifcation and approximated posterior inference, and the derivation
of the learning objective based on variational inference (VI), so that multi-label
prediction in such a weakly-supervised learning setting can be achieved. It is
worth pointing out that, from the encoder-decoder perspective, Fig. 1a and b
illustrates the framework of our classification and generative models, respec-
tively. In the following subsections, we will detail the functionality and design
for the above models.

Sequential Generative Models for Multi-label Classification. To address
WS-MLC using sequential generative models, we assume that each instance x is
generated from y with an additional latent variable z. Without the loss of gener-
ality and following most exisint generative models [16,17], we further assume that
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Fig. 2. Illustration of our sequential generative process using decoder θ. This process
sequentially takes the latent variable z (from encoder φ), stochastic variables zkθ , and
labels yk for recovering input x. Note that μθ (·|·) determines the mean of Gaussian
distribution that generates each zkθ .

p(z) = N (z|0, I), and have factorization of p(y) as p(y) =
∏K

k=1 Bern(yk|γk),
where yk is the k-th label of y and γk is the parameter of Bernoulli distribution
for yk. We note that, one might consider a more representative prior based on the
factorization of p(y) = p(y1)·

∏K
k=2 p(yk|y1, . . . , yk−1). For simplicity, we consider

the generation of different labels to be independent, and such an alternative prior
is sufficiently satisfactory as confirmed later by our experiments. And, following
the setting of [16], the priors p(y) and p(z) are set to be marginally independent.

Inspired by recent sequential methods for MLC [8,21,22,30], our propose
model also aims at leveraging information from multiple observed labels in a
sequential manner during the learning process. More specifically, we choose to
describe pθ (x|y, z), i.e., generation of multi-label data x, as a sequential genera-
tive process with an additional set of intermediate stochastic variables {zk

θ}K
k=1

as shown in Fig. 2. To be more precise, this generative process is formulated as
follows:

pθ (x|y, z) = g(x|zK
θ ;θ);

zk
θ ∼ N (μθ (zk−1

θ , yk, z), σ2I); 1 ≤ k ≤ K

z0θ = 0,

(1)

where g(·|·;θ) is a likelihood function with parameters determined by non-linear
transformation of θK . For example, Gaussian distribution can be utilized for
g(·|·) to describe the features with continuous values. In our framework, such a
sequential generation process is realized by recurrent neural networks (RNN).
That is, μθ (·, ·, ·) outputs the mean vector from the non-linear transformation
of z, zk−1

θ and yk, which is implemented as the RNN cell that shares the model
parameters across all labels yk.

With the above generative model pθ (x|y, z), we are able to learn the model
parameters θ by maximizing the marginal likelihood of pθ (x,y) (from fully-
labeled data), pθ (x,yo) (from partially-labeled data), and/or pθ (x̃) (from unla-
beled data). In other words, we are able to obtain θ by solving

arg max
θ

∑

(x,y)∈D�

log pθ (x,y) +
∑

(x,yo)∈Do

log pθ (x,yo) +
∑

x̃∈Du

log pθ (x̃). (2)

To perform MLC with a given x, classification can be achieved by pθ (y|x) ∝
pθ (x|y)p(y) with model parameter θ.
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Sequential Classification Model for Variational Inference of DSGM.
Unfortunately, learning (i.e., exact inference) of θ by solving (2) is computation-
ally prohibitive due to the need to compute intractable integral when applying
Bayes rules. To enable an efficient approximated inference of θ, we design a
novel learning algorithm based on the principle of variational inference [4,17].
In particular, we propose a deep sequential classification model for posterior
inference approximation. We then derive the variational lower bound and the
corresponding optimization procedure accordingly.

Fig. 3. Illustration of our sequential classification architecture φ in DSGM, which
sequentially encodes input x and labels yk into stochastic variables zkφ , with prediction
layers fk for determining label outputs ŷk.

We now discuss the design of our sequential classification model for the vari-
ational inference of θ. The key ingredient of variational inference is to introduce
a fixed form distribution qφ(·|·), so that the posterior inference from observed
variables to the latent ones can be achieved via qφ(·|·) instead of using pθ (·|·)
which is in practice intractable. In the case of learning with fully-labeled train-
ing data, we seek to infer z from (x,y) directly. For dealing with weakly-labeled
data, unobserved labels are viewed as latent variables, which need to be inferred
from x and the observed labels (if available).

With the above observation and motivation, the goal of qφ(·|·) is to achieve
the following approximation of posterior inference:

qφ(z|x,y) ≈ pθ (z|x,y); ∀(x,y) ∈ D�

qφ(ym, z|x,yo) ≈ pθ (ym, z|x,yo); ∀(x,yo) ∈ Do

qφ(y, z|x̃) ≈ pθ (y, z|x̃); ∀(x̃) ∈ Du,

where we have partially-labeled data (x,yo) ∈ Do in which ym indicates the label
vectors with missing ground truth. It is worth noting that, q(y, z|x̃) essentially
performs classification as inference for unlabeled data, and will be applied as
the classification model for the testing stage. Inspired by [8,21,22,30] which
approach MLC by solving the task of label sequence prediction, and to meet
the sequential nature of our proposed generative process, our deep sequential
classification model would serve as qφ(·|·) for addressing WS-MLC (see Fig. 3
for illustration).

We now elaborate the architecture of our sequential classification model
qφ(·|·), and explain in details on how to perform posterior inference given either
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fully-labeled, partially-labeled or unlabeled data via a set of intermediate latent
variables {zk

φ}K
k=1.

For labeled data, the sequential posterior inference qφ(z|x,y) is performed
as follows:

qφ(z|y,x) = N (z|μq
φ(zK

φ ),σq
φ(zK

φ )); (3)

zk
φ ∼ N (μφ(zk−1

φ ,x, yk), σ2I), 1 ≤ k ≤ K; (4)

ŷk ∼ Bern(fk
φ(zk−1

φ )), 2 ≤ k ≤ K (5)

ŷ1 ∼ Bern(f1
φ(x)); (6)

z0φ = 0,

where ŷk denotes the prediction of k-th label. Here μq
φ(·) and σq

φ(·) are the deter-
ministic functions that calculate the mean vector and diagonal covariance matrix
for qφ(z|x,y), respectively. On the other hand, fk

φ(·, ·) determines the parameter
of Bernouli distribution for prediction of ŷk. The main intuition behind such a
design of qφ(·|·) is to encode zk

φ with the information from (x, y1, . . . , yk). Such
encoding allows us to resemble the following factorization by predicting each
ŷk+1 with zk

φ :

qφ(y|x) = qφ(y1|x)
K∏

k=2

qφ(yk|x, y1, . . . , yk−1).

We see that, zK
φ with such relation would encode information from all observed

variables, and thus can be directly used to determine z from x and y.
For partially-labeled data in WS-MLC, we adopt the same posterior infer-

ence procedure as (3)–(6) except that we now consider the meanfield variational
family qφ(ym, z|x,yo) = qφ(z|x,yo)qφ(ym|x,yo). Nevertheless, despite the fac-
torized probability representation, information from all labels should still be
exploited to infer z, which is achieved by utilizing the predicted label ŷk instead
(in the case where yk is missing). To be more precise, we modify (4) to calculate
zk

φ by.

zk
φ ∼

{
N (μφ(zk−1

φ ,x, yk), σ2I), if yk ∈ yo

N (μφ(zk−1
φ ,x, ŷk), σ2I), if yk /∈ yo,

(7)

where ŷk ∈ {0, 1} is a binary sample based on the predicted probability that
yk = 1 via (5). With such modification, our sequential classification model is
able to infer z with information from all labels even if some are unobserved.

As for unlabeled data in WS-MLC, we also utilize the meanfiled variational
family qφ(y, z|x̃) = qφ(z|x̃)qφ(y|x̃). By realizing that unlabeled data is the data
with all label missing, we perform posterior sequential posterior inference in
exactly the same way as that for partially-labeled data. In this case, (7) would
degenerate to the case with each yk /∈ yo.

Finally, we implement the above sequntial posterior inference with qφ(·|·) via
RNN, as depicted in Fig. 3. That is, μφ(·, ·, ·) used in both (4) and (7) is realized
as an RNN cell, which is the same as those in our sequential generative model.
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Objective for Variational Lower Bound. In this subsection, we discuss how
we derive the objective of the lower bound for variational inference. Note that
the calculation of qφ(z|x,y) requires the integral over the samples of {zk

φ}K
k=1

even if x and y are known. This would be undesirable for the derivation of the
variational lower bound, as such integrals cannot be analytically calculated.

By applying location-scale transform of Gaussian distributions, one would be
able to determine the exact parameters of distribution qφ(z|x,y) (i.e., mean and
covariance) by introducing a set of random variables {εk

φ}K
k=1. Thus, (4) can be

rewritten as
zk

φ = μφ(zk−1
φ ,x, yk) + σ2εk

φ ; 1 ≤ k ≤ K, (8)

where each εk
φ ∼ N (0, I) is an independent sample of standard Gaussian distri-

bution. Consequently, one can derive the variational lower bound by taking

Eε1
φ ,...,εK

φ
[KL(qφ(z|x,y, ε1φ , . . . , εK

φ ) ‖ pθ (z|x,y))]

as a starting point, where qφ(z|x,y, ε1φ , . . . , εK
φ ) denotes the fixed distribution

given the sampled value of {εk
φ}K

k=1.
Based on location-transform techniques of pθ (x|y, z) = Eεθ

[pθ (x|y, z, εθ )],
where εθ = {εk

θ}K
k=1 is another set of independent samples from standard

Gaussian distribution in addition to {εk
φ}K

k=1 for qφ(·|·), the lower bound
for the labeled data (x,y) ∈ D� can now be expressed as log pθ (x,y) ≥
Eεφ

[−L(x,y, εφ)] , where εφ = {εk
φ}K

k=1. Finally, by Jensen’s inequality (for
concave functions), we have

−L(x,y, εφ) = log p(y) + Eqφ (z|x,y,εφ )[Eεθ
[log pθ (x|y, z, εθ )]]

− KL(qφ(z|x,y, εφ)‖p(z)).
(9)

In order to deal with partially-labeled data (x,yo) ∈ Do, we need both
qφ(ym|x,yo) and qφ(z|x,yo) for deriving the associated variational lower bound
objective. However, as noted above, the sequential posterior inference with
qφ(·, ·) using (7) involves sampling for unobserved labels. Even with the tech-
nique of location-scale transform on {zk

φ}K
k=1, oue still needs to marginalize out

the sampling regarding ym to obtain qφ(ym|x,yo) and qφ(z|x,yo). To alleviate
this problem, we choose to rewrite (7) as

zk
φ =

{
μφ(zk−1

φ ,x, yk) + σ2εk
φ , if yk ∈ yo

�αk ≥ pk�μφ(zk−1
φ ,x, 0) + �αk < pk�μφ(zk−1

φ ,x, 1) + σ2εk
φ , if yk /∈ yo

(10)
where αk ∼ U(0, 1), εk ∼ N (0, I), �·� is the indicator function and pk is the
probability that yk = 1 from (5) and (6). We see that (10) is effectively a
reparameterization of sampling of zk

φ with α = {αk}K
k=1 and εφ = {εk

φ}K
k=1,

which allows exact determinination of qφ(ym|x,yo) and qφ(z|x,yo) with a set
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of (α, εφ). With this observation, we have the lower bound objective for partially-
labeled data as log pθ (x̃) ≥ Eα ,εφ

[−M(x,yo,α, εφ)] , where

− M(x,yo,α, εφ) = Eqφ (ym|x,yo,α ,εφ )[log p(y)]

+ Eqφ (z|x,α ,yo,εφ )[Eqφ (ym|x,α ,yo,εφ )[Eεθ
[log pθ (x|y, z, εθ )]]]

− KL(qφ(z|x,α,yo, εφ)‖p(z)) + H(qφ(ym|x,α,yo, εφ))

(11)

where H(·) is the entropy function by again realizing that the meanfield assump-
tion still holds even with α, ε included due to the design of qφ(·, ·).

Finally, as for observation of unlabeled data x̃ ∈ Du, the variational lower
bound can be derived similarly to that of partially-labeled data by realizing that
the reparameterization of {zk

φ}K
k=1 using (10) degenerates to the case with each

yk /∈ yo. Consequently, the lower bound objective for unlabeled data can be
expressed as log pθ (x̃) ≥ Eα ,εφ

[−U(x̃, εφ)] , where

− U(x̃,α, εφ) = Eqφ (y|x,α ,εφ )[log p(y)]

+ Eqφ (z|x,α ,εφ )[Eqφ (y|x,α ,εφ )[Eεθ
[log pθ (x|y, z,α, εθ )]]]

− KL(qφ(z|x,α, εφ)‖p(z)) + H(qφ(y|x̃,α, εφ)).

(12)

With (9), (11) and (12), we now obtain the lower bound objective of marginal
likelihood regarding the data with weakly labels. As suggested in [16], it is prefer-
able to have the classifier directly perform label prediction. Thus, we further
augment the derived lower bound objective with a discriminative loss on the
observed labels for fully-labeled and partial labeled data, resulting in the follow-
ing final minimization objective:

∑

(x,y)∈D�

Eεφ
[L(x,y, εφ) − log qφ(y|x, εφ)]

+
∑

(x,yo)∈Do

Eεα ,φ
[M(x,y,α, εφ) − log qφ(yo|x,α, εφ)]

+
∑

x̃∈Du

Eα ,εφ
[U(x̃,α, εφ)].

(13)

With the set-up of the above objectives, the resulting qφ(y|x,α, εφ) will be
used to recognize future unseen test data. For testing, we determine the binary
prediction of each label ŷk by directly thresholding the predicted probability
with threshold of 0.5 (which is implemented by setting all αk = 0.5).

Learning of DSGM. We now detail the learning and optimization of
our DGSM with the objective functions introduced above. For the loss of
labeled data in (9), the KL-divergence term can be analytically computed
for any εφ as both qφ(z|·) and p(z) are Gaussian distributions. For the part
Eqφ (z|·)[Eεθ

[log pθ (x|y, z, εθ )]] of the loss function, the gradient can be efficiently
estimated using the reparameterization trick on qφ(z|·) [17] and a single sam-
ple of εθ . Since the gradient of the outer expectation Eεθ

[·] in (13) for the loss
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of fully-labeled data can be efficiently estimated using a single sample of εθ ,
we advance techniques of stochastic gradient descent (SGD) for optimizing our
network parameters (θ,φ) using fully-labeled data.

For the loss of partially-labeled data in (11), we apply aforementioned tech-
niques with a sample of α for gradient estimation. However, other optimiza-
tion issues need to be addressed. First, we need to calculate the expectation
Eqφ (ym|x,yo,·) log pθ (x|·) with respect to the predicted probability of missing
labels yo given (x,yo) (note that we omit εθ and εφ for presentation simplicity).
The other issue is that, we need to handle the discontinuous indicator function
in (7).

Regarding the calculation of Eqφ (ym|x,yo,·)[log pθ (x|·)], explicitly marginaliz-
ing out qφ(ym|x,yo, ·) is a possible solution. However, it would take O(2|ym|)
time due to the need to examine each combination of missing labels, making
it computationally prohibitive when the number of missing labels is large. To
resolve the issue, we reparameterize the expectation to have the form

Eβ [log pθ (x|·,β, qφ(ym|x,yo, ·))],

where β = {βk}K
k=1, βk ∼ U(0, 1) by rewriting the sampling of zk

θ in (1) as

zk
θ =

{
μθ (zk−1

θ , yk, z) + σ2εk
θ , if yk /∈ ym

�βk ≥ pk�μθ (zk−1
θ , 0, z) + �βk < pk�μθ (zk−1

θ , 1, z) + σ2εk
θ , if yk ∈ ym.

(14)
where pk is the predicted probability that yk = 1. It can be seen that, the above
reparameterization is analogous to that of sampling zk

φ with (7) for the sequential
posterior inference with qφ ·|·. This allows us to efficiently estimate the gradient
of the expectation Eqφ (ym|x,yo,·) log pθ (x|·) with an extra single sample of β.

As for dealing with the discontinuity of the indicator function, we adopt
the straight-through estimator (STE) in [3] for addressing this problem. More
precisely, we calculate the loss in (11) in the forward pass using the normal indi-
cator function, and replace the indicator function with identity function during
the backward pass to calculate the gradient. The use of STE leads to promising
performance as noted in [3].

For calculating the loss term of unlabeled data, we apply the same techniques
and reparameterizing zk

θ with (14) by observing that (14) degenerates to the case
with each yk ∈ ym for unlabeled data.

With the above explanation and derivations, we are able to efficiently obtain
the estimation of gradient with respect to (13) for both fully-labeled and weakly-
labeled data. As a result, the final discriminative classifier qφ(y|x) in our DSGM
can be learned by updating (θ,φ) with SGD techniques.

3.3 Discussions

Finally, we discuss the connection and difference between our proposed DSGM
and recent models for related learning tasks.



420 H.-M. Chu et al.

The use of deep generative models for semi-supervised mutli-class classifica-
tion (not MLC) has been recently studied in [16]. In particular, [16] jointly trains
their classification network qφ(y|x), inference network qφ(z|x, y), and generative
network pθ (x|z, y) by optimizing the variational lower bound for likelihood of
observed labeled and unlabeled data. However, applying the models of [16] for
(semi-supervised) MLC requires explicit examination of all 2K possible label
combinations when calculating the lower bound objective for unlabeled data.
This is quite computationally infeasible especially when K is large. In contrast,
the sequential architectures and the corresponding optimization procedure in
our proposed DSGM provides linear dependency of K, which is in practice more
applicable for semi-supervised or weakly-supervsied MLC tasks.

On the other hand, formulating MLC as a sequential label prediction has been
studied in recent literature [8,21,22,30]. For example, [21,30] advances RNNs
to sequentially predict the labels while implicitly observing their dependency.
While the use of sequential label prediction has been widely investigated with
promising performances, existing models cannot be easily extended to handle
partially-labeled and unlabeled data (i.e., WS-MLC tasks). Such robustness is
particularly introduced into our DSGM. As confirmed later by the experiments,
our DSGM performs favorably against state-of-the-art deep MLC models in such
challenging settings.

4 Experiments

4.1 Experiment Settings

To evaluate the performance of our proposed DSGM for WS-MLC, we consider
the following datasets: iaprtc12, espgame, mirflickr, NUS-WIDE, and MSCOCO.
The first three datasets are image recognition datasets used in [11], where
1000-dimensional of bag-of-words features based on SIFT. NUS-WIDE [7] and
MSCOCO [19] are two other large scale datasets typically used for evaluation
of image annotation. We summarize the key statistics of the above datasets in
the appendix. For all datasets, we discard the instances with no positive labels
as done in [10]. For NUS-WIDE and MSCOCO, we use the bottom four convo-
lutional layers of a ResNet-152 [12] trained on Imagenet without fine-tuning to
extract 2048-dimensional feature vectors in order to utilize both the high-level
and low-level information of raw images.

In our DSGM architecture, we use gated-recurrent unit [6] as the recur-
rent cells to model μφ and μθ . The dimensions of latent variables {zk

θ}K
k=1 and

{zk
φ}K

k=1 are set to 128, while the dimension of z is fixed as 64. The variance σ2

of {zk
θ}K

k=1 and {zk
φ}K

k=1 is set to 0.005. When applying DSGM for WS-MLC,
we reduce the dimension of feature vector x to 512 by a linear transformation,
which is parameterized as a fully connected layer without activation. Follow-
ing [21,30], the label order for sequential learning/prediction is set from the
most frequent one to the rarest one (see such suggestions in [21]). Nevertheless,
in our experiment, we do not observe significant differences between the choices
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Fig. 4. Performance comparisons in terms of Micro-f1 and Macro-f1 for datasets with
varying labeled data ratios.

of different label orders. To perform stochastic gradient descent for optimization,
we exploit Adam [15] with a fixed learning rate of 0.003, and the batch size is
fixed to 100. Note that for the experiment of semi-supervised MLC, we pretrai
our DSGM with only labeled data for 100 epochs for faster convergence. Finally,
both Micro-f1 and Macro-f1 are considered as evaluation metrics [27].

4.2 Comparisons with Semi-Supervised MLC Algorithms

We first evaluate our DSGM on the task of semi-supervised MLC (SS-MLC),
where the dataset contains both fully-labeled and unlabeled data. Two state-of-
the-arts SS-MLC algorithms are considered: Semi-supervised Low-rank Mapping
(SLRM) [14] and Weakly Semi-supervised Deep Learning (Wesed) [33] (with its
inductive setting viewed as a semi-supervised setting). In addition, we consider a
näıve extension of state-of-the-art deep generative approach for semi-supervised
multi-class classification (SS-MCC) [16], DGM-Näıve (detailed in supplemen-
tary). For completeness, we also include two well-known or state-of-the-art super-
vised MLC algorithms, ML-kNN [36] and RNN-m [21]. We follow [14,33] to set
the hyper parameters for SLRM and Wesed, and fix k = 5 for ML-kNN. For
RNN-m, we use the same RNN cell and the feature transformation as those in
our DSGM, and set the learning rate as 0.001. The training details of DGM-Näıve
are discussed in the supplementary material. For each dataset, we randomly split
into two subsets with equal sizes for training and testing. The average results of
five random splits are presented.

The comparison results are shown in Fig. 4, where the horizontal axis rep-
resents the ratio of labeled data with respect to the entire training set. Note
that experiments of SLRM are not conducted on two large-scale datasets NUS-
WIDE and MSCOCO, as SLRM requires pairwise information between training
instances. From Fig. 4, we see that our DSGM achieved improved results when
comparing to the state-of-the-art SS-MLC methods of SLRM and Wesed, as
well as the extension of the recent generative SS-MCC approach, DGM-Näıve.
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Fig. 5. Micro-f1 and Macro-f1 with different missing label ratios.

We note that, for large-scale datasets of NUS-WIDE and MSCOCO, supervised
MLC method of ML-kNN and RNN-m achieved comparable results as ours did.
The above empirical results support our exploitation of unlabeled data for MLC
tasks.

Further inspection on Fig. 4 reveals that the use of more powerful features
(i.e., those calculated by Resnet 152) generally resulted in favorable performances
(e.g., DGM-Näıve, ML-kNN, RNN-m, and ours). On the other hand, when it
comes to the datasets iaprtc12, espgame and mirflickr using low-level features,
our DSGM clearly outperformed DGM-Näıve, ML-kNN and RNN-m in most
of the cases. Moreover, we observe that DSGM remarkably performed against
DGM-Näıve on the above three datasets especially when the labeled data ratio
becomes smaller. This demonstrates the effectiveness of our sequential architec-
ture in exploiting unlabeled data for MLC.

4.3 Comparisons with Algorithms for MLC with Missing Labels

Next, we compare our proposed model with state-of-the-art MLC algorithms for
WS-MLC, particularly the observation of partially-labeled data, or data with
missing labels. The methods to be compared to include LEML [35], Multi-label
Learning with Missing Labels (MLML) [31], and ML-PGD (Multi-label Learn-
ing with Missing Labels Using Mixed Graph) [32]. We also modify DSGM-Näıve
to handle data missing label data for comparison of state-of-the-art deep gen-
erative approach in such settings. The scenario of missing labels is simulated
by randomly dropping the ground truth labels, with ratio varying from 10% to
50%.

Figure 5 illustrates and compares the performances, where the horizontal axis
indicates the missing ratio. The results from Fig. 5 demonstrate that our algo-
rithm performed against state-of-the-art algorithms, and confirmed the robust-
ness of our methods for different MLC tasks (i.e., SS-MLC and MLC with miss-
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ing labels). With a closer inspection between the results of DSGM and DGM-
Näıve, we see that while DGM-Näıve reported promising and satisfactory results,
DSGM in general still remarkably outperformed DGM-Näıve. This reflects the
importance and the advantage of our sequential architecture which integrate
generative models and discriminative classifiers for WS-MLC.

(a) Standard CVAE (b) DSGM

Fig. 6. Visualization of the derived latent vectors on mirflickr for standard CVAE and
DSGM.

4.4 Qualitative Studies

Finally, we provide qualitative studies regarding our sequential architecture of
generative models. Specifically, we train a standard Conditional Variational Auto
Encoder (CVAE) [25] and the sequential generative models of DSGM on mir-
flickr using the first 10 labels with the dimension of z set to 2. This allows us
to visualize the inferred latent vectors for each instance x. We plot the derived
latent vectors of each x corresponding to the 10 most common label combina-
tions in Fig. 6, which reflects label correlation information. The 10 most common
combinations cover over 95% of instances, and each latent vector is colored based
on its associated label combination in Fig. 6.

From the visualization results shown in Fig. 6, it is clear that our proposed
sequential generative model resulted in more representative latent vectors when
comparing to those of CVAE. From this figure, we see that our model better
represents and describes the relationship between data with different labels. This
also supports the use of our proposed deep generative model of multi-labeled data
in the weakly-supervised setting.

5 Conclusion

We proposed a deep generative model, DSGM for solving WS-MLC problems.
DSGM integrates a unique deep sequential generative model to descrbe multi-
label data as well as a novel deep sequential classification model for both pos-
terior inference and classification. The variational lower bound is derived for
the learning of our sequential generative model together with an efficient opti-
mization procedure. Experiment results confirmed the superiority of our pro-
posed DSGM over state-of-the-art semi-supervised MLC approaches, and those
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designed to handle MLC with missing labels. We further demonstrated that
DSGM would be more effective than näıve utilization of deep generative models
regarding WS-MLC, i.e., SS-MLC and MLC with missing labels.
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