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Abstract. Generative adversarial networks (GANs) are one of the most
popular methods for generating images today. While impressive results
have been validated by visual inspection, a number of quantitative crite-
ria have emerged only recently. We argue here that the existing ones are
insufficient and need to be in adequation with the task at hand. In this
paper we introduce two measures based on image classification—GAN-
train and GAN-test, which approximate the recall (diversity) and preci-
sion (quality of the image) of GANs respectively. We evaluate a number
of recent GAN approaches based on these two measures and demon-
strate a clear difference in performance. Furthermore, we observe that
the increasing difficulty of the dataset, from CIFAR10 over CIFAR100
to ImageNet, shows an inverse correlation with the quality of the GANs,
as clearly evident from our measures.

1 Introduction

Generative Adversarial Networks (GANs) [19] are deep neural net architectures
composed of a pair of competing neural networks: a generator and a discrimina-
tor. This model is trained by alternately optimizing two objective functions so
that the generator G learns to produce samples resembling real images, and the
discriminator D learns to better discriminate between real and fake data. Such
a paradigm has huge potential, as it can learn to generate any data distribution.
This has been exploited with some success in several computer vision prob-
lems, such as text-to-image [56] and image-to-image [24,59] translation, super-
resolution [31], and realistic natural image generation [25].

Since the original GAN model [19] was proposed, many variants have
appeared in the past few years, for example, to improve the quality of the gen-
erated images [12,15,25,36], or to stabilize the training procedure [7,9,20,34,
36,40,57]. GANs have also been modified to generate images of a given class
by conditioning on additional information, such as the class label [16,35,37,41].
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There are a number of ways to do this: ranging from concatenation of label y to
the generator input z or intermediate feature maps [16,35], to using conditional
batch normalization [37], and augmenting the discriminator with an auxiliary
classifier [41]. With several such variants being regularly proposed in the liter-
ature, a critical question is how these models can be evaluated and compared to
each other.

Evaluation and comparison of GANs, or equivalently, the images generated
by GANs, is challenging. This is in part due to the lack of an explicit likelihood
measure [51], which is commonplace in comparable probabilistic models [27,
47]. Thus, much of the previous work has resorted to a mere subjective visual
evaluation in the case of images synthesized by GANs. As seen from the sample
images generated by a state-of-the-art GAN [36] in Fig. 1, it is impossible to
judge their quality precisely with a subjective evaluation. Recent work in the
past two years has begun to target this challenge through quantitative measures
for evaluating GANs [22,25,32,46].

Fig. 1. State-of-the-art GANs, e.g., SNGAN [36], generate realistic images, which are
difficult to evaluate subjectively in comparison to real images. Our new image classifica-
tion accuracy-based measure (GAN-train is shown here) overcomes this issue, showing
a clear difference between real and generated images.

Inception score (IS) [46] and Fréchet Inception distance (FID) [22] were sug-
gested as ad-hoc measures correlated with the visual quality of generated images.
Inception score measures the quality of a generated image by computing the KL-
divergence between the (logit) response produced by this image and the marginal
distribution, i.e., the average response of all the generated images, using an Incep-
tion network [50] trained on ImageNet. In other words, Inception score does
not compare samples with a target distribution, and is limited to quantifying
the diversity of generated samples. Fréchet Inception distance compares Incep-
tion activations (responses of the penultimate layer of the Inception network)
between real and generated images. This comparison however approximates the
activations of real and generated images as Gaussian distributions (cf. Eq. (2)),
computing their means and covariances, which are too crude to capture subtle
details. Both these measures rely on an ImageNet-pretrained Inception network,
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which is far from ideal for other datasets, such as faces and biomedical imag-
ing. Overall, IS and FID are useful measures to evaluate how training advances,
but they guarantee no correlation with performance on real-world tasks. As we
discuss in Sect. 5, these measures are insufficient to finely separate state-of-the-
art GAN models, unlike our measures (see SNGAN vs WPGAN-GP (10M) in
Table 2 for example).

An alternative evaluation is to compute the distance of the generated samples
to the real data manifold in terms of precision and recall [32]. Here, high preci-
sion implies that the generated samples are close to the data manifold, and high
recall shows that the generator outputs samples that cover the manifold well.
These measures remain idealistic as they are impossible to compute on natural
image data, whose manifold is unknown. Indeed, the evaluation in [32] is limited
to using synthetic data composed of gray-scale triangles. Another distance sug-
gested for comparing GAN models is sliced Wasserstein distance (SWD) [25].
SWD is an approximation of Wasserstein-1 distance between real and generated
images, and is computed as the statistical similarity between local image patches
extracted from Laplacian pyramid representations of these images. As shown in
Sect. 5, SWD is less-informative than our evaluation measures.

In this paper, we propose new evaluation measures to compare class-
conditional GAN architectures with GAN-train and GAN-test scores. We rely
on a neural net architecture for image classification for both these measures. To
compute GAN-train, we train a classification network with images generated by
a GAN, and then evaluate its performance on a test set composed of real-world
images. Intuitively, this measures the difference between the learned (i.e., gen-
erated image) and the target (i.e., real image) distributions. We can conclude
that generated images are similar to real ones if the classification network, which
learns features for discriminating images generated for different classes, can cor-
rectly classify real images. In other words, GAN-train is akin to a recall measure,
as a good GAN-train performance shows that the generated samples are diverse
enough. However, GAN-train also requires a sufficient precision, as otherwise the
classifier will be impacted by the sample quality.

Our second measure, GAN-test, is the accuracy of a network trained on real
images and evaluated on the generated images. This measure is similar to pre-
cision, with a high value denoting that the generated samples are a realistic
approximation of the (unknown) distribution of natural images. In addition to
these two measures, we study the utility of images generated by GANs for aug-
menting training data. This can be interpreted as a measure of the diversity of
the generated images. The utility of our evaluation approach, in particular, when
a subjective inspection is insufficient, is illustrated with the GAN-train measure
in Fig. 1. We will discuss these measures in detail in Sect. 3.

As shown in our extensive experimental results in Sect. 5 and the appendix
in the supplementary material and technical report [5], these measures are
much more informative to evaluate GANs, compared to all the previous mea-
sures discussed, including cases where human studies are inconclusive. In par-
ticular, we evaluate two state-of-the-art GAN models: WGAN-GP [20] and
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SNGAN [36], along with other generative models [45,47] to provide baseline
comparisons. Image classification performance is evaluated on MNIST [30],
CIFAR10, CIFAR100 [28], and the ImageNet [14] datasets. Experimental results
show that the quality of GAN images decreases significantly as the complexity
of the dataset increases.

2 Related Work

We present existing quantitative measures to evaluate GANs: scores based on
an Inception network, i.e., IS and FID, a Wasserstein-based distance metric,
precision and recall scores, and a technique built with data augmentation.

2.1 Inception Score

One of the most common ways to evaluate GANs is the Inception score [46].
It uses an Inception network [50] pre-trained on ImageNet to compute logits of
generated images. The score is given by:

IS(G) = exp(Ex�pg
[DKL(p(y|x) ‖ p(y))]), (1)

where x is a generated image sampled from the learned generator distribution pg,
E is the expectation over the set of generated images, DKL is the KL-divergence
between the conditional class distribution p(y|x) (for label y, according to the
Inception network) and the marginal class distribution p(y) = E

x�pg

[p(y|x)]. By

definition, Inception score does not consider real images at all, and so cannot
measure how well the generator approximates the real distribution. This score
is limited to measuring only the diversity of generated images. Some of its other
limitations, as noted in [8], are: high sensitivity to small changes in weights of
the Inception network, and large variance of scores.

2.2 Fréchet Inception Distance

The recently proposed Fréchet Inception distance (FID) [22] compares the dis-
tributions of Inception embeddings (activations from the penultimate layer of
the Inception network) of real (pr(x)) and generated (pg(x)) images. Both these
distributions as modeled as multi-dimensional Gaussians parameterized by their
respective mean and covariance. The distance measure is defined between the
two Gaussian distributions as:

d2((mr,Cr), (mg,Cg)) = ‖mr − mg‖2 + Tr(Cr + Cg − 2(CrCg)
1
2 ), (2)

where (mr,Cr), (mg,Cg) denote the mean and covariance of the real and gener-
ated image distributions respectively. FID is inversely correlated with Inception
score, and suffers from the same issues discussed earlier.

The two Inception-based measures cannot separate image quality from image
diversity. For example, low IS or FID values can be due to the generated images
being either not realistic (low image quality) or too similar to each other (low
diversity), with no way to analyze the cause. In contrast, our measures can
distinguish when generated images become less diverse from worse image quality.
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2.3 Other Evaluation Measures

Sliced Wasserstein distance (SWD) [25] was used to evaluate high-resolution
GANs. It is a multi-scale statistical similarity computed on local image patches
extracted from the Laplacian pyramid representation of real and generated
images. A total of 128 7 × 7 local patches for each level of the Laplacian pyra-
mid are extracted per image. While SWD is an efficient approximation, using
randomized projections [44], of the Wasserstein-1 distance between the real and
generated images, its utility is limited when comparing a variety of GAN mod-
els, with not all of them producing high-resolution images (see our evaluation in
Sect. 5).

Precision and recall measures were introduced [32] in the context of GANs,
by constructing a synthetic data manifold. This makes it possible to compute
the distance of an image sample (generated or real) to the manifold, by finding
its distance to the closest point from the manifold. In this synthetic setup, pre-
cision is defined as the fraction of the generated samples whose distance to the
manifold is below a certain threshold. Recall, on the other hand, is computed by
considering a set of test samples. First, the latent representation z̃ of each test
sample x is estimated, through gradient descent, by inverting the generator G.
Recall is then given by the fraction of test samples whose L2-distance to G(z̃)
is below the threshold. High recall is equivalent to the GAN capturing most of
the manifold, and high precision implies that the generated samples are close
to the manifold. Although these measures bring the flavor of techniques used
widely to evaluate discriminative models to GANs, they are impractical for real
images as the data manifold is unknown, and their use is limited to evaluations
on synthetic data [32].

2.4 Data Augmentation

Augmenting training data is an important component of learning neural net-
works. This can be achieved by increasing the size of the training set [29] or
incorporating augmentation directly in the latent space [54]. A popular tech-
nique is to increase the size of the training set with minor transformations of
data, which has resulted in a performance boost, e.g., for image classification [29].
GANs provide a natural way to augment training data with the generated sam-
ples. Indeed, GANs have been used to train classification networks in a semi-
supervised fashion [13,52] or to facilitate domain adaptation [10]. Modern GANs
generate images realistic enough to improve performance in applications, such
as, biomedical imaging [11,18], person re-identification [58] and image enhance-
ment [55]. They can also be used to refine training sets composed of synthetic
images for applications such as eye gaze and hand pose estimation [49]. GANs
are also used to learn complex 3D distributions and replace computationally
intensive simulations in physics [39,42] and neuroscience [38]. Ideally, GANs
should be able to recreate the training set with different variations. This can
be used to compress datasets for learning incrementally, without suffering from
catastrophic forgetting as new classes are added [48]. We will study the utility
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of GANs for training image classification networks with data augmentation (see
Sect. 5.4), and analyze it as an evaluation measure.

Fig. 2. Illustration of GAN-train and GAN-test. GAN-train learns a classifier on GAN
generated images and measures the performance on real test images. This evaluates
the diversity and realism of GAN images. GAN-test learns a classifier on real images
and evaluates it on GAN images. This measures how realistic GAN images are.

In summary, evaluation of generative models is not a easy task [51], especially
for models like GANs. We bring a new dimension to this problem with our
GAN-train and GAN-test performance-based measures, and show through our
extensive analysis that they are complementary to all the above schemes.

3 GAN-train and GAN-test

An important characteristic of a conditional GAN model is that generated images
should not only be realistic, but also recognizable as coming from a given class.
An optimal GAN that perfectly captures the target distribution can generate a
new set of images Sg, which are indistinguishable from the original training set
St. Assuming both these sets have the same size, a classifier trained on either of
them should produce roughly the same validation accuracy. This is indeed true
when the dataset is simple enough, for example, MNIST [48] (see also Sect. 5.2).
Motivated by this optimal GAN characteristic, we devise two scores to evaluate
GANs, as illustrated in Fig. 2.

GAN-train is the accuracy of a classifier trained on Sg and tested on a valida-
tion set of real images Sv. When a GAN is not perfect, GAN-train accuracy will
be lower than the typical validation accuracy of the classifier trained on St. It
can happen due to many reasons, e.g., (i) mode dropping reduces the diversity of
Sg in comparison to St, (ii) generated samples are not realistic enough to make
the classifier learn relevant features, (iii) GANs can mix-up classes and confuse
the classifier. Unfortunately, GAN failures are difficult to diagnose. When GAN-
train accuracy is close to validation accuracy, it means that GAN images are
high quality and as diverse as the training set. As we will show in Sect. 5.3,
diversity varies with the number of generated images. We will analyze this with
the evaluation discussed at the end of this section.
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GAN-test is the accuracy of a classifier trained on the original training set
St, but tested on Sg. If a GAN learns well, this turns out be an easy task because
both the sets have the same distribution. Ideally, GAN-test should be close to the
validation accuracy. If it significantly higher, it means that the GAN overfits, and
simply memorizes the training set. On the contrary, if it is significantly lower,
the GAN does not capture the target distribution well and the image quality is
poor. Note that this measure does not capture the diversity of samples because a
model that memorizes exactly one training image perfectly will score very well.
GAN-test accuracy is related to the precision score in [32], quantifying how close
generated images are to a data manifold.

To provide an insight into the diversity of GAN-generated images, we measure
GAN-train accuracy with generated sets of different sizes, and compare it with
the validation accuracy of a classifier trained on real data of the corresponding
size. If all the generated images were perfect, the size of Sg where GAN-train is
equal to validation accuracy with the reduced-size training set, would be a good
estimation of the number of distinct images in Sg. In practice, we observe that
GAN-train accuracy saturates with a certain number of GAN-generated samples
(see Figs. 4(a) and (b) discussed in Sect. 5.3). This is a measure of the diversity
of a GAN, similar to recall from [32], measuring the fraction of the data manifold
covered by a GAN.

4 Datasets and Methods

Datasets. For comparing the different GAN methods and PixelCNN++, we
use several image classification datasets with an increasing number of labels:
MNIST [30], CIFAR10 [28], CIFAR100 [28] and ImageNet1k [14]. CIFAR10 and
CIFAR100 both have 50k 32×32 RGB images in the training set, and 10k images
in the validation set. CIFAR10 has 10 classes while CIFAR100 has 100 classes.
ImageNet1k has 1000 classes with 1.3M training and 50k validation images. We
downsample the original ImageNet images to two resolutions in our experiments,
namely 64×64 and 128×128. MNIST has 10 classes of 28×28 grayscale images,
with 60k samples for training and 10k for validation.

We exclude the CIFAR10/CIFAR100/ImageNet1k validation images from
GAN training to enable the evaluation of test accuracy. This is not done in a
number of GAN papers and may explain minor differences in IS and FID scores
compared to the ones reported in these papers.

4.1 Evaluated Methods

Among the plethora of GAN models in literature, it is difficult to choose the best
one, especially since appropriate hyperparameter fine-tuning appears to bring all
major GANs within a very close performance range, as noted in a study [32].
We choose to perform our analysis on Wasserstein GAN (WGAN-GP), one of
the most widely-accepted models in literature at the moment, and SNGAN,
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a very recent model showing state-of-the-art image generation results on Ima-
geNet. Additionally, we include two baseline generative models, DCGAN [45] and
PixelCNN++ [47]. We summarize all the models included in our experimental
analysis below, and present implementation details in the appendix [5].

Wasserstein GAN. WGAN [7] replaces the discriminator separating real and
generated images with a critic estimating Wasserstein-1 (i.e., earth-mover’s) dis-
tance between their corresponding distributions. The success of WGANs in com-
parison to the classical GAN model [19] can be attributed to two reasons. Firstly,
the optimization of the generator is easier because the gradient of the critic func-
tion is better behaved than its GAN equivalent. Secondly, empirical observations
show that the WGAN value function better correlates with the quality of the
samples than GANs [7].

In order to estimate the Wasserstein-1 distance between the real and gener-
ated image distributions, the critic must be a K-Lipschitz function. The original
paper [7] proposed to constrain the critic through weight clipping to satisfy this
Lipschitz requirement. This, however, can lead to unstable training or generate
poor samples [20]. An alternative to clipping weights is the use of a gradient
penalty as a regularizer to enforce the Lipschitz constraint. In particular, we
penalize the norm of the gradient of the critic function with respect to its input.
This has demonstrated stable training of several GAN architectures [20].

We use the gradient penalty variant of WGAN, conditioned on data in our
experiments, and refer to it as WGAN-GP in the rest of the paper. Label condi-
tioning is an effective way to use labels available in image classification training
data [41]. Following ACGAN [41], we concatenate the noise input z with the
class label in the generator, and modify the discriminator to produce probabil-
ity distributions over the sources as well as the labels.

SNGAN. Variants have also analyzed other issues related to training GANs,
such as the impact of the performance control of the discriminator on training the
generator. Generators often fail to learn the multimodal structure of the target
distribution due to unstable training of the discriminator, particularly in high-
dimensional spaces [36]. More dramatically, generators cease to learn when the
supports of the real and the generated image distributions are disjoint [6]. This
occurs since the discriminator quickly learns to distinguish these distributions,
resulting in the gradients of the discriminator function, with respect to the input,
becoming zeros, and thus failing to update the generator model any further.

SNGAN [36] introduces spectral normalization to stabilize training the dis-
criminator. This is achieved by normalizing each layer of the discriminator
(i.e., the learnt weights) with the spectral norm of the weight matrix, which
is its largest singular value. Miyato et al. [36] showed that this regularization
outperforms other alternatives, including gradient penalty, and in particular,
achieves state-of-the-art image synthesis results on ImageNet. We use the class-
conditioned version of SNGAN [37] in our evaluation. Here, SNGAN is con-
ditioned with projection in the discriminator network, and conditional batch
normalization [17] in the generator network.
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DCGAN. Deep convolutional GANs (DCGANs) is a class of architecture that
was proposed to leverage the benefits of supervised learning with CNNs as
well as the unsupervised learning of GAN models [45]. The main principles
behind DCGANs are using only convolutional layers and batch normalization
for the generator and discriminator networks. Several instantiations of DCGAN
are possible with these broad guidelines, and in fact, many do exist in litera-
ture [20,36,41]. We use the class-conditioned variant presented in [41] for our
analysis.

PixelCNN++. The original PixelCNN [53] belongs to a class of generative
models with tractable likelihood. It is a deep neural net which predicts pixels
sequentially along both the spatial dimensions. The spatial dependencies among
pixels are captured with a fully convolutional network using masked convolu-
tions. PixelCNN++ proposes improvements to this model in terms of regular-
ization, modified network connections and more efficient training [47].

5 Experiments

5.1 Implementation Details of Evaluation Measures

We compute Inception score with the WGAN-GP code [1] corrected for the 1008
classes problem [8]. The mean value of this score computed 10 times on 5k splits
is reported in all our evaluations, following standard protocol.

We found that there are two variants for computing FID. The first one is the
original implementation [2] from the authors [22], where all the real images and
at least 10k generated images are used. The second one is from the SNGAN [36]
implementation, where 5k generated images are compared to 5k real images.
Estimation of the covariance matrix is also different in both these cases. Hence,
we include these two versions of FID in the paper to facilitate comparison in
the future. The original implementation is referred to as FID, while our imple-
mentation [4] of the 5k version is denoted as FID-5K. Implementation of SWD
is taken from the official NVIDIA repository [3].

5.2 Generative Model Evaluation

MNIST. We validate our claim (from Sect. 3) that a GAN can perfectly repro-
duce a simple dataset on MNIST. A four-layer convnet classifier trained on
real MNIST data achieves 99.3% accuracy on the test set. In contrast, images
generated with SNGAN achieve a GAN-train accuracy of 99.0% and GAN-test
accuracy of 99.2%, highlighting their high image quality as well as diversity.

CIFAR10. Table 1 shows a comparison of state-of-the-art GAN models on
CIFAR10. We observe that the relative ranking of models is consistent across
different metrics: FID, GAN-train and GAN-test accuracies. Both GAN-train
and GAN-test are quite high for SNGAN and WGAN-GP (10M). This implies
that both the image quality and the diversity are good, but are still lower than
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that of real images (92.8 in the first row). Note that PixelCNN++ has low diver-
sity because GAN-test is much higher than GAN-train in this case. This is in
line with its relatively poor Inception score and FID (as shown in [32] FID is
quite sensitive to mode dropping).

Table 1. CIFAR10 experiments. IS: higher is better. FID and SWD: lower is better.
SWD values here are multiplied by 103 for better readability. GAN-train and GAN-test
are accuracies given as percentage (higher is better).

Model IS FID-5K FID GAN-train GAN-test SWD 16 SWD 32

Real images 11.33 9.4 2.1 92.8 - 2.8 2.0

SNGAN 8.43 18.8 11.8 82.2 87.3 3.9 24.4

WGAN-GP (10M) 8.21 21.5 14.1 79.5 85.0 3.8 6.2

WGAN-GP (2.5M) 8.29 22.1 15.0 76.1 80.7 3.4 6.9

DCGAN 6.69 42.5 35.6 65.0 58.2 6.5 24.7

PixelCNN++ 5.36 121.3 119.5 34.0 47.1 14.9 56.6

Fig. 3. First column: SNGAN-generated images. Other columns: 5 images from
CIFAR10 “train” closest to GAN image from the first column in feature space of
baseline CIFAR10 classifier.

Note that SWD does not correlate well with other metrics: it is consistently
smaller for WGAN-GP (especially SWD 32). We hypothesize that this is because
SWD approximates the Wasserstein-1 distance between patches of real and gen-
erated images, which is related to the optimization objective of Wasserstein
GANs, but not other models (e.g., SNGAN). This suggests that SWD is unsuit-
able to compare WGAN and other GAN losses. It is also worth noting that
WGAN-GP (10M) shows only a small improvement over WGAN-GP (2.5M)
despite a four-fold increase in the number of parameters. In Fig. 3 we show
SNGAN-generated images on CIFAR10 and their nearest neighbors from the
training set in the feature space of the classifier we use to compute the GAN-
test measure. Note that SNGAN consistently finds images of the same class as
a generated image, which are close to an image from the training set.

To highlight the complementarity of GAN-train and GAN-test, we emulate
a simple model by subsampling/corrupting the CIFAR10 training set, in the
spirit of [22]. GAN-train/test now corresponds to training/testing the classifier
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on modified data. We observe that GAN-test is insensitive to subsampling unlike
GAN-train (where it is equivalent to training a classifier on a smaller split). Salt
and pepper noise, ranging from 1% to 20% of replaced pixels per image, barely
affects GAN-train, but degrades GAN-test significantly (from 82% to 15%).

Through this experiment on modified data, we also observe that FID is insuf-
ficient to distinguish between the impact of image diversity and quality. For
example, FID between CIFAR10 train set and train set with Gaussian noise
(σ = 5) is 27.1, while FID between train set and its random 5k subset with the
same noise is 29.6. This difference may be due to lack of diversity or quality
or both. GAN-test, which measures the quality of images, is identical (95%) in
both these cases. GAN-train, on the other hand, drops from 91% to 80%, show-
ing that the 5k train set lacks diversity. Together, our measures, address one of
the main drawbacks of FID.

CIFAR100. Our results on CIFAR100 are summarized in Table 2. It is a more
challenging dataset than CIFAR10, mainly due to the larger number of classes
and fewer images per class; as evident from the accuracy of a convnet for classifi-
cation trained with real images: 92.8 vs 69.4 for CIFAR10 and CIFAR100 respec-
tively. SNGAN and WGAN-GP (10M) produce similar IS and FID, but very
different GAN-train and GAN-test accuracies. This makes it easier to conclude
that SNGAN has better image quality and diversity than WGAN-GP (10M).
It is also interesting to note that WGAN-GP (10M) is superior to WGAN-GP
(2.5M) in all the metrics, except SWD. WGAN-GP (2.5M) achieves reasonable
IS and FID, but the quality of the generated samples is very low, as evidenced
by GAN-test accuracy. SWD follows the same pattern as in the CIFAR10 case:
WGAN-GP shows a better performance than others in this measure, which is not
consistent with its relatively poor image quality. PixelCNN++ exhibits an inter-
esting behavior, with high GAN-test accuracy, but very low GAN-train accuracy,
showing that it can generate images of acceptable quality, but they lack diver-
sity. A high FID in this case also hints at significant mode dropping. We also
analyze the quality of the generated images with t-SNE [33] in the appendix [5].

Random Forests. We verify if our findings depend on the type of classifier by using
random forests [23,43] instead of CNN for classification. This results in GAN-
train, GAN-test scores of 15.2%, 19.5% for SNGAN, 10.9%, 16.6% for WGAN-
GP (10M), 3.7%, 4.8% for WGAN-GP (2.5M), and 3.2%, 3.0% for DCGAN
respectively. Note that the relative ranking of these GANs remains identical for
random forests and CNNs.

Human Study. We designed a human study with the goal of finding which of
the measures (if any) is better aligned with human judgement. The subjects
were asked to choose the more realistic image from two samples generated for
a particular class of CIFAR100. Five subjects evaluated SNGAN vs one of the
following: DCGAN, WGAN-GP (2.5M), WGAN-GP (10M) in three separate
tests. They made 100 comparisons of randomly generated image pairs for each
test, i.e., 1500 trials in total. All of them found the task challenging, in particular
for both WGAN-GP tests.
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We use Student’s t-test for statistical analysis of these results. In SNGAN vs
DCGAN, subjects chose SNGAN 368 out of 500 trials, in SNGAN vs WGAN-
GP (2.5M), subjects preferred SNGAN 274 out of 500 trials, and in SNGAN
vs WGAN-GP (10M), SNGAN was preferred 230 out of 500. The preference of
SNGAN over DCGAN is statistically significant (p < 10−7), while the preference
over WGAN-GP (2.5M) or WGAN-GP (10M) is insignificant (p = 0.28 and
p = 0.37 correspondingly). We conclude that the quality of images generated
needs to be significantly different, as in the case of SNGAN vs DCGAN, for
human studies to be conclusive. They are insufficient to pick out the subtle, but
performance-critical, differences, unlike our measures.

Table 2. CIFAR100 experiments. Refer to the caption of Table 1 for details.

Model IS FID-5K FID GAN-train GAN-test SWD 16 SWD 32

Real images 14.9 10.8 2.4 69.4 - 2.7 2.0

SNGAN 9.30 23.8 15.6 45.0 59.4 4.0 15.6

WGAN-GP (10M) 9.10 23.5 15.6 26.7 40.4 6.0 9.1

WGAN-GP (2.5M) 8.22 28.8 20.6 5.4 4.3 3.7 7.7

DCGAN 6.20 49.7 41.8 3.5 2.4 9.9 20.8

PixelCNN++ 6.27 143.4 141.9 4.8 27.5 8.5 25.9

Table 3. ImageNet experiments. SNGAN* refers to the model provided by [36], trained
for 850k iterations. Refer to the caption of Table 1 for details.

Res Model IS FID-5K FID GAN-train top-1 GAN-train top-5 GAN-test top-1 GAN-test top-5

64px Real images 63.8 15.6 2.9 55.0 78.8 - -

SNGAN 12.3 44.5 34.4 3 8.4 12.9 28.9

WGAN-GP 11.3 46.7 35.8 0.1 0.7 0.1 0.5

128px Real images 203.2 17.4 3.0 59.1 81.9 - -

SNGAN* 35.3 44.9 33.2 9.3 21.9 39.5 63.4

WGAN-GP 11.6 91.6 79.5 0.1 0.5 0.1 0.5

ImageNet. On this dataset, which is one of the more challenging ones for image
synthesis [36], we analyzed the performance of the two best GAN models based
on our CIFAR experiments, i.e., SNGAN and WGAN-GP. As shown in Table 3,
SNGAN achieves a reasonable GAN-train accuracy and a relatively high GAN-
test accuracy at 128 × 128 resolution. This suggests that SNGAN generated
images have good quality, but their diversity is much lower than the original data.
This may be partly due to the size of the generator (150 Mb) being significantly
smaller in comparison to ImageNet training data (64 Gb for 128 × 128). Despite
this difference in size, it achieves GAN-train accuracy of 9.3% and 21.9% for top-
1 and top-5 classification results respectively. In comparison, the performance of
WGAN-GP is dramatically poorer; see last row for each resolution in the table.



230 K. Shmelkov et al.

Fig. 4. The effect of varying the size of the generated image set on GAN-train accuracy.
For comparison, we also show the result (in blue) of varying the size of the real image
training dataset. (Best viewed in pdf.) (Color figure online)

In the case of images generated at 64 × 64 resolution, GAN-train and GAN-
test accuracies with SNGAN are lower than their 128× 128 counterparts. GAN-
test accuracy is over four times better than GAN-train, showing that the gener-
ated images lack in diversity. It is interesting to note that WGAN-GP produces
Inception score and FID very similar to SNGAN, but its images are insufficient
to train a reasonable classifier and to be recognized by an ImageNet classifier,
as shown by the very low GAN-train and GAN-test scores.

5.3 GAN Image Diversity

We further analyze the diversity of the generated images by evaluating GAN-
train accuracy with varying amounts of generated data. A model with low diver-
sity generates redundant samples, and increasing the quantity of data generated
in this case does not result in better GAN-train accuracy. In contrast, generat-
ing more samples from a model with high diversity produces a better GAN-train
score. We show this analysis in Fig. 4, where GAN-train accuracy is plotted with
respect to the size of the generated training set on CIFAR10 and CIFAR100.

In the case of CIFAR10, we observe that GAN-train accuracy saturates
around 15–20k generated images, even for the best model SNGAN (see Fig. 4a).
With DCGAN, which is weaker than SNGAN, GAN-train saturates around 5k
images, due to its relatively poorer diversity. Figure 4b shows no increase in
GAN-train accuracy on CIFAR100 beyond 25k images for all the models. The
diversity of 5k SNGAN-generated images is comparable to the same quantity of
real images; see blue and orange plots in Fig. 4b. WGAN-GP (10M) has very
low diversity beyond 5k generated images. WGAN-GP (2.5M) and DCGAN per-
form poorly on CIFAR100, and are not competitive with respect to the other
methods.
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Fig. 5. The impact of training a classifier with a combination of real and SNGAN
generated images.

5.4 GAN Data Augmentation

We analyze the utility of GANs for data augmentation, i.e., for generating addi-
tional training samples, with the best-performing GAN model (SNGAN) under
two settings. First, in Figs. 5a and b, we show the influence of training the
classifier with a combination of real images from the training set and 50k GAN-
generated images on the CIFAR10 and CIFAR100 datasets respectively. In this
case, SNGAN is trained with all the images from the original training set. From
both the figures, we observe that adding 2.5k or 5k real images to the 50k
GAN-generated images improves the accuracy over the corresponding real-only
counterparts. However, adding 50k real images does not provide any notice-
able improvement, and in fact, reduces the performance slightly in the case of
CIFAR100 (Fig. 5b). This is potentially due to the lack of image diversity.

Table 4. Data augmentation when SNGAN is trained with reduced real image set.
Classifier is trained either on this data (real) or a combination of real and SNGAN
generated images (real+GAN). Performance is shown as % accuracy.

Num real images real C10 real+GAN C10 real C100 real+GAN C100

2.5k 73.4 67.0 25.6 23.9

5k 80.9 77.9 40.0 33.5

10k 85.8 83.5 51.5 45.5

This experiment provides another perspective on the diversity of the gener-
ated set, given that the generated images are produced by a GAN learned from
the entire CIFAR10 (or CIFAR100) training dataset. For example, augmenting
2.5k real images with 50k generated ones results in a better test accuracy than
the model trained only on 5k real images. Thus, we can conclude that the GAN
model generates images that have more diversity than the 2.5k real ones. This is
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however, assuming that the generated images are as realistic as the original data.
In practice, the generated images tend to be lacking on the realistic front, and
are more diverse than the real ones. These observations are in agreement with
those from Sect. 5.3, i.e., SNGAN generates images that are at least as diverse
as 5k randomly sampled real images.

In the second setting, SNGAN is trained in a low-data regime. In contrast to
the previous experiment, we train SNGAN on a reduced training set, and then
train the classifier on a combination of this reduced set, and the same number of
generated images. Results in Table 4 show that on both CIFAR10 and CIFAR100
(C10 and C100 respectively in the table), the behaviour is consistent with the
whole dataset setting (50k images), i.e., accuracy drops slightly.

6 Summary

This paper presents steps towards addressing the challenging problem of evalu-
ating and comparing images generated by GANs. To this end, we present new
quantitative measures, GAN-train and GAN-test, which are motivated by preci-
sion and recall scores popularly used in the evaluation of discriminative models.
We evaluate several recent GAN approaches as well as other popular generative
models with these measures. Our extensive experimental analysis demonstrates
that GAN-train and GAN-test not only highlight the difference in performance
of these methods, but are also complementary to existing scores.
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