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Abstract. Automatic lesion segmentation in dermoscopy images is
an essential step for computer-aided diagnosis of melanoma. The der-
moscopy images exhibits rotational and reflectional symmetry, however,
this geometric property has not been encoded in the state-of-the-art
convolutional neural networks based skin lesion segmentation methods.
In this paper, we present a deeply supervised rotation equivariant net-
work for skin lesion segmentation by extending the recent group rota-
tion equivariant network. Specifically, we propose the G-upsampling and
G-projection operations to adapt the rotation equivariant classification
network for our skin lesion segmentation problem. To further increase the
performance, we integrate the deep supervision scheme into our proposed
rotation equivariant segmentation architecture. The whole framework is
equivariant to input transformations, including rotation and reflection,
which improves the network efficiency and thus contributes to the seg-
mentation performance. We extensively evaluate our method on the ISIC
2017 skin lesion challenge dataset. The experimental results show that
our rotation equivariant networks consistently excel the regular coun-
terparts with the same model complexity under different experimental
settings. Our best model also outperforms the state-of-the-art challeng-
ing methods, which further demonstrate the effectiveness of our proposed
deeply supervised rotation equivariant segmentation network.

1 Introduction

Skin cancer has become the most prevalent cancer in the United States [12],
and melanoma is the most deadly form of skin cancer, leading to over 9,000
deaths in the Unite States in 2017 [13]. A common technique used by dermatol-
ogists for diagnosing skin diseases is the dermoscopy, which enables observation
by enhancing the visual effect of pigmented skin lesions. Lesion segmentation
in dermoscopy images is an essential component in the diagnosis of skin dis-
eases. However, segmenting skin lesions by dermatologists is time-consuming
and error-prone to inter- and intra-observer variabilities. Moreover, due to the
growing shortage of dermatologists per capita, the automatic lesion segmenta-
tion in dermoscopy images would be beneficial to more people [8]. Convolutional
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neural networks (CNNs) have proven to be very powerful models for a board
array of image recognition tasks. In the domain of skin lesion segmentation,
all leading methods adopted CNN-based methods [2,16,17]. For example, Yuan
et al. [17] proposed a deep convolutional neural network (DCNN), trained it with
multiple color spaces, and achieved the best performance in the ISIC 2017 skin
lesion segmentation challenge. Yu et al. [16] explored the network depth property
and proposed a deep residual network with more than 50 layers for automatic
skin lesion segmentation.

Fig. 1. Convolution layer is translation equivariant (a); but convolution is not rotation
equivariant (Zoom in to see the detailed comparison), as shown in (b).

The success of these CNN-based models can be partially attributed to the
effectiveness of weights sharing in the convolution layer, where the translation
equivariance is preserved. To be specific, translating a layer’s input produces the
corresponding translation in the layer’s output. As shown in Fig. 1(a), shifting
the input of the convolution leads to the predictable shifting in the output. This
translation equivariance property of convolution is effective in most perception
tasks, where the same weights can be used to encode the local spatial pattern
and reduce the model parameter to avoid overfitting. Unlike natural images,
dermoscopy images exhibit not only translation symmetry but also rotation and
flipping symmetry as well. However, if one rotates the convolution input, the
generated output does not necessarily rotate in a predictable manner, as shown
in Fig. 1(b). Previous works utilized data augmentation technique like rotation
and flipping, to encourage the network to learn rotation and flipping covariance.
Even though this strategy could regularize the network to learn the equivariance
on the training set, there is no guarantee that the equivariance property will
generalize to other images. Moreover, forcing the network to learn the redundant
knowledge introduced by different data transformations would reduce the model
efficiency. Specifically, with the same level of model complexity, the regular CNN
needs to learns not only the discriminative features but only the input rotations
and reflections. Furthermore, comparing with natural images, the biomedical
images are scarce and more difficult to obtain, and it is highly demanded to
design an efficient network to improve the model efficiency.

We consider to improve the network efficiency by encoding the rotation
and flipping equivariance into the network, in which the network preserves the
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equivariance inherent without relying on data augmentation. Recently, there
are some works have made significant progress for rotation equivariant net-
works [6,10]. Cohen et al. [6] explored rotation and reflection equivariant inher-
ent network for classification problems, where the feature learned in the G space
exhibits rotation equivariance. In this paper, we propose a deeply supervised
rotation equivariant network by extending G-CNN [6] for skin lesion segmen-
tation. Our network encodes the translation, rotation and flipping symmetry
of dermoscopy images, and thus improves the skin lesion segmentation perfor-
mance. Specifically, we design the G-upsampling layer and the G-projection layer
for the segmentation task with the G-convolution layer. The G-upsampling layer
upsamples the features in the G space and the G-projection layer performs aver-
age pooling over the rotation dimension and then projects features from the G
space to Z space, making the whole network rotation equivariant. To better stabi-
lize the learning processing of the proposed network, we also integrated the deep
supervision [4,9] in our network to further improve the performance. Compared
with the plain convolution neural networks, our network enjoys a substantially
higher degree of weight sharing, and increases the expressive capacity of the net-
work without increasing the number of parameters. We extensively evaluate our
method on the ISIC 2017 skin lesion segmentation challenge. The results demon-
strate the efficiency of our proposed rotation equivariant segmentation network,
and our method outperforms other state-of-the-art methods on the challenging
dataset. Several works [1,14,15] also explore the rotation equivariant network
in the biomedical image domain. However, our work further explores the equiv-
ariant segmentation networks with deep supervision scheme [4,9] for automatic
lesion segmentation in dermoscopy images.

2 Method

In this section, we first introduce the concept of group equivariant convolution
(G-convolution), and then describe the proposed G-upsampling and G-projection
layers for the segmentation task. Finally we present our proposed deeply super-
vised rotation equivariant framework.

2.1 G-convolution

The regular first convolution layer is a function that maps the input to feature
maps with K channels f : Z2 → R

K . The function can be described as Eq. 1.

[f ∗ ϕ](x) =
∑

y∈Z2

∑

k

fk(y)ϕk(x − y), (1)

where ϕk denotes the convolution kernel.
To encode rotation equivariance in the network, Cohen et al. [6] proposed to

conduct convolution on groups, where the group p4 consists of all compositions
of translations and rotations by 90◦ about any center of rotation in the grid, and
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Fig. 2. The illustration of the G-convolution, G-upsampling and G-projection oper-
ation. Except the G-projection layer, we only show 1 channel in all other layers to
simplify the illustration.

the group p4m additionally includes reflections. Specifically, for the input layer,
the (Z2 → G) convolution is defined as

[f ∗ ϕ](g) =
∑

y∈Z2

∑

k

fk(y)ϕk(g−1y), (2)

where g is a transformation in the predefined group p4 or p4m. Then, in the
following layers, feature maps and filters are both functions on G and the (G →
G) convolution can be described as

[f ∗ ϕ](g) =
∑

h∈G

∑

k

fk(h)ϕk(g−1h) (3)

2.2 G-upsampling and G-projection for Segmentation Problem

In the segmentation problem, the down-sampled feature maps need to be upsam-
pled in the G space for pixel-level prediction, and thus we design the G-
upsampling layer. The convention upsampling layer performs upsample opera-
tion for feature maps at the spatial dimension. In the G space, the G-upsampling
layer performs upsample operation over all eight rotations (for group p4m) at
each spatial position, as shown in Fig. 2.

To enable the equivariant network to produce final score maps for skin lesion
segmentation, we also define the (G − Z

2) projection layer.

fk(y) =
1

|G|
∑

G

(fk(h)), (4)
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where |G| denotes the number of element in group G. For example, it equals
to 4 for group p4 and 8 for group p4m. With the G-upsampling layer and the
G-projection layer, we can design a segmentation network, which is equivariant
to the input symmetric transformations.

2.3 Deeply Supervised G-FCNs

The deeply supervised rotation equivariant network is based on the ResNet34 [7]
architecture, where we replace the convolution layer, upsampling layer to the G-
convolution, G-upsampling and G-projection layers. As shown in Fig. 3, we use
three 2×2 G-upsampling layers and one G-projection layer following the feature
maps generated by ResNet34. We also adopt the U-net like long-skip connections
to preserve the low-level features. The deep supervision mechanism is performed
by upsampling at three different spatial resolution of features, and the final
result is the weighted combination of three segmentation predictions. Since all
the elements in the network are equivariant to 90◦ rotation and reflection of the
input, the whole framework also preserves the rotation equivariant property. In
other words, if one clock-wise rotates the input image 90◦, the network output
will rotate in the same manner. Readers can find more details about the network
architecture from our code1.
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Fig. 3. The framework of our proposed rotation equivariant network for skin lesion
segmentation. The network is based on ResNet34 backbone, and is integrated with
deep supervision and U-Net connections. All the regular operations are replaced to
G-convolution, G-upsampling, and G-projection operations. The whole architecture is
equivariant to input symmetric transformation. In other words, if one rotate the input
for 90◦, then the prediction score would rotate in the same way. Note that we omit the
pooling operation, ReLU activations to simplify the illustration.

1 https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-
Network-for-Lesion-Segmentation.

https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-Network-for-Lesion-Segmentation
https://github.com/xmengli999/Deeply-Supervised-Rotation-Equivariant-Network-for-Lesion-Segmentation
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3 Experiments and Results

3.1 Dataset and Evaluation Metrics

We evaluate our method on the dataset of ISIC 2017 skin lesion segmentation
challenge [5], which consists of a training set with 2000 annotated dermoscopic
images, a validation set with 150 images, and a testing set with 600 images.
The image size ranges from 540 × 722 to 4499 × 6748. To keep balance between
segmentation performance and computational cost, we first resize all the images
to 224 × 224 using bicubic interpolation. For evaluation metric, we follow the
challenge instructions to employ five evaluation metrics, including jaccard index
(JA), dice coefficient (DI), pixel-wise accuracy (AC), sensitivity (SE) and speci-
ficity (SP). Note that the final rank is determined according to JA in the ISIC
2017 skin lesion segmentation challenge.

Table 1. Ablation study of the deeply supervised rotation equivariant network.

Model No. of para Evaluation metrics

JA DI AC SE SP

ResnetFCN34* 22.8M 71.27 80.21 91.39 78.31 96.78

(RE)-ResnetFCN34* 22.8M 74.54 83.27 92.58 81.05 97.59

DS-U-ResnetFCN34* 23.2M 74.38 83.06 92.51 82.52 97.14

(RE)-DS-U-ResnetFCN34* (ours) 23.2M 76.65 85.00 93.27 84.61 96.80

(RE)-DS-U-ResnetFCN34 (ours) 23.5M 77.23 85.60 93.55 85.40 97.15

3.2 Implementation Details

All the experiments were implemented using PyTorch [11], and were trained with
stochastic gradient descent (SGD) algorithm (momentum is 0.9) from scratch.
The learning rate is set to 0.01 and decays at epoch 60. All the models are trained
for 70 epochs. As for experiments with the plain convolution, we employed data
augmentation like 90◦ rotation and flipping. The main loss function and the deep
supervision branches are trained with cross entropy loss. The weights for main
loss and deep supervision are 0.7, 0.2 and 0.1 respectively.

3.3 Ablation Study

Table 1 shows the segmentation performance on the test dataset with different
configurations. ResnetFCN34* refers to the FCN-based Resnet34 network, while
(RE)-ResnetFCN34* and DS-U-ResnetFCN34* are the rotation equivariant and
deeply supervised with long range U-Net connections counterparts, respectively.
The * denotes that we remove the first pooling layer from the original Resnet34
network, following the setting in [6]. Note that all the rotation equivariant net-
works are performed with group p4m [6]. To analyze the effectiveness of rotation
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equivariant network fairly, all the comparison are performed with the same model
complexity. Specifically, compared with the original filter numbers in Resnet34,
the number of filters is divided by roughly

√
8 in each G-convolution layer.

From the comparison in Table 1, we can see that the rotation equivariant
network largely excels the plain counterpart, with 3.27% improvement on JA.
The deeply supervised version also improve the JA performance significantly.
When integrate the deep supervision with U-Net connections into the rotation
equivariant network ((RE)-DS-U-ResnetFCN34*), we can further improve the
segmentation performance (2.27% on JA). To better adapt the network for our
skin lesion segmentation task, we replace the first pooling layer of ResnetFCN34
with a G-convolution with stride of 2 and denoted the deeply supervised rotation
equivariant version as (RE)-DS-U-ResnetFCN34. It is observed that (RE)-DS-
U-ResnetFCN34 achieves the best performance on the all evaluation metrics
excepting for SP, demonstrating the superiority and effectiveness of rotation
equivariant networks under same level of model complexity.

Table 2. Comparison with state-of-the-art methods on the ISIC 2017 test dataset.

Team JA DI AC SE SP

Our Method 0.772 0.856 0.936 0.854 0.972

Yuan and Lo [17] 0.765 0.849 0.934 0.825 0.975

Berseth [2] 0.762 0.847 0.932 0.820 0.978

Bi et al. [3] 0.760 0.844 0.934 0.802 0.985

RECOD 0.754 0.839 0.931 0.817 0.970

Jer 0.752 0.837 0.930 0.813 0.976

NedMos 0.749 0.839 0.930 0.810 0.981

INESC 0.735 0.824 0.922 0.813 0.968

Shenzhen U (Lee) 0.718 0.810 0.922 0.789 0.975

3.4 Comparison with Other Methods

We compare our result with state-of-the-art results on the ISIC 2017 testing
dataset. There are totally 21 submissions and the top results are listed in Table 2.
Yuan et al. [17] trained a CNN network with multiple color spaces and achieves
the best performance on the skin lesion segmentation challenge. Our best model,
trained from scratch on the single RGB color space, outperforms other state-of-
the-arts in the test dataset of the ISIC challenge. This comparison validates the
effectiveness of our proposed deeply supervised rotation equivariant network in
the skin lesion segmentation task.

4 Conclusion

In this paper, we present a deeply supervised rotation equivariant segmentation
network for skin lesion segmentation by utilizing the recent findings on rota-
tion equivariant CNNs. We design the G-upsampling and G-projection layers to
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enable our network for the segmentation task, and introduce the deep super-
vision mechanism to improve performance. Our network encodes the rotation
and reflection symmetry of dermoscopy images, and significantly improves the
skin lesion segmentation performance. Our method has achieved the best per-
formance on the ISIC 2017 skin lesion segmentation challenge dataset. Future
works include the extension of equivariance to arbitrary rotation and scaling.
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