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Abstract. Thermotherapy is a clinical procedure to induce a desired
biological tissue response through temperature changes. To precisely
operate the procedure, temperature monitoring during the treatment is
essential. Ultrasound propagation velocity in biological tissue changes
as temperature increases. An external ultrasound element was inte-
grated with a bipolar radiofrequency (RF) ablation probe to collect
time-of-flight information carried by ultrasound waves going through the
ablated tissues. Recovering temperature at the pixel level from the lim-
ited information acquired from this minimal setup is an ill-posed prob-
lem. Therefore, we propose a learning approach using a designed con-
volutional neural network. Training and testing were performed with
temperature images generated with a computational bioheat model sim-
ulating a RF ablation. The reconstructed thermal images were com-
pared with results from another sound velocity reconstruction method.
The proposed method showed better stability and accuracy for different
ultrasound element locations. Ex-vivo experiments were also performed
on porcine liver to evaluate the proposed temperature reconstruction
method.
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1 Introduction

Thermotherapy is a clinical procedure that uses thermal energy to induce a
desired biological tissue response. Mild and localized hyperthermia can be used
in combination with chemotherapy or drug delivery to improve the therapy
response [1,2]. Thermal ablation can be achieved by applying sufficient thermal
energy to reach a complete destruction of various kinds of cancer cells. However,
the main challenge is to cover completely the target region while preserving
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the surrounding healthy tissues. Monitoring the temperature across this region
is necessary to control the delivered thermal energy and operating duration to
precisely and successfully operate the procedure [3].

A widely accepted approach to measure temperature is the use of invasive
thermometers [4]. However, it allows temperature monitoring only at a few spa-
tial locations. Magnetic resonance imaging (MRI) is the current clinical stan-
dard to monitor the spatial temperature distribution [5]. In addition to the high
cost of MRI, it requires the therapy instruments to be MR-compatible. Further-
more, MRI is not suitable for patients with pacemaker, neurostimulator or metal
implants. An alternative is to use portable and affordable ultrasound (US) tech-
niques, and a significant number of related works have been reported [6]. These
approaches exploit the temperature dependent ultrasound properties such as
sound velocity and attenuation to estimate the temperature. Sound velocity or
attenuation images can be generated using ultrasound tomography techniques,
which typically require extensive data acquisition from multiple angles. Ultra-
sound tomographic images can also be reconstructed using time-of-flight (TOF)
information from limited angles using an isothermal model [7]. To overcome the
sparsity of the data, machine learning is a promising alternative [8].

In this work, we propose a deep learning approach for tomographic recon-
struction of sound velocity images. We collected TOFs using a clinical ultrasound
transducer and by integrating an active ultrasound element on a bipolar radiofre-
quency (RF) ablation probe. The number of acquired TOFs is limited by the
number of elements in the ultrasound transducer, usually insufficient to solve
for the sound velocity in the heated region. Therefore, we implemented a con-
volutional neural network (CNN) to reconstruct temperature images using this
limited information. For the training of the network, thermal images are gener-
ated with a computational bioheat model of RF ablation, and then converted to
sound velocity images to obtain simulated TOF datasets. We performed simu-
lation and ex-vivo experiments to evaluate the proposed method.

2 Methods

2.1 Thermal Ablation Procedure and Monitoring Setup

The thermal ablation procedure is performed with bipolar RF needles to gen-
erate various ablation patterns [9] and an active ultrasound element is used for
temperature monitoring as shown in Fig. 1(a). As the element can be integrated
with the ablation probe, it does not increase the overall invasiveness of the pro-
cedure. Two different ablation patterns were considered: horizontal and diagonal
as illustrated in Fig. 1(b). We created the horizontal pattern by activating the
two electrodes at the tips of the RF probes, and the diagonal pattern by activat-
ing crossing electrodes. During the procedure, the external ultrasound element
transmits ultrasound pulses. TOF data are collected with an ultrasound trans-
ducer to detect the change in sound velocity. Therefore, the monitored region is
the triangular area created between the ultrasound transducer and the element.
It belongs to the monitoring image plane between the two RF probes showed
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Fig. 1. (a) The ultrasound thermal monitoring setup. (b) Left: Horizontal ablation
pattern. Right: Diagonal ablation pattern.

in Fig. 1. In this plane, the horizontal pattern showed a round-shaped tempera-
ture distribution, while the diagonal pattern showed an ellipsoid one.

2.2 Thermal Image Reconstruction Using Neural Network

Training Set Generation: A RFA computational model is used to simulate
the temperature evolution in a 3D domain with various tissue parameters to
provide temperature images for training. A reaction-diffusion equation (Eq. 1)
following the Pennes bioheat model [10] is used:

ρtct
∂T

∂t
= Q + ∇ · (dt∇T ) + R(Tb0 − T ) (1)

where ρt, ct, dt are the density, heat capacity, and conductivity of the tis-
sue. Tb0, R, Q, the blood temperature, reaction term, and source term modeling
the heat from the ablation device. The implementation is based on the Lattice
Boltzmann Method and inhomogeneous tissue structures can be considered [11].
To simulate RF ablation with bipolar probes, and thus various ablation lesion
shapes, we assume the two RF electrodes as independent heating sources. Their
temperatures are imposed as Dirichlet boundary conditions [11]. For each abla-
tion pattern, we simulated a procedure of 8 min of heating followed by 2 min of
cooling, which corresponds to 600 temperature images having a temporal resolu-
tion of 1 s. We wanted to mimic the ex-vivo experiment setup, therefore porcine
tissue parameters were used, even though a shorter cooling period was achieved
due to a data storage limitation in the current experimental setup [11]. For the
horizontal pattern, the temperature range was between 22.0 ◦C and 37.8 ◦C,
and for the diagonal pattern, between 23.0 ◦C and 35.9 ◦C.

Different ultrasound element locations can also be considered. We defined
a 2D image coordinate system as (Axial, Lateral) axis in millimeter scale. The
image plane was divided in 60 by 60 pixels. A 6 cm linear 128 element ultrasound
probe was placed between (0, 0) and (0, 60), and the ultrasound element was
located within the image plane. The network training set is made of those images
as well as the corresponding simulated TOF information.

In order to simulate the acquisition of TOF dataset, we converted the tem-
perature images into sound velocity images as the sound velocity within the
tissue changes with temperature. Since the major component of biological tissue
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is water, the relationship between sound velocity and temperature for biological
tissue has a trend similar to the water one [12]. In this paper, we used a convert-
ing equation acquired from a tissue-mimicking phantom with a sound velocity
offset compensation [13] to simulate TOF information affected by a change in
temperature and therefore in sound velocity even though a tissue-specific rela-
tionship could be used if the tissue type is known.

We simulated 49 different ultrasound element locations around the location
used in the ex-vivo experiment, with the heating center kept fixed. For the hor-
izontal pattern, we moved the element location from (36, 40.5) to (42, 46.5) by
a 1 mm step in both lateral and axial directions. For the diagonal pattern, ele-
ment locations between (43.5, 51) and (49.5, 57) were considered. For each of
the 49 locations, data were split randomly with a 6:1 ratio between training and
testing sets. Therefore, for each ablation pattern, the total number of samples
was 29,400, split into 4,200 testing and 25,200 training sets. This large dataset
may ensure an effective training of the network parameters without over-fitting.

Image Reconstruction Network: Figure 2 shows the temperature image
reconstruction neural network, which consists of two fully connected layers
wrapping series of CNN. The convolutional network is symmetrically designed,
consisting of convolution and trans-convolution layers. After the convolution
operation, each CNN layer includes a ReLU followed by a batch normalization
operation.

Fig. 2. Temperature image reconstruction network.

We concatenated the 128-length initial TOF vector with any TOF vector dur-
ing the procedure into a 256-length input vector. The initial TOF is always used
since it provides the element location and allows to access the TOF differences
during the ablation procedure, valuable information for temperature reconstruc-
tion. As we reconstructed 3600 pixel temperature images with a 256-length input
vector, we expanded the parameters at the beginning of the network.

Training Results: For each ablation pattern, we performed 1000 epochs using
the Pytorch library [14]. Adam optimizer and mean squared error loss func-
tion were used. We compared the results to those obtained from another recon-
struction method (CSRM) [13] in Table 1 at the 49 different ultrasound ele-
ment locations. In this case, the ground truths are the simulated temperature
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Table 1. Comparison of the CNN approach with a sound velocity reconstruction
method using RFA modeling (CSRM) for the 49 different ultrasound element loca-
tions. The error is the difference of temperature in the imaging plane between the
reconstructed image and the simulated image (ground truth).

Method CSRM CNN

Pattern Horizontal Diagonal Horizontal Diagonal

Maximum errors (◦C) 1.118 ± 2.701 0.788 ± 1.904 0.174 ± 0.198 0.064 ± 0.010

Mean errors (◦C) 0.107 ± 0.243 0.070 ± 0.144 0.019 ± 0.018 0.011 ± 0.017

images. The CRSM method used an optimization approach with additional con-
straints brought by a computational RFA modeling. The CNN reconstruction
method had 0.94 ◦C and 0.72 ◦C less maximum temperature error in the imag-
ing plane than CSRM for the horizontal and diagonal pattern respectively. We
also observed that the standard deviation decreased with the CNN approach.
With the CSRM method, the reconstruction accuracy is highly affected by the
ultrasound element location. Indeed, for certain locations, the ultrasound prop-
agation paths may not intersect with the heating center. Among the 49 different
element locations considered, the maximum error in the sound velocity recon-
struction exceeds 5 m/s with CSRM at 7 and 2 locations for the horizontal and
diagonal pattern respectively. The CNN reconstruction method showed less tem-
perature error at those locations since it could estimate the temperature at the
heating center more precisely using information learned from other temperature
distributions.

We also tested with a fully connected network by replacing the middle struc-
ture with four dense networks which were the same as the last dense network
in Fig. 2. The regression accuracy was similar to the CNN network with more
parameters. To minimize over-fitting, we chose the hyper-parameters with the
minimal number of layers maintaining the regression accuracy. The initial learn-
ing rate was 10−3, and we re-trained with a smaller learning rate of 10−5. We
also tested our network without the last dense layers, the regression accuracy
was inferior to the original network.

3 Ex-vivo Liver Ablation with Ultrasound Monitoring

3.1 Experiment Setup

Two ex-vivo porcine liver experiments were performed to test the performance of
the trained model. Liver tissues were placed at room temperature for 12 h before
performing the ablation. We used the setup illustrated in Fig. 1(a). Bipolar abla-
tion probes were inserted 2-cm apart and in parallel by using a holder to perform
horizontal and diagonal ablation patterns. The ablation power was provided by a
RF generator (Radionics Inc., USA). The ultrasound element was placed within
the porcine liver tissue. We adjusted its location to the ultrasound transducer
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Fig. 3. Results of the ex-vivo experiments on porcine livers. (a) Temperature recon-
struction for the horizontal and diagonal ablation patterns. (b) Temperature evolution
over time at three different positions in the imaging plane. (Left): Horizontal ablation
pattern. (Right): Diagonal ablation pattern.
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by finding the maximum signal strength within the imaging plane. We used a
10 MHz linear transducer L14-5W/60 (Ultrasonix Corp., Canada) with a 5–14
MHz bandwidth and a SonixDAQ (Ultrasonix Corp., Canada) with a sampling
frequency of 40 MHz. The ultrasound data was collected with a pitch-and-catch
mode. The ultrasound element transmitted a pulse while the ultrasound trans-
ducer and DAQ received the signal simultaneously. The transmission and collec-
tion were synchronized by an external function generator at 1 Hz. We performed
8 min of ablation, after what the ablation probes remained in the tissue for an
extra 1 min without RF power.

3.2 Temperature Image Reconstruction

TOF was detected by finding the first peak from the ultrasound channel data.
The received signal had a center frequency of 3.7 MHz with a bandwidth of 2.5–
5.6 MHz. During the two ablations, we collected 540 TOF dataset for 9 min.
The element was localized at (39.0, 43.6) and (46.6, 54.2) in the horizontal and
diagonal pattern experiments. We reconstructed temperature images using the
model trained with the simulation datasets and we observed a convincing tem-
perature trend over time. The temperature evolutions at three different points:
heating center, −5 and −10 mm away from the center along the axial direction
are shown in Fig. 3. The maximum TOF shift was 300 ns for the horizontal,
and 475 ns for the diagonal pattern. In the horizontal pattern experiment, at
around 180 and 230 s, the TOF increased for few samples compared to previous
frames which was unexpected. This induced a temperature decrease at those
time points. Nonetheless, we observed an overall temperature increase trend.

4 Discussion and Conclusion

As we use the relative changes in TOF to monitor the temperature during a
thermal ablation, the complication of calculating the absolute sound velocity
of different tissues is decreased. However, the variety of sound velocity changes
against temperature in different tissue types may cause errors in the recon-
structed temperature results. To overcome this problem, a calibration method
for different tissue types can be used [13], and dataset from diverse tissue types
should also be used to train the network. In this paper, the ablation power was
limited due to the ongoing development of the bipolar ablation device, which
limited the temperature range. But this method can be applied to ablation
where higher temperatures are reached. Moreover, the ex-vivo experiment results
could not be validated with other thermometry methods. MR-thermometry for
example, was not an option since the ablation system is not MR-compatible.
Thermocouples could block the ultrasound propagation paths, and only pro-
vide temperature information at few points. Therefore, we validated the method
with simulation data, and observed an increasing temperature trend in ex-vivo
experiments. Patient motion can affect the reconstruction accuracy, which is the
main challenge for many ultrasound thermometry approaches. With our method,
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patient motion will change the location of the ultrasound element relative to the
ultrasound transducer, which can be detected by a sudden change in TOF. The
CNN model is trained with various ultrasound element locations, and the system
could be further improved in the future to continue reconstructing temperature
images using prior temperature information in the occurrence of patient motion.

Ultrasound is a preferable imaging modality due to its accessibility, cost-
effectiveness, and non-ionizing nature. We have introduced a temperature moni-
toring method using an external ultrasound element and CNN. We have trained
the model with simulation data, and applied it to ex-vivo experiments. One of
the advantages of the proposed method is the fact that we can generate unlim-
ited simulation datasets for the training. This method will be further extended
for tomographic applications using sparse datasets.
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