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Abstract. This paper presents a fully convolutional network-based seg-
mentation method to create an eyeball model data for patient-specific
ophthalmologic surgery simulation. In order to create an elaborate eye-
ball model for each patient, we need to accurately segment eye structures
with different sizes and complex shapes from high-resolution images.
Therefore, we aim to construct a fully convolutional network to enable
accurate segmentation of anatomical structures in an eyeball from train-
ing on sparsely-annotated images, which can provide a user with all
annotated slices if he or she annotates a few slices in each image volume
data. In this study, we utilize a fully convolutional network with full-
resolution residual units that effectively learns multi-scale image features
for segmentation of eye macro- and microstructures by acting as a bridge
between the two processing streams (residual and pooling streams). In
addition, a weighted loss function and data augmentation are utilized for
network training to accurately perform the semantic segmentation from
only sparsely-annotated axial images. From the results of segmentation
experiments using micro-CT images of pig eyeballs, we found that the
proposed network provided better segmentation performance than con-
ventional networks and achieved mean Dice similarity coefficient scores
of 91.5% for segmentation of eye structures even from a small amount of
training data.
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1 Introduction

Semantic segmentation of medical images is an essential technique for creat-
ing anatomical model data that are available for surgical planning, training,
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and simulation. In the field of ophthalmology, elaborate artificial eyeball models
[1,2] have been developed for training and simulation of eye surgeries, and it is
desired to create realistic eyeball model data for patient-specific surgical simu-
lation through the segmentation of detailed eye structures. Thus, we focus on
segmenting not only the entire eyeball structure but also microstructures (e.g.,
Zinn’s zonule) in the eyeball, which conventional modalities such as computed
tomography (CT) have difficulty capturing, by using higher-resolution modalities
such as micro CT.

To efficiently create patient-specific eyeball model data from high-resolution
images, we need to take into account the following three points: (a) full- or
semi-automation of segmentation for reducing the burden of manual annotation,
(b) accurate extraction of eye structures with different sizes and complex shapes,
and (c) image processing at full resolution without downsampling. Therefore, we
utilize a fully convolutional network (FCN) [3], which is one of the most powerful
tools for end-to-end semantic segmentation, to construct a segmentation method
to fulfill the key points.

For accurate segmentation of objects with different sizes and complex shapes
in the images, it is important to construct a network architecture that can obtain
image features for localization and recognition of the objects. In general, deep
convolutional neural networks can obtain coarse image features for recognition
on deep layers and fine image features for localization on shallow layers. Many
studies [3–6] have proposed a network architecture to obtain multi-scale image
features for semantic segmentation by residual units (RUs) or skip connections,
which combine different feature maps output from different layers. U-net pro-
posed by Ronneberger et al. [6] achieved good performance for semantic seg-
mentation of biomedical images by effectively using long-range skip connections.
Moreover, their research group showed that 3D U-net [7], which was developed
as the extended version of U-net, could provide accurate volumetric image seg-
mentation based on training from sparsely-annotated images on three orthogonal
planes. However, such 3D FCNs have difficulty handling images at full resolu-
tion and obtaining full-resolution image features essential for strong localization
performance because of the limitation of GPU memory.

Therefore, we aim to construct a 2D network architecture that provides
improved localization and recognition for semantic segmentation of high-
resolution medical images by using advanced RUs instead of conventional skip
connections found in FCN-8s [3] or U-net [6]. Moreover, we also aim to propose a
training strategy in which the network can learn from sparsely-annotated images
and provide accurate label propagation to the remaining images in volumetric
image data, because it is not easy to collect a large amount of high-resolution
image volumes for network training from different cases. The concept of our pro-
posed method is shown in Fig. 1. The originality of this study lies in introducing
a FCN with the advanced RUs and its training strategy to achieve accurate
segmentation of eye structures in an end-to-end fashion even from sparsely-
annotated volumetric images.
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Fig. 1. Concept of the proposed method for segmentation of eye structures from sparse
annotation

2 Methods

2.1 Network Architecture

In this study, we focus on full-resolution residual units (FRRUs) [8], which was
designed to facilitate the combination of multi-scale image features while keeping
similar training characteristics as ResNet [9]. We utilize the network architecture
that consists of four pooling steps followed by four upsampling steps like U-
net [6] as a base and construct a residual-based FCN incorporating FRRUs
into the basal network architecture to enhance the localization and recognition
performances for segmentation of eye structures. Figure 2 shows the architectures
of U-net and the proposed network. The box in the figure represents a feature
map output by each convolution layer or FRRU and the number of channels is
denoted under the box. U-net fuses the same-size feature maps between pooling
stages and upsampling stages with skip connections, while the proposed network
jointly computes image features on two processing streams by using FRRUs.
One stream (i.e., residual stream) conveys full-resolution fine image features for
localization, which are obtained by adding successive residuals, and the other
stream (i.e., pooling stream) conveys coarse image features for recognition, which
are computed through convolution and pooling steps.

The detail of a FRRU structure is indicated in Fig. 3. Each classical RU [9]
has one input and one output, while each FRRU computes two outputs from
two inputs. Let xn and yn be the residual and the pooling inputs to n-th FRRU,
respectively. Then, the outputs are computed as follows:

xn+1 = xn + G(xn, yn;Wn) (1)
yn+1 = H(xn, yn;Wn) (2)

where Wn denote the parameters of the residual function G and the pooling
function H. As shown in Fig. 3, the FRRU concatenates the pooling input with
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the residual input operated by a pooling layer, and subsequently obtains the
concatenated features (i.e., the output of the function H) through two 3 × 3
convolution layers. The output of H is passed to the next layer as the pooling
stream. Moreover, the output of H are also resized by the function G and reused
as features added to the residual stream. This design of the FRRU makes it pos-
sible to combine and compute the two stream simultaneously and successively.

Therefore, the proposed network, which are composed of a sequence of
FRRUs, gains the ability to precisely localize and recognize objects in images by
combining the following two processing streams: the residual stream that carries
fine image features at full resolution and the pooling stream that carries image
features obtained through a sequence of convolution, pooling, and deconvolution
operations.

Fig. 2. Network architectures: (a) U-net [6] and (b) the proposed network

Fig. 3. Design of full-resolution residual unit (FRRU) [8]
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2.2 Training Strategy

We assume that the proposed network is applied to eye structures segmentation
based on sparse annotation. Thus, we need to construct a framework to enable
the network to effectively learn image features even from less annotated slices
for training.

In the case of our application, it is expected that the training and testing
subsets of images have no significant differences of geometric and visual char-
acteristics (e.g., location, scale, or contrast) between objects for segmentation
because they are derived from the same image volume. Therefore, we here adopt
rotation and elastic deformation for data augmentation to efficiently train small
geometric variations of eye structures in the images based on less annotated slices
for training, although there are many techniques for increasing the amount of
training data. Each slice in the training subset is augmented twentyfold by rotat-
ing −25◦ to 25◦ at 5 degree intervals and repeating the elastic deformation ten
times based on random shifts of 5 × 5 grid points and B-spline interpolation.

Additionally, for more effective network training, we use categorical cross-
entropy loss function weighted by the inverse of class frequency to reduce the
negative effects of class imbalance (i.e., difference of sizes between different eye
structures in the images).

3 Experiments and Results

3.1 Experimental Setup

We validated the segmentation performance of the proposed method on a dataset
of eyeball images, which were scanned using a micro-CT scanner (inspeXio SMX-
90CT Plus, Shimadzu Co., Japan). The dataset consists of micro-CT volumes of
five pig eyeballs, and the size of each volume is 1024 × 1024 × 548 (sagittal ×
coronal × axial) voxels, with a voxel size of 50 µm. Figure 4 shows an example
of micro-CT images and label images used for the validation. As a preprocessing
step, the original micro-CT images were filtered by using a wavelet-FFT filter
[10] and a median filter to remove the ring artifacts and random noises, and sub-
sequently the filtered images were normalized based on the mean and standard
deviation on the training subset of images for each micro-CT volume. We defined
six labels, including Background, Wall and membrane, Lens, Vitreum, Ciliary
body and Zinn’s zonule, and Anterior chamber. The preprocessed images and
the corresponding manually annotated images were used for network training
and testing.

In this study, for fundamental comparative evaluation, we compared our net-
work with the following two representative networks: FCN-8s [3] and U-net [6].
To evaluate the segmentation performances associated with network architec-
tures, all the networks were trained and tested on the same datasets under the
same conditions (i.e., the same learning rate, optimizer, and loss function were
assigned to the networks). On the assumption of the semantic segmentation from
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Fig. 4. Example of micro-CT images and label images

sparse annotation, 2.5% (i.e., every 40 slices) of all the slices and the remain-
ing slices on the axial plane in each volume were used as training and testing
subsets, respectively. The slices of each training subset were augmented by the
two data augmentation techniques (i.e., rotation and elastic deformation). Each
of the networks was trained from scratch on the augmented training subset of
slices for 100 epochs and tested on the testing subset. The segmentation per-
formances were quantitatively and qualitatively evaluated by comparing Dice
similarity coefficient (DSC) scores and visualization results between the net-
works. The networks used for experiments were implemented using Keras1 with
the Tensorflow backend2, and all the experiments were performed on a NVIDIA
Quadro P6000 graphic card with 24 GB memory.

3.2 Experimental Results

Table 1 indicates the comparison results of DSC scores of the three networks,
including FCN-8s, U-net, and the proposed network. The proposed network could
segment eye structures with a mean Dice score of 91.5% and achieve the best
segmentation performance of the three networks. In addition, the results showed
that the proposed network could segment almost all the labels with higher mean
score and lower standard deviation than the other networks. Even on the label
of “Ciliary body & Zinn’s zonule” that is hard to segment because of the high
variability of shapes, the proposed network provided mean DSC score of more
than 85%.

Figure 5 visualizes a part of the segmentation results obtained by the three
networks. FCN-8s generalized the segmentation results with jagged edges near
the label boundaries, and U-net produced segmentation results including some
errors despite the smooth label boundaries. Compared to these conventional
networks, we could find that the proposed network generalized more accurate
segmentation results with smoother edges for all labels than the other networks.

1 https://keras.io/.
2 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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Table 1. Quantitative comparison of segmentation results of pig eyeballs (n = 5)

Label DSC score (%)

(a) FCN-8s[3] (b) U-net[6] (c) Our network

Background 99.7 ± 0.2 99.7 ± 0.1 99.8± 0.1

Wall and membrane 83.2 ± 6.1 86.9 ± 3.4 89.4± 1.4

Vitreum 97.8± 0.4 96.9 ± 1.4 97.8 ± 0.8

Lens 94.4 ± 1.9 94.3 ± 1.4 95.5± 1.1

Ciliary body & Zinn’s zonule 79.7 ± 6.4 82.9 ± 3.1 85.6± 2.8

Anterior chamber 87.5 ± 4.9 85.3 ± 4.7 89.1± 1.9

Mean (except Background) 88.5 89.3 91.5

Std (except Background) 7.6 6.2 5.1

Min (except Background) 79.7 82.9 85.6

Max (except Background) 97.8 96.9 97.8

Fig. 5. Qualitative comparison of segmentation results

4 Discussion

As indicated in Table 1, the proposed network achieved high mean DSC scores
with low standard deviation for segmenting eye structures from sparse annota-
tion, although only 2.5% of all the slices (i.e., 14 of 548 slices) were used for
network training. The proposed network could consistently achieve higher accu-
racy for segmentation of eye structures with different sizes and shapes, compared
to FCN-8s and U-net. This is probably because the proposed network succeeded
in learning more robust image features against the change of sizes and shapes in
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the images. In other words, these results imply a FRRU contributes to obtaining
finer features for strong localization.

In addition, Fig. 5 showed that the proposed network could generalize seg-
mentation results with more accurate and smoother class boundaries compared
to FCN-8s and U-net, although it produced some false positives. This can be
considered to be due to the fact that the loss of fine image features occurred in
the training process, especially in the pooling operations. Although both of them
had skip connections for obtaining multi-scale features, it is probably difficult to
convey image features for precise localization by only the conventional skip con-
nections. Therefore, the network architecture incorporating FRRUs can be very
effective to learn multi-scale image features, which conventional architectures
have difficulty capturing.

However, even the network with FRRUs failed to provide accurate segmenta-
tion results on some slices. Thus, in future work, we will aim to further improve
the segmentation accuracy of our network by combining other strategies for
obtaining multi-scale image features (e.g., dilated convolutions [11]), and then
we will apply our network to segmentation of finer eye structures from higher-
resolution images such as X-ray refraction-contrast CT images [12] to create
more elaborate eyeball model.

5 Conclusion

In this study, we proposed a FCN architecture and its training scheme for seg-
menting eye structures from high-resolution images based on sparse annotation.
The network architecture consists of a sequence of FRRUs, which enable to
effectively combine multi-scale image features for localization and recognition.
Experimental results on micro-CT volumes of five pig eyeballs showed that the
proposed network outperformed conventional networks and achieved mean seg-
mentation accuracy of more than 90% by training with the weighted loss function
on the augmented data, even from very few annotated slices. The proposed seg-
mentation method may have the potential to help create an eyeball model for
patient-specific eye surgery simulation.
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7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

8. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks
for semantic segmentation in street scenes. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4151–4160 (2017)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

10. Münch, B., Trtik, P., Marone, F., Stampanoni, M.: Stripe and ring artifact removal
with combined wavelet-Fourier filtering. Opt. Express 17(10), 8567–8591 (2009)

11. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
International Conference on Learning Representations (ICLR) (2016)

12. Sunaguchi, N., Yuasa, T., Huo, Q., Ichihara, S., Ando, M.: X-ray refraction-contrast
computed tomography images using dark-field imaging optics. Appl. Phys. Lett.
97(15), 153701 (2010)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49

	Fully Convolutional Network-Based Eyeball Segmentation from Sparse Annotation for Eye Surgery Simulation Model
	1 Introduction
	2 Methods
	2.1 Network Architecture
	2.2 Training Strategy

	3 Experiments and Results
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Discussion
	5 Conclusion
	References




