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Abstract. When applied to 3D image reconstruction, conventional
landmark-based registration methods tend to generate unnatural vertical
structures due to inconsistencies between the employed model and the
real tissue. This paper demonstrates a fully non-rigid image registration
method for 3D image reconstruction which considers the spatial conti-
nuity and smoothness of each constituent part of the microstructures
in the tissue. Corresponding landmarks are detected along the images,
defining a set of trajectories, which are smoothed out in order to define a
diffeomorphic mapping. The resulting reconstructed 3D image preserves
the original tissue architecture, allowing the observation of fine details
and structures.

1 Introduction

Histopathological image analysis refers to the use of microscopical images from
histological sections in order to analyze, diagnose and prevent diseases. These
images are often used to obtain a high-resolution three-dimensional (3D) recon-
struction of the original tissue architecture. Even with recent advances in 3D
medical imaging techniques, such as Magnetic Resonance (MR) and Computed
Tomography (CT), histology imaging still presents superior resolution and it
remains the main source of information for several kinds of diseases, including
most types of cancer [6,8].

Several studies tackle the problem of reconstructing 3D structures from a
given set of microscopic images of histological sections obtained from a single
target tissue [7,10]. These reconstructed images can be used for the study and
visualization of the anatomical structures themselves, or for registration between
the microscopic images and a corresponding MR macro image for multiscale
analysis [4].

Given a series of images Ii (·) (i = 1, 2, . . . , N) scanned from stained thin sec-
tions of a chemically fixed tissue, a 3D reconstruction can be obtained by stacking
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up non-rigidly registered versions of such images. The registration is required due
to independent translation, rotation and deformation of the histological images
introduced by the process of sectioning the tissue and mouthing the sections
into glass slides. The registered images Ji (y) = Ii

(
ψ−1 ◦ y

)
, obtained from the

original images and the mapping ψi, are combined to create the full 3D recon-
struction as follows:

R (y1, y2, y3) = Jy3 (y1, y2) , (y3 = 1, 2, . . . , N) . (1)

Several registration methods have been proposed for 3D image reconstruc-
tion, which can be roughly classified into two categories: iconic (intensity-based)
and geometric (landmark-based) methods [8]. In the first, images are registered
by maximizing the similarities in intensity between corresponding pixels [1,3],
while in the second, images are registered by minimizing the distance between
corresponding points (landmarks) on the images. This research focus on the later
category due to its computational efficiency.

Let the coordinates of a landmark P j
i detected from Ii (u1, u2) be denoted

by uj
i , where j = 1, 2, . . . M . Given two images, Ii (u) and Ii+1 (u), many

landmark-based methods compute the mapping ψi+1 using a criterion for eval-
uating the degree of match between corresponding landmark locations, e.g.∥
∥
∥uj

i − ψi+1 ◦ uj
i+1

∥
∥
∥
2

[2,11]. In other words, these methods prefer 3D images
in which the corresponding landmarks are vertically aligned parallel to the y3
axis. However, corresponding landmarks are often detected along an anatomical
structure which is not necessarily all vertical. The criterion employed by these
methods is inconsistent with 3D microscope images, and thus often results in
unnatural large deformation. In contrast, a few registration methods use a crite-
rion that evaluates not the location matching, but the smoothness of landmark
trajectories [5], which is more consistent with real tissue architecture and hence
is the criterion adopted by the proposed method.

The proposed method detects corresponding landmarks using template
matching, and rejects unreliable landmarks based on its confidence. As a result,
the trajectories of landmarks will be automatically terminated, for instance, at
blurred or folded portions, which should not contain landmarks. Once the corre-
sponding landmarks are detected from all given images, the non-rigid mapping
of each image is simultaneously determined based on the smoothed trajectories.
This strategy for automatically handling damaged image portions and the capa-
bility of processing large sets of images with multiple stains, together with the
results of the KPC mouse pancreas reconstruction, are the key contributions of
this research.

2 Proposed Method

The reconstruction is performed over a series of N microscopic images Ii (u)
acquired from a single tissue, where i = 1, 2, . . . N and u = (u1, u2)

T corresponds
to coordinates on the original images. The process starts by roughly aligning the
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images by rigid registration [7], creating a new set Ĩi (x) = Ii
(
ρ−1 ◦ u

)
, where

ρi is the rigid transformation and x = ρi (u).
The method then detects a set of corresponding landmark points P j

i along the
series of images Ĩi (x). Another set of destination coordinates for the landmarks
must then be calculated in order to correctly deform the images. Assuming that
a set of corresponding points are usually detected along several cross-sections of
the same anatomical structure, and that these structures are spatially smooth
and continuous, the objective is to deform the image in order that each set
of corresponding points is located along a smooth curve on the reconstructed
image.
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Fig. 1. Corresponding landmarks P j
i and trajectories T j (center), detected from four

input images Ĩi (·) (left). Each trajectory T j spans between sj and tj , and the set of
indexes of trajectories intersecting each plane x3 = i is given by Ji (right).

The process is illustrated in Fig. 1. Let Pj =
{

P j
i

∣
∣i ∈

[
sj , tj

]}
denote the

jth set of corresponding landmarks detected from a subset of N images, where
1 � sj < tj � N , i.e. a set of corresponding points might be detected along only
some of the N available images. Let R̃ (x1, x2, x3) = Ĩi (x1, x2) denote a starting
reconstruction obtained by stacking Ĩi (x), where x3 = i. The corresponding
landmarks in Pj will then form a polygonal trajectory T j = P j

sjP
j
sj+1 . . . P j

tj in
R̃ (x1, x2, x3) that extends from x3 = sj to x3 = tj . Due to the independent non-
rigid deformations of the histological images, these trajectories usually present
a non-smooth jagged shape.

The destination coordinates of each landmark point are obtained by smooth-
ing each trajectory T j . The corresponding smoothed trajectory is denoted by
T j

Q = Qj
sjQ

j
sj+1 . . . Qj

tj , where Qj
i is the intersection between the smoothed

trajectory with the plane x3 = i. The set
{

Qj
i |j ∈ Ji

}
of all intersections

crossing this plane, where Ji is the set of indexes of trajectories crossing the
plane x3 = i, is used to define a diffeomorphic mapping φi of Ĩi (·). The
image Ĩi (x) is then non-rigidly deformed with the obtained mapping in order
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to transport P j
i to Qj

i (j ∈ Ji). The proposed method then reconstructs a 3D
image R (y1, y2, y3) = Jy3 (y1, y2) = Ĩi

(
φ−1
i ◦ y

)
, where y3 = i, y = (y1, y2)

T ,
yj
i = φi ◦ xj

i and xj
i and yj

i are, respectively, the coordinates of P j
i and Qj

i in
the image Ĩi (x).

Thus, the coordinates of the new points Qj
i are obtained from tj−sj+1 images

Ĩi
(
i = sj , . . . , tj

)
simultaneously. It is worth mentioning that similar smooth

trajectories for the landmarks cannot always be obtained by simply introducing
rigidity regularization to the image deformation.

In order to obtain an accurate and stable detection of corresponding points, a
coarse-to-fine approach is employed. The template size D is reduced as D ← γD
with 0 < γ < 1 after all the images Ĩi (i = 1, 2, . . . , N) are deformed by the
mapping φi. The locations of corresponding landmarks are then updated and
new trajectories are obtained, and the whole process is repeated.

2.1 Template Matching

Different techniques can be employed in the detection of corresponding land-
marks, such as the Scale-Invariant Feature Transform (SIFT) or the Normalized
Cross-Correlation (NCC), the latter being the method used in this research.
Initially, a set of points P j

i (j = 1, 2, . . .) is iteratively sampled from Ĩi (·) with

probability pji proportional to
∥
∥
∥∇Ĩi (x)

∥
∥
∥. New landmarks are only sampled from

coordinates at least D pixels away from any existing landmarks.
False matchings are suppressed based on the confidence of the template

matching given by the NCC and by applying backward template matching [13].
First, any landmark with an NCC value lower than a threshold is eliminated.
After, backward template matching is applied in order to detect a landmark P̂ j

i

corresponding to P̃ j
i+1. The landmark P j

i+1 is discarded if the distance between
P j
i and P̂ j

i is larger than a threshold.

2.2 Image Warping

The proposed method smooths the trajectories T j in order to obtain the desti-
nation points Qj

i . The coordinates yj
i of the destination points are calculated by

minimizing the square of the total variation of each trajectory and their square
errors with a tradeoff parameter λ as follows:

{
yj
sj , . . . ,y

j
tj

}
= arg min

ỹj

sj
,...,ỹj

tj

(
ti−1∑

i=si

∥
∥
∥ỹj

i − ỹj
i+1

∥
∥
∥
2

+ λ
∥
∥
∥ỹj

i − xj
i+1

∥
∥
∥
2
)

. (2)

This function is convex and has a unique minimizer, which can be analytically
calculated. With the obtained destination coordinates yj

i for each landmark xj
i ,

the diffeomorphic mapping φi can be computed using the well-known B-spline
deformation method [9], which allows a diffeomorphic mapping with hard con-
strains yj

i = φi

(
xj
i

)
.
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3 Experimental Results

The reconstruction method was evaluated using a dataset of histological sections
from the pancreas of a KPC mouse [12]. The extracted tumorous pancreas was
fixed with formaldehyde, split into five 5 mm blocks, and each was sliced in a
series of 4 µm-thick sections. After damaged samples were removed, the dataset
contains around 2500 images, the majority (85%) stained with Hematoxylin &
Eosin (HE) stain, but some with Antigen KI-67 (Ki67), Masson’s Trichrome
(MT) and Cytokeratin-19 (CK19) stains, which are interposed between HE
stained images. The size of the original images is 100k × 60k pixels; however, a
downsampled version of 15k × 10k pixels was used in some of the experiments.

(a) (b)

Fig. 2. Example of calculated trajectories: (a) original set of trajectories T j and (b)
corresponding smoothed set of trajectories T j

Q. Some trajectories are fragmented as a
result of the suppression of falsely matched landmarks.

Figure 2 shows actual calculated trajectories from a portion of the images.
The original trajectories T j are shown in Fig. 2(a), while the smoothed trajec-
tories T j

Q are shown in Fig. 2(b). Figure 3 shows cross-sections of R̃ (·) and R (·),
i.e. before and after smoothing. In Fig. 3(a), even the major structures are dif-
ficult to discern, while small structures, such as blood vessels and ducts, are
virtually indistinguishable. The smoothed version shown in Fig. 3(b) enables the
observation of fine details and small structures, which can then be labeled for
further analysis. The hyperparameters were determined experimentally and are
not critical for the overall performance of the method.

It is then possible to automatically label and reconstruct the structure of
the central necrosed portion of the tumor and the pancreatic ducts, as shown
in Fig. 4. This reconstruction reveals a high concentration of ducts around the
necrosis.

Different microstructures require different stains in order to be accurately
identified and labeled. Figure 5 shows registration results for neighbor sections of
different stains, confirming the robustness of the proposed registration method.
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Fig. 3. Cross-sections of an image block portion of 810 images (shown horizontally for
visualization purposes): (a) original images stacked-up, and (b) registered images using
the proposed method.
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Fig. 4. Visualization of the internal microstructures from a portion of the full 3D
reconstruction of a block of images: (a) registered HE stained image portion, (b) labeled
necrosed portion of the tumor, (c) labeled pancreatic ducts, and (d) combined 3D
reconstruction of ducts (blue and green) and necrosis (red). (Color figure online)
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Fig. 5. Registration between adjacent images with different stains: (a) HE & CK19,
(b) HE & MT and (c) HE & Ki67.

The Ki67 stain can indicate high cell proliferation. After reconstruction, sections
stained with Ki67 were automatic labeled based on hue and the density of brown
spots was calculated using Kernel Density Estimation (KDE), as shown in Fig. 6.
By linearly interpolating along all sections and combining this results with the
anatomical reconstruction of the tumor block, it is possible to observe the high
proliferation regions on the external portion of the tumor.
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Fig. 6. Labeling, detection and reconstruction of active regions within the tumor from
Ki67 stained images: (a) Ki67 stained image portion, (b) automatic labeling of active
cells (brown spots), (c) high density (red) regions of active cells (overall image), and
(d) reconstruction of active areas and superposition with full block 3D reconstruction,
which contains 810 images of 15k × 10k pixels, or around 121.5 × 109 voxels. (Color
figure online)
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4 Conclusions

This paper describes a non-rigid registration method for 3D reconstruction from
microscopic images of histological sections. The method explicitly constructs
smooth trajectories in order to determine the deformation of all images simulta-
neously. This approach suppresses the unnatural vertical structures often created
by conventional landmark-based methods, which process images pairwise.

Experimental results confirm the efficiency of the registration procedure,
using a large dataset of histological images with different stains from the pan-
creas of a KPC mouse. The obtained reconstructions present continuous and
smooth anatomical micro-structures, which could be successfully labeled and
visualized.

Future work will include the registration of a new full-body KPC mouse
image dataset, as well as a quantitative analysis of the registration results.
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1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2),
139–157 (2005)
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