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Abstract. In this paper, we propose a method for constructing a multi-
scale model of pancreas tumor of a KrasLSL.G12D/+; p53R172H/+;
PdxCretg/+ (KPC) mouse that is a genetically engineered mouse model
of pancreas tumor. The model represents the correlation between the
value at each voxel in the MRI image of the tumor and the pathology
image patches that are observed at each portion corresponds to the loca-
tion of the voxel in the MRI image. The model is represented by a cas-
cade of image generators trained by a Laplacian Pyramid of Generative
Adversarial Network (LAPGAN). When some voxel in a pancreas tumor
region in an MRI image is selected, the cascade of generators outputs
patches of the pathology images that can be observed at the location
corresponds to the selected voxel. We trained the generators by using an
MRI image and a 3D pathology image, the latter was first reconstructed
from a spatial series of the 2D pathology images and was then registered
to the MRI image.

1 Introduction

Modelling the correlations between pathology images and MRI images has been
investigated (e.g. [9]). The former images can be used for definitive diagnosis and
the latter images can be obtained non-invasively. Models that represent the corre-
lations of these images would improve the confidence of diagnosis and can be used
for predicting histopathological status from the corresponding MRI images. In
this study, we construct a non-parametric model that represents the correlation
between the voxel value of an MRI image and corresponding histopathological
images of a pancreas tumor of a KPC mouse. This model plays an important
role in a system that acquires various kinds of information currently obtained
from histopathological images with probability information from MR images.
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For constructing such a model, we employ a conditional Laplacian Pyramid of
Generative Adversarial Network (LAPGAN) [1].

A Generative Adversarial Network (GAN) [4] can construct a sufficiently
representative latent model of target images, while simultaneously learning a
generator and a discriminator: The generator can create sample images that are
intended to come from the same distribution with the training data and the
discriminator examines samples to determine whether they are real or fake. The
latent model of target images can be represented by a manifold, from which the
generator can create the fake images by sampling [10]. In many cases, a noise sig-
nal, z, is input to the generator and the noise signal, z, can be used as the local
coordinate system on the manifold [2]. Generators learned by conditional GANs
take not only noise signals but also other condition signals as inputs, where the
condition signals restrict the output sample images. The condition signals also
can be used as the local coordinate system on the manifold. When the input
values of the condition signals are fixed, the generator creates fake images that
correspond to a sub-manifold restricted by the conditions. The manifolds with
the local coordinate systems can represent the correlations between the target
images and the condition signals [10]. In this study, we construct a generator that
takes noise signals and a voxel value of an MRI image as input and outputs cor-
responding pathology image patches sampled from the sub-manifold determined
by the MRI voxel value.

The spatial resolution of an MRI image and that of a microscope pathology
image are largely different. Each single voxel of an MRI image corresponds to
a large image patch of the pathology image. We hence assume that each voxel
value correlates with low-resolution features of the pathology images and employ
a LAPGAN, which can generate a cascade of image generators, each of which cre-
ates a sample fake image that represents the difference between a high-resolution
image and the corresponding low-resolution input image [1].

2 Method

2.1 Outline of the Proposed Method

Figure 1 shows the outline of the construction of a multi-scale pancreas tumor
model from an MRI image and the corresponding pathology images of a KPC
mouse. The MRI image of a whole body of a KPC mouse was captured just
before the pancreas tumor was extracted. A 3D pathology image of the tumor was
reconstructed from a spatial series of 2D microscope images of the tumor and the
3D pathology image was non-rigidly registered to the tumor region in the MRI
image in order to obtain a set of training data for the LAPGAN, in which each
datum is a pair of the voxel value of the MRI image and the corresponding image
patch in the microscope image. Applying conditional LAPGAN to the training
data, we construct a cascade of generators, which can generate a pathology patch
image that corresponds to the input voxel value of the MRI image.
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Fig. 1. Construction of a multiscale model of pancreas tumor using an MRI image and
the corresponding pathology images

2.2 Images Used in the Experiments

The training images for the conditional LAPGAN was obtained as follows. An
MRI image of the whole body of the KPC mouse was captured just before the
organs including the whole part of the tumor was extracted. The spatial reso-
lution of the MRI image was 0.1536 mm× 0.1536 mm × 0.5 mm. The tumor was
spherical and its diameter was about 2 cm. Two MRI images of the extracted
organs were obtained before and after the organs were formaline-fixed. Regis-
tering the two MRI images, we found that the organs around the tumor shrunk
but the tumor itself did not deform in the formaline fixation.

The extracted organs were paraffin-embedded after the formaline-fixation.
We first cut the paraffin block into five small blocks, of which the thickness was
about 5 mm, and one of the small blocks, which contained the center portion
of the tumor, was sliced into a spatial series of about 800 thin sections. The
thickness of the section was set to 4 µm. The number of the sections obtained
from the 5 mm = 5000 µm thick block was less than 1250 = 5000/4 because of
the loss generated by the slicing. We dyed the thin sections by the Hematoxylin
and Eosin (H&E) stain. The microscopy images of these stained sections were
then captured with the spatial resolution, 0.22 µm × 0.22 µm.

2.3 Reconstruction of a 3D Microscope Image

For the 3D reconstruction of the microscope image, we employed the non-rigid
registration method proposed in [6]. Let the given 2D microscope images be
denoted by I1(x), I2(x), . . . , IM (x), where M is the total number of the 2D
microscope images and x = [x, y]� denotes the 2D image coordinates. It is
assumed that the given images are roughly aligned, for example, by a rigid reg-
istration method. Let the deformation mapping computed for Ii(x) be denoted
by φi (i = 1, 2, . . . , M). Then, the 3D image, J(x, y, z), is reconstructed as
J(x, y, z = i) = Ii(φ−1

i ◦ x). The mapping, φi, is computed from a set of land-
marks located in Ii(·). Let pj

i denote the 2D image coordinates of the j-th
landmark (j = 1, 2, . . . , N) in the i-th image, Ii(·) and let the coordinates of
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the destination of the j-th landmark in Ii(·), to which the landmark should be
mapped by φi, be denoted by qj

i . Then, with the regularization with respect
to the deformation rigidity, the mapping is obtained by solving a minimization
problem: φi = arg minφ

∑
j ‖qj

i − φ ◦ pj
i‖2. The method we employed [6] deter-

mines the destination, qj
i , of each landmark by smoothing the trajectory of the

j-th landmark in the 3D image space.
It should be noted that each of the mappings, φi, is determined not by

referring to only consecutive two images but by referring to all the given images.

2.4 Registration Between MRI Image and Pathology Image

The tumor region in the MRI image and the tumor region in the reconstructed
3D microscope image were registered. A mutual information based non-rigid
registration method [8] was employed. Assuming that the deformation of the
tumor in the 3D microscope image mainly occurred when each thin section of
the tumor specimen was placed on the slide glass, we restricted the movement
of the control points to a plane where the z-coordinate is constant: Let the
mapping to be computed be denoted by ψ and let X ′ = ψ ◦ X, where the
three-vectors, X ′ = [x′, y′, z′]� and X = [x, y, z]�, denote the 3D coordinates
in the reconstructed microscope image, J(·). We computed ψ that maximizes
the mutual information under a condition that z′ = ψ ◦ z = z is satisfied. The
mapping, ψ, then keeps the plane, z = i, corresponding to each microscope
image, Ii(·), flat.

As the result of the registration described above, each voxel in the MRI
image is corresponded to a specific region in the 3D microscope image as shown
in Fig. 2.

(A) (B) (C)

Fig. 2. Registration between the tumor region in the MRI image and the reconstructed
3D pathology image. (A): A pathology image of the tumor region. The pale pink portion
includes necrosis region. (B): The corresponding MRI slice image. As shown in (C),
the registration makes the correspondence between each voxel in the MRI image and
a portion in the pathology image. (Color figure online)
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2.5 Construction of Training Image Data for LAPGAN

Let the index of the voxel in the MRI image be denoted by m ∈ N and let
the 3D region in the reconstructed 3D microscope image, J(ψ−1 ◦ X), that
corresponds to the m-th voxel of the MRI image be denoted by Γm. Let the
portion in the plane, z = i, included in Γm be denoted by Γmi. The region,
Γmi, in the deformed i-th microscope image, J(x′, y′, z′ = i), corresponds to the
m-th voxel in the MRI image. Let the value of the m-th voxel of the MRI image
be denoted by vm and let a set of 256 × 256 image patches included in Γmi be
denoted by {Imis(x)|s = 1, 2, . . . Smi}, where Smi denotes the number of patches
sampled from Γmi. We sample the patches only from the H&E stained images
and augmented the patches by applying random rotation to Imis for increasing
the number of training data. Then, we obtain a set of training data,

D = {(vm, Imis)|m, i, s ∈ N}, (1)

in which each datum is a pair of the voxel value of the MRI image and the
corresponding patch in H&E stained microscope images.

For avoiding the mode collapse, we quantize the MRI voxel value, vm, by
applying a K-means clustering method so that the variety of the data that have
same condition is increased. Let the number of the clusters be denoted by K
and let the clusters of voxel values be denoted by Ck (k = 1, 2, . . . ,K). Then, we
can obtain K sets, Dk, of training image patches from D such that

Dk = {Imis|vm ∈ Ck;m, i, s ∈ N}, (2)

where the image patches included in Dk correspond to the MRI voxel values that
are included in Ck. We use the index, k, as the condition for the LAPGAN.

The LAPGAN constructs a series of image generative models within a Lapla-
cian pyramid framework. In the Laplacian pyramid framework, an image is rep-
resented in a coarse-to-fine fashion, that is, by a series of band-passed images plus
a low-frequency residual. Let D↓ denote a downsampling operation with a factor,
two (2): When the size of an input image, I, is W ×W , then D↓◦I is a new image
of size W/2 × W/2. Following the paper [1], we first built a Gaussian pyramid,
g(Imis) from each image patch, Imis, such that g(Imis) = [I0

mis, I1
mis, . . . , IL

mis],
where

Il+1
mis = D↓ ◦ Gσ ◦ Il

mis, (3)

Gσ denotes a Gaussian smoothing with the variance, σ2, I0
mis = Imis, L denotes

the number of the levels in the pyramid, and l = 0, 1, . . . , L − 1 denotes the
level. From the Gaussian pyramid, g(Imis), we then constructed the series of the
band-passed images, Bl

mis, which can be computed from Il
mis.

The LAPGAN we implemented constructs a series of L+1 image generators:
The l-th generator (l = 0, 1, . . . , L − 1) generates the band-passed image, Bl

mis,
from Il+1

mis and the last (the L-th) generator can generate the lowest-frequency
image residual, IL

mis, from a Gaussian noise image. The cascade of the L + 1
generators, in the descending order of l, can generate the original image, Imis.
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The l-th generator (l = 0, 1, . . . , L − 1) is constructed from sets of the training
data, {Dl

k|k = 1, 2, . . . ,K}, where Dl
k = {(Il+1

mis,Bl
mis)|vm ∈ Ck, m, i, s ∈ N}.

The dataset, Dl
k, consists of the pairs of the downsampled image of the low-

frequency residual, Il+1
mis, and the band-passed image, Bl

mis, both are obtained
from the microscope images that correspond to the voxel value, vm ∈ Ck, of the
MRI image. The last (the L-th) image generator is constructed from the sets of
the images, {D̄L

mis|k = 1, 2, . . . ,K}, where D̄L
k = {IL

mis|vm ∈ Ck, m, i, s ∈ N}.
The last generator does not need the band-passed images for the training.

2.6 Conditional LAPGAN

We constructed L + 1 image generators, G0,G1, . . . ,GL, by using the LAPGAN.
The inputs of the last generator, GL, are the Gaussian noise image, z, and the
index, k, of the class of the corresponding MRI voxel value. The output is a
residual image of the lowest-frequency, IL, which is indistinguishable from the
training images, IL

mis ∈ D̄L
k . One can generate variety of such the indistinguish-

able images by changing the input Gaussian noise images. The inputs of the
other generators, Gl (l = 0, 1, . . . , L − 1) are the lower-frequency image, Il+1,
the Gaussian noise image, z, and the index, k. The output of Gl is a band-
passed image, Bl, that can generate the higher-frequency image, Il, from the
input lower-frequency image, Il+1 as Il = Bl + Osm ◦ U↑ ◦ Il+1, where the
resultant image, Il, is indistinguishable from the training images, Il

mis ∈ Dl
k.

Changing the input Gaussian noise image, one can generate variety of images
that are indistinguishable from the training data for the discriminator.

Let the discriminators corresponding to Gl be denoted by Dl. Given the
dataset, {D̄L

k |k = 1, 2, . . . ,K}, the LAPGAN constructs the L-th generator,
GL, and discriminator, DL, by solving the problem, minG maxD FL(G,D), where
(some superscripts, L, are abbreviated)

FL(G,D) = EI,k∼Pdata(I,k)[logD(I, k)]
+ Ez∼Pnoise(z),k∼Pdata(k)[log(1 − D(G(z, k), k))]. (4)

Given the dataset, {Dl
k|k = 1, 2, . . . ,K}, the LAPGAN constructs the l-th gen-

erator, Gl for l = 0, 1, . . . , L − 1, by solving the problem, minG maxD F l(G,D),
where (again, some superscripts are abbreviated):

F l(G,D) = EB,k∼Pdata(B,k)[logD(B, k)]
+ EI,k∼Pdata(I,k),z∼Pnoise(z)[log(1 − D(G(I,z, k), k))]. (5)

We employed CNNs for the generators and discriminators. We initialized the
networks by using the method proposed in [3] and employed Adam [7] and the
batch normalization [5] for the stochastic optimization.

3 Results

Setting K = 4, we divided voxel values of the MRI image into four (4) clusters.
Examples of the pathology images, Imis, included in D1 (the brightest portion)
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and D4 (the darkest portion) are shown in Fig. 3. The dataset included about
one million image patches. The distribution of the patch patterns are different
among the clusters, Dk. Setting the number of the cascade L = 3, we con-
structed L + 1 generators. The cascade of the generators, GL,GL−1, . . . ,G0, can
output a fake pathology image from a given Gaussian noise, z, and the condition,
k ∈ [1,K]. Figure 4 shows examples of the randomly chosen generated images.
Corresponding to the bright voxel values of the MRI image, the cascade of the
generators sampled patches similar to those in the necrosis portion with a higher
probability.

D1

D4

Fig. 3. Examples of the training pathology images, Imis, included in D1 and D4

k = 1

k = 4

Fig. 4. Examples of the fake pathology images generated by the cascade of the gener-
ators for the condition k = 1 and k = 4.

4 Discussion and Conclusion

We constructed a multiscale model of pancreas tumor that can generate a H&E
stained pathology image from a voxel value of the corresponding MRI image.
For obtaining a set of training images, we first reconstructed a 3D pathology
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image of the pancreas tumor and then registered it to the tumor region in the
MRI image. For the construction of the multiscale model, we employed the con-
ditional LAPGAN. The resultant generators output pathology image patches
that look like those in the necrosis region with a high probability when the
brighter voxel value of the MRI image is input. We constructed the model from
a partial region of only one pancreas tumor observed from one KPC mouse. The
future works include to annotate histopathological/genetic information to each
portion of the histopathology image and to construct a model that can derive
the histopathological/genetic information with confidence from each voxel of a
given MR image.
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