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Abstract. Histology imaging is an essential diagnosis method to finalize
the grade and stage of cancer of different tissues, especially for breast can-
cer diagnosis. Specialists often disagree on the final diagnosis on biopsy
tissue due to the complex morphological variety. Although convolutional
neural networks (CNN) have advantages in extracting discriminative fea-
tures in image classification, directly training a CNN on high resolu-
tion histology images is computationally infeasible currently. Besides,
inconsistent discriminative features often distribute over the whole his-
tology image, which incurs challenges in patch-based CNN classification
method. In this paper, we propose a novel architecture for automatic clas-
sification of high resolution histology images. First, an adapted residual
network is employed to explore hierarchical features without attenua-
tion. Second, we develop a robust deep fusion network to utilize the
spatial relationship between patches and learn to correct the prediction
bias generated from inconsistent discriminative feature distribution. The
proposed method is evaluated using 10-fold cross-validation on 400 high
resolution breast histology images with balanced labels and reports 95%
accuracy on 4-class classification and 98.5% accuracy, 99.6% AUC on 2-
class classification (carcinoma and non-carcinoma), which substantially
outperforms previous methods and close to pathologist performance.
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1 Introduction

Histology imaging on tissue slice is a critical method for pathology analysis,
indicating further targeted therapies. Pathologists perform histological analysis
and morphological assessment on microscopic structure and tissue organization
to diagnose and grade the cancer type [13]. On histology images, discriminative
features of a certain cancer type can be observed at nuclei-level, ductal-level,
cellular-level and overall tissue organization [6]. The diagnosis of biopsy tissue is
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tedious and non-trivial. In-observer disagreement often exists between patholo-
gists due to the complex diversity and distribution of discriminative features [4].
Therefore, developing an accurate computer-aided diagnosis (CAD) system to
automatically classify histology images can greatly improve diagnosis efficiency
and provides valuable diagnosis reference to pathologists with dissensions [15].

In recent years, deep convolutional networks have achieved state-of-the-art
performance on a large number of visual classification tasks [7]. The success
of deep CNN relies on the large available training set that is well labeled and
is limited to the size of input image considering the high computational cost.
However, for classification problems in biomedical images, the input is often high
resolution images, such as breast cancer histology images.

The challenges of developing a CNN for high resolution histology images clas-
sification include: (1) the distribution of discriminative features over a histology
image is complex and one patch on a histology image does not necessarily contain
discriminative features consistent with the image-wise label; (2) In most cases,
only the image-wise ground truth label is given due to the high cost of annotation
on high resolution images, which complicates the problem; (3) Dramatic down-
sampling leads to the loss of discriminative details at nuclei-level and ductal-level,
thus training a CNN on whole histology images is usually inappropriate. [3] pro-
posed to divide a high resolution breast histology image into patches and train a
VGG-like patch-wise CNN, from which the image-wise label can be inferred by
voting on patch-wise predictions. [12] utilized deep CNNs for feature extraction
and gradient boosted trees for classification, which achieved better performance.
[3] developed a patch-based CNN and utilized a linear regression fusion model
to predict image-wise labels.

Compared to previous methods, in this paper, we propose to use a deep spa-
tial fusion network to model the complex distribution of discriminative features
over patches. We also investigate a more effective method to extract hierarchical
discriminative features on patches. The proposed method outperforms previous
state-of-the-art solutions and it is the first work that utilizes the spatial rela-
tionship between patches to improve image-wise prediction for breast cancer
histology image classification.

2 Methods

2.1 Architecture

The architecture of the proposed method is depicted in Fig. 1. The input to the
network is high resolution histology images. As discussed in Sect. 1, only image-
wise ground truth labels are available and discriminative features may distribute
sparsely on the whole image, which indicates that all patches are not necessarily
consistent with image-wise label. We propose a spatial fusion network to model
this fact and produce a robust image-wise prediction.

The architecture is composed of two principal components: (1) an adapted
deep residual network trained to discover hierarchical discriminative features and
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Fig. 1. A schematic view of the proposed Spatially Fused Residual Network. The high
resolution histology image is sampled into patches by a non-overlap sliding widow. Fij

represents deep CNN features for a patch Pij , where i, j are the patch row and column
index, respectively.

predict the probabilities of different cancer type for local image patches. Com-
pared to VGG-like convolutional network [14], the skip connection structure of
residual network reduces the vanishing gradient phenomenon in backpropaga-
tion and thus have a better performance on extracting critical visual feature
with a deeper convolutional network. (2) a deep spatial fusion network, which
is designed to utilize the spatial relationship between patches with the input
of spatial feature maps. For the sake of simplicity and generalization, patch-
wise probability vector is adopted as the base unit of the spatial feature maps
as shown in Fig. 1. The fusion model learns to correct the bias of patch-wise
predictions and yields robust image-wise prediction compared to typical fusion
methods, which will be discussed in the paper.

2.2 Patch-Wise Residual Network

Residual neural networks (ResNets) [8] are adopted in our proposed architecture
instead of plain feedforward deep convolutional neural network. Compared to
plain CNN, residual networks mitigate the difficulty of training deep network
using shortcut connections and residual learning [8]. Additionally, the identity
shortcut connections enable flow of information across layers without attenuation
caused by non-linear transformations. Therefore, hierarchical features from the
low level to higher level are combined to make the final prediction, which is very
useful in histology image classification considering discriminative features are
distributed in the image from the cellular level to tissue level.

We have adjusted the original residual network developed for ILSVRC2015
classification task so that it works more appropriately on histology images clas-
sification. The modified residual network architecture is shown in Fig. 2. (1) The
input layer is adjusted to receives normalized image patches of size 512 × 512,
sampled from whole histology images. (2) The depth of the network is chosen
to be 18 layers with 4 block units for fully exploring regional patterns in dif-
ferent scale. The receptive fields of the four block groups are of size 19 × 19 to
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Fig. 2. The structure of the adapted residual network. Parameters in green boxes
indicate “[kernel size, channels], stride”. Each convolution layer follows by batch nor-
malization and ReLU for regularization and non-linearity. Each block group consists
of two building blocks [8]. The parameters in blue boxes indicate “#index, the number
of output feature map in each convolutional layer of the same group, stride of the first
convolutional layer”. In block group #1, only identity shortcut connections are used
because the input and the output are of the same dimensions. In block group #2, both
projection shortcut (dotted line) and identity shortcut are used. The projection short-
cut matches the dimensions of the input and the output by 1 × 1 convolution. Block
group #3 and #4 share structure with block group #2. (Color figure online)

43 × 43, 51 × 51 to 99 × 99, 115 × 115 to 211 × 211, and 243 × 243 to 435 × 435
pixel respectively, which effectively respond to region patterns in nuclei, nuclei
organization, structure and tissue organization [3].

2.3 Deep Spatial Fusion Network

The aim of fusion model is to predict the image-wise label ŷ among K classes
C = {C1, C2, .., CK}, given all patch-wise probability (feature) maps F output
by the proposed residual network. The image-wise label prediction is defined by
MAP estimate [5] as follows,

ŷ = argmaxy∈CP (y|F). (1)

Suppose the whole high resolution image is divided into M ×N patches. We
first organize all patch-wise probability maps in spatial order, such that:

F =

⎛
⎜⎜⎜⎜⎝

F11 F12 . . . F1N

F21 F22 . . . F2N

...
...

. . .
...

FM1 FM2
. . . FMN

⎞
⎟⎟⎟⎟⎠

. (2)
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A deep neural network (DNN) is applied to utilize the spatial relationship
between patches. As shown in Fig. 1, the proposed fusion model consists of 4
fully-connected layers, each of which follows by ReLU activation function [11].
The deep multi-layer perceptron(MLP) learns to transform the spatial distri-
bution of local probability maps to a global class probabilities vector during
image-wise training. To increase the robustness of the model and avoid overfit-
ting, we insert one dropout layer before each hidden layer. Notice that dropout
layer is also inserted between the flatten probability maps and the first hidden
layer. Dropping out half of the probability maps, the models tend to yield an
image-wise prediction with half information of patches through minimizing the
cross-entropy loss in training.

3 Experiments

3.1 Dataset and Preprocessing

We validate the proposed method on two public histological breast cancer images
dataset, the Bio-imaging Challenge 2015 Breast Histology dataset (BIC) [1], and
the BACH 2018 dataset [2]. Both datasets consist of Hematoxylin and Eosin
(H&E) stained microscope histology images on breast tissue biopsy. The images
are annotated by two pathologists and classified into 4 classes: (1) normal tissue,
(2) benign lesion, (3) in situ carcinoma, (4) invasive carcinoma, according to the
predominant cancer type in each image. Among the 4 classes, in situ carcinoma
and invasive carcinoma fall to malignant carcinoma. As some works focus on
analysis for malignant-benign classification, we also evaluate the performance of
the proposed model on 2-class classification in our experiments.

The BIC dataset consists of 286 high resolution images of size 2048 × 1536
pixels, split into 249 for training and 36 for testing. The BACH dataset consists of
400 images of the same size, split into 360 for training and 40 for testing. For both
dataset, the 4 class labels are evenly distributed, hence it is fair to use accuracy
as the evaluation metric. To avoid overfitting due to the small training dataset,
we perform strong data augmentation as described in the next subsection. Before
augmentation, to reduce the variance incurred by H&E staining, the images are
normalized using the method proposed in [10].

3.2 Network Training

We first extract 512× 512 pixel patches with overlapping from the high resolution
images, as the input for the patch-based deep model. As patch-wise labels are not
given in the training dataset, we initially assume the patch labels are consistent
with the image-wise ground truth. It may incur bias during patch-based train-
ing and reduce the patch-wise classification accuracy. However, the bias will be
alleviated during image-based training in the second stage under the supervised
learning of image-wise labels. Due to the limited number of training samples,
to prevent overfitting, we perform three kinds of image augmentation in each
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iteration: (1) random rotation; (2) horizontal flipping; (3) random enhancement
of contrast and brightness. Thus, we generate 201,600 patches from the BACH
dataset and 140,000 patches from the BIC dataset respectively. The residual
network is trained on 32-sized mini-batches to minimize the cross-entropy cost
function using Adam Optimization [9] with learning rate 10−3 for 50 epoch.
After training, the patch-wise network encodes a 512 × 512 patch to 10 × 10
feature maps and 4-class probabilities.

To train the spatial fusion network, we perform similar data augmentation
and generate 5,760 high resolution images from the BACH training dataset and
3,984 from the BIC training dataset. After augmentation, each high resolution
image is divide into 12 non-overlapping patches of size 512 × 512 pixels. Each
patch is fed into the residual network separately and output 512 feature maps
of size 10× 10 and a class probability vector of size 1×4. Probabilistic vectors of
patches in the same image are then combined into a probabilistic map following
their spatial order, which becomes the input for the spatial fusion network. The
generated probability map can be seen as a high-level feature map that encodes
all the patch-wise discriminative features and the image-wise spatial context-
aware features. Supervised by the image-wise ground truth, the weights of the
spatial fusion network are learned by using mini-batch gradient descent (batch
size 32) with Adam optimization. During training, to minimize the cross-entropy
loss, the spatial fusion model learns to encode the biased probabilistic map into
a k-class vector approximating the image-wise ground truth (k = 4). By utilizing
the spatial context-aware feature hidden in the probabilistic map, the image-
based classification accuracy can be effectively improved.

3.3 Results

We first evaluated the performance of the patch-based residual network and then
focused on the effectiveness of the proposed spatial fusion network by conducting
multiple comparison experiments on the two datasets. In the first experiment, we
reimplemented the published state-of-the-art framework [3] on the BIC dataset
as the baseline method, which is based on a patch-based plain CNN architec-
ture followed by multiple vote-based fusion strategies (named Baseline). For a
fair comparison, we only replaced the plain CNN architecture with the pro-
posed patch-wise residual network (named ResNet + Vote) and evaluated the
two methods using the same dataset setting. The results are shown in Table 1
Residual + Spatial Network is our proposed method, which is evaluated on two
dataset for a comprehensive comparison. All methods are evaluated with strati-
fied ten-fold cross-validation on the same released dataset respectively.

On the BIC dataset, the proposed method reports an accuracy of 86.1% for
4-class classification, which outperforms the baseline method [3] by 8.31%. The
proposed patch-wise residual network brings an improvement of 3.8% by replac-
ing the plain CNN in the baseline method. The deep spatial fusion network fur-
ther improves the ResNet + Vote method by 4.51% further, which demonstrates
utilizing the spatial context-aware feature map is more effective than using mul-
tiple voting strategies for patch-wise result fusion. On the BACH dataset, the
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Table 1. Quantitative comparisons on two public datasets.

Datasets Methods 4-class ACC 2-class ACC STD

BIC Baseline 0.778 0.833 -

BIC Residual + Vote 0.816 0.850 -

BIC Residual + Spatial Network 0.861 0.889 -

BACH CNNs+ GDT 0.872 0.938 0.026

BACH Residual + Spatial Network 0.950 0.985 0.022

(a) Confusion matrix (b) ROC

Fig. 3. (a) Confusion matrix without normalization, representing the 10-fold cross-
validation result on 4-class classification of 400 high resolution histology images. (b)
Performance of 2-class classification (non-carcinoma and carcinoma) in terms of AUC

proposed method reported 95.0% accuracy on 4-class classification and 98.5%
accuracy, 99.6% AUC on 2-class classification (carcinoma and non-carcinoma).
As a comparison, CNNs + GDT [12] is a published state-of-the-art method on the
BACH dataset, which adopted several deep CNNs (ResNet50, InceptionV3, and
VGG16) by model ensemble and used gradient boosted trees classifier to extract
features at different scales. The proposed spatial fusion network outperforms
[12] by 7.8% on 4-class classification without using any ensemble technique. The
classification performance in terms of confusion matrix and receiver operating
characteristic curve (ROC) are shown in Fig.3.

All experiments were implemented using PyTorch and performed on a
NVIDIA 1080Ti GPU. The training of spatial residual network took approxi-
mately 30 min for each iteration. No ensemble technique is used in testing. The
test time for classifying a single high resolution histology image took roughly
80 ms.

4 Conclusion

In this paper, we propose a deep spatial fusion network that models the com-
plex construction of discriminative features over patches and learns to correct
the patch-wise prediction bias on high resolution histology image. Also, we pro-
pose an adapted patch-wise residual network that effectively extract hierarchical
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visual features from cellular-level to overall tissue organization. Unlike previous
patch-based CNN methods, the proposed architecture explores the spatial rela-
tionship between patches. Experiment results show that a substantially better
performance than previous work even without using the ensemble.

In future work, we plan to extend the current work by: (1) incorporating
concise patch-wise feature maps on spatially organized probability maps, (2)
employing the deep spatial fusion model to annotate malignant patches to assist
diagnosis, and (3) transferring the proposed model to other high resolution med-
ical images.
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