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Abstract. Analysis of the retinal vasculature morphology from fun-
dus images, using measures such as arterio-venous ratio, is a promis-
ing lead for the early diagnosis of cardiovascular risks. The accuracy
of these measures relies on the robustness of the vessels segmentation
and classification. However, algorithms based on prior topological knowl-
edge have difficulty modelling the abnormal structure of pathological
vasculatures, while patch-trained Fully Convolutional Neural Networks
(FCNNs) struggle to learn the wide and extensive topology of the vessels
because of their narrow receptive fields.

This paper proposes a novel Fully Convolutional Neural Network
architecture capable of processing high resolution images through a large
receptive field at a minimal memory and computational cost. First, a sin-
gle branch CNN is trained on whole images at low resolution to learn
large scale features. Then, this branch is incorporated into a standard
encoder/decoder FCNN: its large scale features are concatenated to those
computed by the central layer of the FCNN. Finally, the whole network
architecture is trained on high-resolution patches. During this last phase,
the FCNN benefits from the large scale features while the low resolution
branch parameters are fine-tuned. This architecture was evaluated on the
publicly available retinal fundus database DRIVE. The trained network
achieves an accuracy of 96.1% in segmenting the full retinal vessels and
improves by 5% the artery/vein classification compared to a basic U-Net.
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1 Introduction

Early diagnosis is a key to reducing mortality rates in cardiovascular diseases,
which caused 30.8% of deaths and were the top healthcare expenditure in the
USA in 2013 [9]. Retinal fundus imaging allows the non-invasive observation
of the retinal vascular system. This modality thereby offers a good overview of
cardiovascular health: statistically, a patient suffering from retinopathy is twice
as likely to have a stroke [13]. Clinicians already use fundus images to evaluate
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cardiovascular risks, by analysing the retinal vasculature morphology through
measures like the arterio-venous ratio (highly correlated with hypertension and
diabetes risks). However, the accuracy of these measures relies on the robustness
of the vessels segmentation and classification between arteries and veins.

In the last two decades, many algorithms were developed to handle those tasks.
Most of them perform the vessel segmentation separately from the classification.
For the former task, traditional computer vision algorithms such as the multi-
scale line detector [10] have been out-performed by deep learning algorithms, using
either convolution neural networks (CNN s) [8], CNNs combined with Conditional
Random Fields (CRF s), e.g. the Deep Vessel architecture [3], or by adversarial
architectures [6]. Meanwhile, for vessel classification, state of the art methods gen-
erally combine local features analysis by machine learning algorithms with prior
knowledge of the vascular tree structure. Dashtbozorg et al. use linear discrimi-
nant analysis outputs in combination with the vascular graph corrected by rules
derived from prior knowledge [1]. More recently, Estrada et al. proposed a graph-
based algorithm to extract the vascular tree from a fundus image and classify
each detected vessel using local features [2]. However, relying on rules derived
from prior knowledge can impact the robustness of the algorithm, in particular
for severe cases of retinopathy where the vasculature won’t match the rules.

Recent progress in deep learning has made possible the training of larger and
deeper Fully Convolutional Neural Networks (FCNN s). In particular, the U-Net
achieves remarkably good performance in segmenting medical images thanks to
its encoder/decoder architecture and to its skip-connexions [12]. However, to our
knowledge, those architectures have never reached state of the art performance
in artery/vein classification. Indeed, because of their narrow receptive fields,
FCNNs struggle to learn the wide and extensive topology of retinal vessels.

This paper propose a novel Large Receptive Field Fully Convolutional Net-
work architecture (LRFFCN ), capable of segmenting very extensive shapes (i.e.
vessels) in high-resolution images at a minimal memory and computational cost.
This paper is organized as follows: (1) analysis of the U-Net’s poor performances
in classifying arteries and veins; (2) description of a novel FCNN architecture:
the Large Receptive Field Fully Convolutional Network; (3) evaluation of the
LRFFCN architecture experimentally in the semantic vessel segmentation task.

2 Methods

2.1 Large Receptive Field Fully Convolutional Network

Receptive Field Limitation in Convolutional Networks. The term recep-
tive field is inherited from neurosciences and describes the region of the sensory
space (e.g. the visual field) in which a stimulus will cause a neuron to be acti-
vated. In deep learning, the receptive field of a convolutional network is the
region of the input analyzed by the network to produce the prediction for one
pixel. Early CNN designers performing pixel-wise classification didn’t care about
this concept: because their models ended with fully connected layers, the recep-
tive field was the whole input patch. However, this is not the case with FCNNs.
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For example, the encoding branch of the U-Net architecture has a receptive field
of 125 × 125 pixels even though its training patch size is 500 × 500 pixels.

There are several ways to increase the receptive field of an FCNN. Stacking
more layers or extending their kernel size will theoretically increase the receptive
field linearly, whereas sub-sampling the output features of a layer will increase it
multiplicatively. In practice, Luo et al. have shown that the Effective Receptive
Field (ERF ) is always narrower than the theoretical one [7]. More precisely,
the ERF follows a Gaussian distribution with a standard deviation depending
on the model architecture and the weights initialization. Extending the kernel
size will increase the ERF linearly; stacking n layers will only increase the ERF
by a factor

√
n; sub-sampling will effectively increase the ERF quickly. On the

contrary, skip-connections will shrink the ERF.
Focusing on the U-Net architecture, its decoding branch shouldn’t have much

impact on the ERF: the growth due to the convolutional layers is compensated
by the upsampling and the skip-connections. Intuitively, this branch is only a
complex upsampling interpolation of the deep features. In other words, the ERF
of a U-Net is strictly lower than the theoretical receptive field of its encoding
branch: 125×125 pixels. When processing high-resolution fundus images (2048×
2048 pixels), such a receptive field is much too small to learn the topology of the
vasculature, thus the network can only rely on local texture and color features.
However, for small vessels far away from the optic disk, those features are not
sufficient, even for clinicians, to efficiently discriminate arteries from veins.

As the U-Net architecture is already a large model, adding more layers to it
would make the model too heavy. Namely adding a new pooling/up-conv stage
would raise the forward-pass computation from 67 to 389 Mega Flops (mainly
because the patch size is doubled).

LRFFCN Architecture. The Large Receptive Field Fully Convolutional Net-
work is a novel network architecture which significantly increases the receptive
field at a minimal memory and computational cost. The core of the architecture
is a convolutional branch processing the full image at a low resolution (scaled
down to a 128 × 128 pixels patch). This branch is structured as a repetition of
fire/squeeze modules inspired by the SqueezeNet (a concise model with simi-
lar performance to AlexNet [4]). The theoretical receptive field of this branch is
21×21 pixels at 1/16th of the full resolution, which corresponds to 336×336 pix-
els in the high resolution image. The large scale features learned by this branch
are then incorporated in an encoder/decoder FCNN with skip-connections.

The encoding stage of this network contains 4 pooling layers (2× 2 pooling),
so the resolution of the deepest features Fe is 1/16th. Because the FCNN is
trained on patches and not on the full image, a region corresponding to the
patch is extracted from the large scale features and is concatenated to Fe. Thus,
the decoding stage of the FCNN has access to textural information from high
resolution features learned by the encoding stage, and to topological information
from the large scale features at the cost of a forward-pass computation increase
of only 6% (4 MFlops).
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Fig. 1. The large receptive field fully convolution network architecture. Color code:
light blue: encoding branch; orange: decoding branch; dark blue: low resolution branch.
(Color figure online)

2.2 Model Specificities

The exact model trained for this paper is presented in Fig. 1. Its most interesting
specificities are presented in this section.

Due to memory limitations, the maximum minibatch size during training
is 8. Batch normalization layers would therefore be ineffective and have been
replaced by a SeLu activation function [5]. This modified version of the ReLu
activation function offers negative values which speed up learning by pushing
mean activation towards 0, and a stable fixed point of the activation mean and
variance so that exploding and vanishing gradients are impossible.

The model is trained to perform semantic segmentation: the vessels seg-
mentation is performed simultaneously with the classification as each pixel is
assigned a probability of being part of the background, an artery or a vein.
Even if the LRFFCN architecture efficiently increases the ERF, performing this
classification pixel-wise can cause local errors in the artery/vein classification.
Indeed, because arteries and veins are visually similar and because of the local
inconsistencies transmitted from the early layers to the later ones through the
skip-connections, some pixels from a vessel can suddenly be predicted as veins
even though they are surrounded by arteries (and vice versa). To correct such
local inconsistencies, a CRF is added at the end of the model.

CRFs use the preprocessed version of the training patch as a reference and
2D Gaussian kernels to propagate the probabilities of being an artery or a vein
along the vessel. We used the CRF as Recurrent Neural Network (RNN ) imple-
mentation proposed by Zheng et al. [14] so its kernels are trained simultaneously
with the LRFFCN parameters.
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2.3 Training

The model was trained on 69 images: 30 images from the MESSIDOR training
dataset, 19 images from the STARE dataset and 20 images from the DRIVE
training dataset. We manually labelled the MESSIDOR and STARE images and
asked an ophthalmologist to validate this labelling. Each image was preprocessed
using a standard contrast enhancement technique. Both the enhanced and raw
images were presented to the network since vessel detection strongly relies on
the enhanced image whereas vessel classification relies on the vessels’ true colors.
Color and geometric data augmentation were used to double the training dataset
size (contrast and gamma variations for color augmentation, horizontal mirroring
and rotation for geometric augmentation).

The training process was split into 3 phases. The large scale branch was pre-
trained first over 100 epochs on full images rescaled to 128 × 128 pixels. Then,
the full LRFFCN was trained on 230×230 pixels patches; the large-scale features
already learned by the low resolution branch allow a quick convergence of the
network. This training phase was driven by the Adadelta gradient descent opti-
mizer and lasted 30 epochs during which the learning rate was slowly decreased.
Finally, the CRF as RNN was added to the classifier layer and the network was
trained again for 10 epochs.

3 Experiments

3.1 Evaluating the LRFFCN Architecture

We used the 20 images from the DRIVE test dataset to evaluate the LRFFCN
architecture. The architecture was tested with and without the CRF as RNN
layer. Also, to quantify the contribution of the low resolution branch to the pre-
diction, we evaluated the performance of the model when the scaled-down image
input to this branch was replaced by a uniform noise. (We refer to this network
as LRFFCN w/o low branch.) Finally, a classic U-Net was trained for the same
number of epochs to estimate the performance gain. For each of these models,
we measured the accuracy of the vessel segmentation and the accuracy, speci-
ficity and sensitivity of the artery/vein classification. The results are presented
in Table 1.

Table 1. Performance of LRFFCN architecture on DRIVE test dataset.

Architecture Vessels Arteries/Veins

Accuracy Accuracy True arteries True veins

Basic U-Net 95.6 ± 0.4% 75.9 ± 3.0% 70.9% 80.6%

LRFFCN w/o low branch 96.0 ± 0.3% 63.1 ± 3.7% 57.7% 74.1%

LRFFCN 96.1± 0.3% 79.4 ± 3.5% 73.9% 86.4%

LRFFCN + CRF 95.9 ± 0.4% 81.0± 3.8% 77.8% 84.4%
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The segmentation accuracy is consistent across architectures and is quite
high, confirming the efficiency of convolutional networks in segmenting ves-
sels. However, the LRFFCN architecture improves the classification accuracy
by almost 5% compared to the basic U-Net. The large-scale features learned by
the low resolution branch seems to be effectively used by the model to improve
its generalizing capabilities. This is confirmed by the noise experiment: replacing
the real data by noise make the classification accuracy drop by 16%. Thus, the
large-scale feature branch contributes greatly to the network’s predictions.

Fig. 2. Comparison of LRFFCN performance with and without CRF as RNN, on two
images from DRIVE test dataset. Top row: 06 test; bottom row: 17 test. Color codes:
red : true artery; dark blue: true vein; light blue: misclassified vein; yellow : misclassified
artery. (Color figure online)

The CRF layer improves the classification accuracy by 2% and successfully
propagates the vessel classes to correct local errors. Those corrections are visi-
ble in Fig. 2(b), where artery segments classified as veins by the LRFFCN are
corrected by the CRF layer. However, the LRFFCN’s predictions are sometimes
not sufficiently accurate and the CRF layer propagates misclassifications (as
visible for some veins in Fig. 2(a)). Overall, the CRF improves the topological
plausibility of the predicted vessel network.

3.2 Model Segmentation and Classification Performance

In this section, we compare the performance of the LRFFCN to those of state
of the art algorithms. For the segmentation task, the LRFFCN exceeds by 1.3%
the Deep Vessel network in terms of accuracy. More precisely, our architecture
is much more sensitive (80.8% against 72.7%) (Tables 2 and 3).
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Table 2. Segmentation results on DRIVE test dataset.

Name Accuracy Specificity Sensitivity

Mozzafarian et al. [9] 82.2% – –

Adversarial, Lahiri et al. [6] 94.% – –

Deep Vessel, Fu et al. [3] 94.6% 97.7% 72.7%

LRFFCN 95.9± 0.4% 97.3% 80.8%

Table 3. Classification results on DRIVE test dataset.

Name Accuracy True arteries True veins

Niemeijer et al. [11] 80.0% 80.0% 80.0%

LRFFCN 81.0 ± 3.8% 77.8% 84.4%

Dashtbozorg et al. [1] 87.4% 90.0% 84.0%

Estrada et al. [2] 91.7± 5% 91.7% 91.7%

For the artery/vein classification, the performance of the LRFFCN archi-
tecture is still 10% below state of the art graph-based algorithms. Indeed, for
the DRIVE dataset, the prior topological knowledge of retinal vessels provides a
good enough estimation of the vascular tree. Graph-based algorithms can prop-
agate the artery/vein probability through this tree, whereas our method didn’t
perfectly learn the vasculature topology and often misclassify the small vessels
farther from the optic disk.

4 Discussion and Conclusion

The proposed LRFFCN architecture efficiently increases the receptive field of the
FCNN by means of a low resolution branch and successfully takes advantage of
large-scale features to better learn the retinal vessel topology. In particular, the
LRFFCN architecture outperforms the U-Net in classifying retinal arteries and
veins. It also does better than state of the art algorithms in vessel segmentation,
yielding a higher sensitivity. For the classification task, the LRFFCN architec-
ture does not reach state of the art performance. However, we believe that this
particular result is due to the training conditions and not to the model design.

Nevertheless, these results are promising. Indeed, in contrast to static graph-
based analysis, the performance of this model will improve as the training dataset
grows. In particular, the bottleneck for this architecture is the training of the
low resolution branch. Because this branch must be trained on whole images
and not on patches, our current training dataset is too small for the LRFFCN
architecture to show its full potential. But because the segmentation accuracy is
high, the predictions from our method can quickly be fixed by a clinical expert.
In other words, the LRFFCN architecture can be used to efficiently generate
more ground truth images on which it can then be trained to improve its vessel
classification performance.
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