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Abstract. The use of 3D Magnetic Resonance Imaging (MRI) has
attracted growing attention for the purpose of diagnosis and treatment
planning of intraocular ocular cancers. Precise segmentation of such
tumors are highly important to characterize tumors, their progression
and to define a treatment plan. Along this line, automatic and effec-
tive segmentation of tumors and healthy eye anatomy would be of great
value. The major challenge to this end however lies in the disease vari-
ability encountered over different populations, often imaged under dif-
ferent acquisition conditions and high heterogeneity of tumor character-
ization in location, size and appearance. In this work, we consider the
Retinoblastoma disease, the most common eye cancer in children. To pro-
vide automated segmentations of relevant structures, a multi-sequences
MRI dataset of 72 subjects is introduced, collected across different clin-
ical sites with different magnetic fields (3T and 1.5T), with healthy and
pathological subjects (children and adults). Using this data, we present
a framework to segment both healthy and pathological eye structures. In
particular, we make use of a 3D U-net CNN whereby using four encoder
and decoder layers to produce conditional probabilities of different eye
structures. These are further refined using a Conditional Random Field
with Gaussian kernels to maximize label agreement between similar vox-
els in multi-sequence MRIs. We show experimentally that our approach
brings state-of-the-art performances for several relevant eye structures
and that these results are promising for use in clinical practice.
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1 Introduction

Retinoblastoma (RB) is the most common form of intraocular cancer with high
morbidity and mortality rates in children. To diagnose and treat this can-
cer, several imaging modalities are typically necessary to properly character-
ize the tumor, its growth and for any follow-up care. While traditionally 2D
Fundus imaging, 2D ultrasound or 3D Computed Tomography (CT) [1,2] were
the modalities of choice, 3D Magnetic Resonance Imaging (MRI) has gained
increased interest within the ophthalmic community thanks to the high spatial
resolutions, multiplanar capabilities and high intrinsic contrast [4,5]. In effect,
3D MRI thus allows for clear overall improved discrimination between anatomi-
cal structures and different pathological regions such as the gross tumor volume,
retinal detachment, and intraocular bleeding as illustrated in Fig. 1. As such,
automatic and effective segmentation of tumors and healthy eye anatomy would
be of great value for both disease diagnosis and treatment planning. For example,
having reliable MR imaging biomarkers would open the door to eye cancer radio-
genomics [3] (the association of radiological image features with gene expression
profile) which can support in prognosis and patient selection for targeted treat-
ment, thereby contributing to precision medicine.

Fig. 1. Illustration of the major challenge of our RB dataset with different sizes, tex-
tures, locations and irregular/ill-defined shapes of tumors with the presence of retinal
detachment (blue arrow), subretinal hemorrhage (yellow arrow) and tumor necrosis
(red arrow) in MR images. (Color figure online)

Towards this goal, previous methods based on geometrical and statistical
models had addressed ocular segmentation in 3D medical imaging (e. g., MRI
or CT). For instance, a parametric model allowed for coarse eye structure seg-
mentations [6], while [7] introduced a 3D shape model of the retina to study
abnormal shape changes and peripheral vision. Similarly, 3D mesh construction
with morphologic parameters such as distance from the posterior corneal pole
and deviation from sphericity have also been proposed [8], as well as using Active
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Shape Models (ASM) to analyze eye shape information [9,10]. Unfortunately, a
major limitation of the aforementioned methods is that they focus solely on
healthy eyes, while the characterization of tumors it self has by and large not
been addressed. Actually, ocular tumor segmentation is challenging because of
small amount of data but images acquired under different conditions and huge
variability of tumors in location, size and appearance.

To this end, we propose a fully automated framework capable of delineating
both healthy structures and RB tumors from multi-contrast 3D MRI. It includes
data pre-processing for normalization, multi-sequence MRI registration, an effec-
tive coarse segmentation and output post-processing to improve localization accu-
racy. Our approach is based on the popular UNet Convolutional Neural Network
(CNN) architecture [11], whereby we segment different healthy eye structures and
the tumor in a single step. From this multi-class 3D segmentation, we further
refine our estimate by using a Gaussian edge potential Conditional Random Field
(CRF) to maximize label agreement between similar voxels in the multi-sequence
MRIs. Although we applied here the original implementations of above methods,
their combination and the application context is novel with the possibility to eas-
ily be extended to other types of tumors. We compare our proposed framework
with state-of-the-art techniques on a large mixed dataset, including both healthy
and pathological eyes as well as children and adult data from different magnetic
fields and MR sequences. Our method allows simultaneous segmentation of both
healthy and tumor regions to be identified and outperforms existing approaches
used a mixture of ASM [9,10] and deep learning [12].

2 Methodology

2.1 Dataset

Originating from two clinical centers, our study contains 72 eyes consisting of
32 RB, 16 healthy children (HC) eyes, and 24 healthy adult (HA) eyes. All
MRI examinations were performed with a Siemens scanner (SIEMENS Magne-
tom Aera, Erlangen, Germany) with both T1-weighted (T1w) and T2-weighted
(T2w) contrasts. A 3T MR with a head coil was used to image asleep children
aged 4 months to 8 years old (mean age of 3.29 ± 2.15 y.o.), with a cohort eye
diameter size mean of 12.9 ± 1.3 mm (range [10.4–15.9] mm). A 1.5T MR with

Table 1. MR imaging acquisition parameters: children imaging was done asleep at 3T
head coil while adult were awake and imaged at 1.5T with a surface coil.

Children Adults

T1-VIBE T2-Spin Echo T1-VIBE T2-SPACE

Repetition time (ms) 19 1000 6.55 1400

Echo time (ms) 3.91 131 2.39 185

Flip angle 12◦ 120◦ 12◦ 150◦

Voxel size (mm3) 0.4 × 0.4 × 0.4 and

0.48 × 0.48 × 0.5

0.45×0.45×0.45 0.5×0.5×0.5 0.5 × 0.5 × 0.5 and

0.82 × 0.82 × 0.8

FOV (Voxels) 256 × 256 × 120 256 × 256 × 160 256×256×80 256 × 256 × 80
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surface coil was used for awake adults aged 28.4 ± 5.2 years old (range [23–
46]y.o.), with a cohort eye size mean of 24.7±0.6 mm (range [23.3–26] mm). The
study was approved by the Ethics Committee of the involved institutions and
all subjects provided written informed consent prior to participation. All sub-
ject information in our study was anonymized and de-identified. Table 1 shows
the different parameters used for the two MRI acquisition protocols. Whenever
children and adult images are used together we denote mixed cohort (MC).

MRI Data Normalization: Clinical image quality is affected by many fac-
tors such as noise, low varying intensity, variations due to non-uniform magnetic
field, imperfections of coils, magnetic susceptibility at interfaces, all of which
can be influenced by different imaging parameters such as signal-to-noise ratio
or acquisition time. In order to compensate for such effects, all MRI volumes
were pre-processed with an anisotropic diffusion filtering [14], to reduce noise
without removing significant image content. We applied the N4 algorithm [15]
to correct for bias field variations and performed histogram-based intensity nor-
malization [16] to build an intensity profile of the dataset. In order to improve
the performance in segmentation and computation time, we defined a volume of
interest (VOI) of the eye by retaining a 72× 72× 64 volume centered on the eye
such that the optic nerve was always included. Rigid registration was applied to
move T2w images into T1w image space.

Manual Segmentation: For training and validation purposes, manual delin-
eations of the eye lens, sclera, tumors and optic nerve were done by radiation
oncologist expert. First, segmentation for sclera and tumor was individually by
intensity thresholding. Then, manual editing was done to refine borders and
remove outlier regions. For small structures such as the lens and the optic nerve,
manual segmentations were performed directly using a stylus.

2.2 Automated Anatomical Structure Segmentation

Coarse segmentation: Similar to the

Fig. 2. 3D Unet architecture used.

original UNet method presented in [11],
we consider an encoder and decoder
network that takes as input multiple
image channels for each of the imaging
sequence types (see Fig. 2). Each encod-
ing and decoding pathway contains 4
layers that effectually changes the fea-
ture dimension (i. e., 32, 64, 128, 256,
512). The same architecture accounts
for the decoding pathway. In each case,
3 × 3 × 3 Convolutions are used with a
Batch normalization and parametric rec-
tified linear unit (PRelu) operations.

Between two layers in the encoder pathway, 2×2×2 max pooling with strides
of two in each dimension are used. In the decoder pathway, the connection of
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two subsequent layers is performed with an up-convolution of 2 × 2 × 2 with
strides of two in each dimension. Concatenation is performed to connect the
output tensors of two layers of the encoder and decoder pathways at same level.
To train our network, we used the Adam optimizer and the Dice loss function.
At inference time, softmax is used to extract probability maps for each class.

3D Fully Connected CRF with Gaussian Kernels: To provide a more
refined segmentation, we use a 3D CRF [17] to maximize label agreement
between similar voxels (or patches) in the multi-sequences MRI. The 3D CRF
incorporates unary potentials of individual voxels and pair-wise potentials (in
terms of appearance and smoothness) on neighboring voxels to provide more
accurate eye structure segmentation.

Considering an input image I and a probability map P (i. e., provided by the
above network), the unary potential is defined to be the negative log-likelihood
ψu(zi) = −logP (zi|I), where zi the predicted label of voxel i. The pair-wise
potential has the form ψp(zi, zj) = μ(zi, zj)k(fi, fj), where μ is a label compati-
bility function, k(fi, fj) and is characterized by integrating two Gaussian kernels
of appearance (first term) and smoothness (second term), as follows

k(fi, fj) = w1 exp
(
−|pi − pj |2

2θ21
− |Ii − Ij |2

2θ22

)
+ w2 exp

(
−|pi − pj |2

2θ23

)
,

where pi are voxel locations, Ii are voxel intensities, fi are voxel feature vectors
as described in [13], wj are weight factor between the two terms, and the θ’s are
tunable parameters of the Gaussian kernels. The Gibbs energy of CRF model is
then given by

∑
(ψu(zi), ψp(zi, zj)) [17].

3 Experiments

We performed leave-one-out cross-validations to quantitatively compare the
results of the proposed segmentation scheme (i. e., iteratively chose one eye as a
validation case, while the remaining subjects are used as the training set). The
quality of the segmentations were evaluated by computing the predicted and
true volume overlap using the Dice similarity coefficient (DSC) and the Haus-
dorff distance (HD). For the training step, we crop volumes to size 72× 72× 64.
We report the best performance result obtained from the different parameter
settings detailed as follows. For 3D Unet: regularisation type {L1,L2}; num-
ber of samples per volume {8, 16, 32}; volume padding size {8, 16, 32}; learn-
ing rate for the optimiser {0.001, 0.005}; maximum iterations {0.001, 0.005}.
For CRF: neighborhood size {[3,3,3], [5,5,5]}; intensity-homogeneous distance
{[5,5,5], [10,10,10]}; kernel weights of appearance and smoothness terms {[1,1],
[3,1], [1,3]}. The performance of the proposed method compared to two baselines
algorithms found in the literature: an ASM method [9,10] and a 3D CNN [12].
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Table 2. Comparison of eye structures segmentation performances. Results are shown
in terms of average Dice (DSC%) and Hausdorff distance (HD mm) scores. ¶Average
results of tumor is computed with 32RB only. ‡The p− value < 0.005 of Wilcoxon test
was obtained between these DCS values.

Dataset Method Sclera Lens Optic-nerve RB tumor¶

16HC+24HA ASM DSC 93.7 ± 3.8 87.1 ± 4.9 77.5 ± 5.7 N/A

HD 1.87 ± 0.58 0.69 ± 0.23 1.36 ± 0.61 N/A

Unet+CRF DSC 94.8 ± 3.8 86.9 ± 2.5 78.9 ± 4.8 N/A

HD 1.37 ± 0.37 0.82 ± 0.35 1.21 ± 0.45 N/A

32RB+16HC Unet+CRF DSC 94.71 ± 2.2 85.9 ± 4.61 77.2 ± 6.1 ‡57.9 ± 13.2

HD 1.25 ± 0.32 0.71 ± 0.27 1.7 ± 0.39 5.54 ± 2.65

32RB+16HC+24HA Unet+CRF DSC 94.75 ± 2.1 86.5 ± 4.52 77.8 ± 5.2 ‡59.1 ± 12.4

HD 1.22 ± 0.31 0.72 ± 0.25 1.63 ± 0.3 5.33 ± 2.54

First, we compare the proposed method with that of an ASM [10] on 40
healthy eyes (24 HA subjects with a 1.5T MRI system and 16HC subjects in a
3T MRI system). Table 2 (top half) reports quality measures and indicates that
our approach performs slightly better on the sclera and optic nerve but not on
the lens. Indeed, the sclera and the optic nerve have large anatomical variability,
due in part to large differences in eye size. The ASM is limited in its ability
to take these large variations into account (see Fig. 3 first column, where the
smallest healthy eye was used as testing input).

Second, we evaluate the segmentation accuracy of healthy structures in pres-
ence of RB tumors (see Table 2 (botom half)). Two training scenarios are con-
sidered: (1) 48 children eyes from 3T MR images (i. e., 32RB + 16HC) and, (2)
the mixed cohort, MC (i. e., 32RB + 16HC + 24HA) described in Sect. 2.1. Seg-
mentation results on the sclera, lens and optic nerve are superior when using the
MC. However, no statistical differences (Wilkoxon signed rank test) were found.

RB segmentation results are presented as function of its size in Fig. 4. The
mean DSC and HD using a MC training is of 59.1 ± 12.4% and 5.33±2.54 mm,
respectively. When compared with a training set using children eyes only, our
approach yields gains of 1.2% DSC and 0.21mm HD (mean DSC of 57.9±13.2%
and mean HD of 5.54 ± 2.65 mm). Similarly to healthy structures, these results
indicate that our approach benefits from using the MC dataset and that healthy
and children eyes, regardless of what scanner used to image them, can be used
jointly to improve segmentation performances. Let us note that differences in
DSC were statistically significant (p < .005). Qualitative results are shown in
second and third column of Fig. 3. Finally, as regards similar approaches in the
literature [12], our method provide slight improvements (reported results in [12]
on 16 RB were of the sclera (94.62 ± 1.9%), lens (85.67 ± 4.68%), optic nerve
(absent) and RB tumor (62.25 ± 26.27%) for DICE overlap). However, given
that their results are achieved using a different and smaller dataset, a direct
comparison would not be fair.
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Fig. 3. First column shows the smallest healthy eye in training set. Second and third
column are RB segmentation results with different training scenarios. The red narrows
point improvements of our mixed dataset.

Fig. 4. Tumors segmentation performance as a function of tumor size (voxels). (a) DCS
results (mean: 59.15 ± 12.43%); (b) HD results (mean: 5.33 ± 2.54 mm).

4 Conclusion

In this paper, we have explored the problem of simultaneous segmentation of eye
structures from multi-sequences MR images to support clinicians in their need
of precise tumor characterization and their progression. We proposed a thorough
segmentation pipeline consisting of a combination of data quality normalization
and a 3D Unet CNN segmentation model with a Gaussian kernel CRF frame-
work. Effectively, the proposed method embeds the probability maps, the output
of 3D Unet architecture, with respect to the analysis of pair-wise appearance and
smoothness on neighborhood voxels using CRF model. We validated our method
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with a heterogeneous eye dataset consisting of a diverse population (adults and
children) acquired over multiple sites with different MRI acquisition conditions.
Differing from state-of-the-art ASM methods, the proposed method offers an
accurate and fully automatic segmentation without any prior computations of
statistics on the shape of the eye and its structures. Surprisingly, we show here
that our method is also largely robust to the eye size and imaging acquisition
conditions. Our approach can be easily extended to other types of occular tumors
(e. g., Uveal melanoma) to provide an effective and automated support in clinical
practice (diagnosis, treatment planning and follow-up).
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