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Abstract. Breast cancer (BC) is the second most leading cause of can-
cer deaths in women and BC metastasis accounts for the majority of
deaths. Early detection of breast cancer metastasis in sentinel lymph
nodes is of high importance for prediction and management of breast
cancer progression. In this paper, we propose a novel deep learning frame-
work for automatic detection of micro- and macro- metastasis in multi-
gigapixel whole-slide images (WSIs) of sentinel lymph nodes. One of our
main contributions is to incorporate a Bayesian solution for the opti-
mization of network’s hyperparameters on one of the largest histology
dataset, which leads to 5% gain in overall patch-based accuracy. Fur-
thermore, we present an ensemble of two multi-resolution deep learning
networks, one captures the cell level information and the other incorpo-
rates the contextual information to make the final prediction. Finally,
we propose a two-step thresholding method to post-process the output
of ensemble network. We evaluate our proposed method on the CAME-
LYON16 dataset, where we outperformed “human experts” and achieved
the second best performance compared to 32 other competing methods.

1 Introduction

Breast cancer (BC) is the second most common type of cancers and the primary
cause of cancer mortality in women. Majority of deaths from BC are due to
its metastasis to other organs in the body [1]. Therefore, early stage detection
is important for the diagnosis and prognosis of BC. The sentinel lymph node
(SLN) biopsy is the most pragmatic way of attaining BC metastasis. One of
the challenging aspects of this problem is that a lymph node tissue contains
some other cells (histiocytes) and regions (follicles and medullary sinus) having
morpholgical resemblance to tumor cells and tumor regions as shown in Fig. 1.

Feature engineering to capture the discriminative attributes of each region is
a non trivial task. Therefore, learning robust and discriminative features from
the data in an automated manner using convolutional neural networks (CNNs)
is a captivating choice for the problem at hand. Here, we proposed a framework
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Fig. 1. (a) Tumor regions, exhibiting non-uniformity in chromatin texture (b) histio-
cyte regions resembling tumor regions in terms of their morphological appearance.

for the detection of metastasis in whole-slide images (WSIs). Firstly, extracted
patches from WSIs are categorized based on the presence of metastasis using
CNNs. In this paper, modified CNNs are utilized and we show the high impact
of these modification for boosting CNNs performance. To this end, we used
Gaussian process for optimization of hyperparameters. Secondly, to enhance the
final prediction on WSI level, cellular and contextual information are combined
to get tumour likelihood map. This is achieved by fusing the outputs of two
modified CNNs trained on patches of different resolutions and sizes. Finally, we
propose a simple yet effective algorithm to convert the tumor likelihood map
into a binary map. The proposed two-step thresholding method removes the
highly uncertain regions from the likelihood map. Confidence score of each WSI
for containing a metastases region is calculated using area of highly certain
metastasis regions.

We have made three major contributions in this paper. First, we show that
following a principled Bayesian approach to hyperparameter optimization can
significantly improve performance for histology images with standard state-of-
the-art CNNs instead of using new complex network architectures. Second, we
propose an ensemble strategy to mimic the routine clinical practice where pathol-
ogist examines a WSI at different magnification levels (40x, 20x, etc.) under
the microscope. Our proposed method combines the predictions of two different
resolutions (40x and 20x) to make final prediction which integrates cellular and
contextual information. Finally, with the above principled approach, we achieve
competitive results; 2nd only to the current winner in the leaderboard and bet-
ter than the pathologists’ performance on one of the largest publicly available
histology image datasets (CAMELYON16"), according to the criterion used by
the challenge organizers.

! https://camelyonl6.grand-challenge.org.
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2 Related Work

Czerniecki et al. [2] proposed IHC biomarkers to assist the pathologist in breast
metastasis detection but it requires more time, cost and increases the number
of slides required for analysis. An automated computer-based system was also
developed for detecting micro-metastasis in lymph node biopsies [3] based on cell
detection. Instead of cell detection, our method detects metastasis using robust
multi-resolution features automatically learned from the very large dataset.

Recently, deep learning techniques have been used for a variety of histology
image analysis problems. Some early work using CNNs was done for mitosis
counting for primary breast cancer [4]. Recently, Wang et al. [5] assign a predic-
tion value to each patch using CNNs and then make decision based on probability
map of WSIs. Overall, the CAMELYON16 challenge [6] has shown the utility of
deep learning algorithms for automatic tissue analysis, outperforming the pathol-
ogists in terms of detecting tumors within the WSIs. Since feeding large high
resolution patches into deep learning model is computationally infeasible; one
should consider a trade off between patch size and the amount of information
lying within that patch. Most existing methods, consider using patches at one
resolution. Here we train two separate networks with high and low resolution
patch size, then merge probability maps generated by these networks.

The rest of this paper is organized as follows. Section3 introduces the
methodology details, Sect. 4 demonstrate the experimental results and compar-
ison. Finally, Sect.5 draws conclusion about the paper.

3 Methodology

Our framework (Fig. 2) is based on ensemble of two networks where one network
encodes on cellular structures and the other captures the context. We find opti-
mal architecture of classification networks and training hyperparameters through
Bayesian optimization method. WSI probability map is created by merging all
probabilities of small patches.

NasNet

duringtraining hyperparameter

ResNet50

Fig. 2. An overview of the proposed approach.
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3.1 Bayesian Optimization for Boosting Network Performance

Selection of the best network for a specific task is not trivial due to the stochas-
tic nature of deep learning networks and their dependencies on various hyperpa-
rameters. These hyperparameters range from learning rate, momentum to more
complicated variables like selection of number of layers, filter size, etc. Opti-
mal selection of these hyperparameters is a known challenge in computer vision
community. Non-optimal values of hyperparameters may lead to poor overall
performance of a network. Search over all possible combination of hyperparam-
eter values (grid search or random search) is computationally infeasible and
extremely time consuming.

One way to overcome this problem is using Bayesian Optimization (BO)
methods [7]. Gaussian process (GP) is one of BO approaches that can be used
to predict optimal hyperparameter. A GP is a supervised learning method, which
addresses the problem of leaning input-output mappings from training data. It
utilizes kernel functions to learn these relations. In GP having observed N input
vectors (hyperparameters) and their corresponding output variables (accuracies),
we wish to make assumption about unobserved parameters. Acquisition function
using this set of information suggest the next set of parameters. Here we used
Expected Improvement [8] as an acquisition function to find the optimal settings
for network and optimization level hyperparameters.

Convolutional filter size controls the receptive field for subsequent layers.
Larger filter size for initial layers works well for natural images as classification of
these images does not require high resolution information. However, tumor clas-
sification highly depends on high resolution images of tumor cells. Therefore, we
consider filter size of first convolutional layer along with 12 weight regularization
as hyperparameters to give flexibility to the network to choose the best receptive
field. The standard architectures of ResNet and NASNet does not contains any
dropout layer. However, dropout layer is useful to reduce over-fitting. There-
fore, it is considered as another hyperparameters along with learning rate and
momentum to be chosen by Bayesian optimization. The best hyperparameters
are selected during training with early stopping. It means where the validation
remains the same after two epochs, the new hyperparameters which are predicted
by GP are replaced. This process continues until the best hyperparameters are
found.

3.2 Pre-processing

Tissue Localization. WSIs contain large section of background (white) regions
which should be ignored during processing. Therefore, tissue separation (ROI)
should be performed beforehand to reduce computation time and efficiency of
algorithm. Here, we follow the same approach as [5], firstly, we transfer image
from RGB color space to HSV color space, then binary mask of tissue region is
obtained by applying Otsu adaptive thresholding algorithm on S channel.
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3.3 Network Selection and Ensembling

The proposed framework is an ensemble of two different CNNs. One network
learns the cell level representation of tumour and normal patches at 40x res-
olution. However, since context information is also important along with high
resolution cell appearance, cell level information is not enough to predict the
label of a patch. We used second network to capture the context information
from a larger patch at 20x resolution.

Different networks have been proposed in the literature for classification of
natural images (ImageNet) including Inception-V3 [9], ResNet [10], DenseNet
[11], and NASNet [12]. We choose ResNet for cellular feature based classification
of patches due to its better performance. Moreover, use of smaller filter size in
the first convolution layer and dropout before last fully connected layer results
in improved performance. We explored these modification along with weight
optimization level hyperparameters through BO.

We feed large patches(448 x 448) at lower resolution to the context based
prediction models. Having the context information as input, NasNet has the best
performance. It is based on seperable convolution with different filter sizes that
helps to learn the representation at different resolution. Additionally, inclusion
of dropout with hyperparameter tuning results in 5% increase in patch level
performance as shown in Table 1.

Finally, we construct the probability map from each network (ResNet and
NasNet) for each WSI. Then we fuse them together to build the final probability
map that reflect both high and low resolution information. Afterwards, the prob-
ability maps are post-processed by morphological operations to achieve tumor
localization and WSI classification. The post-processing procedure is described
in Sect. 3.4.

Table 1. Validation accuracy of different networks trained on the CAMELYON16
dataset. Networks trained on both 448 x 448 at 20X resolution and 224 x 224 at 40x
resolution with default hyperparameter settings and after applying Bayesian Optimiza-
tion (BO)

Networks 40x | 40x (BO)|20x |20x (BO)
ResNet [10] (%) 97.32199.12 86.15 | 90.56
InceptionV3 [9] (%) | 95.10 | 95.10 85.67 | 86.57
DenseNet [11] (%) | 95.35 | 96.67 87.68 | 89.15
NasNet [12] (%) 96.28 | 97.01 86.7591.91

3.4 Post-processing

Our careful inspection of the tumor probability shows that regions with high
probability values but characterized by abrupt changes in the values (i.e. high
uncertainty) generally correspond to false positive decisions. Therefore, to elim-
inate these high uncertainty regions, we use two different threshold values tqy
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Table 2. Dropout, learning rate, momentum, Weight decay for 1st layer and filter size
for 1st layer

Networks Dropout learning rate momentum weight decay filter size
ResNet (40x%) v 0.001 0.95 12 3 x3
ResNet (20x%) v 0.001 0.97 12 3 x3
InceptionV3 (40x) v 0.010 0.80 - 3x3
InceptionV3 (20x) v 0.001 0.85 12 3 x3
DenseNet (40x) - 0.001 0.90 12 3x3
DenseNet (20x%) - 0.010 0.87 12 3x3
NasNet (40x) v 0.001 0.95 12 3 x3
NasNet (20x) - 0.010 0.99 12 3 x3

and tpign. First, we obtain sets of regions B(tiow) and B(tnign) by thresholding
the tumor probability image at iy and thigh, respectively. From the construc-
tion, each region in B(tnign) is a shrink version of some region in B(tiow), and
there can be multiple regions in B(thign) that correspond to the same region in

B(tiow). For each region cW e B(tiow), let {C’fi), - C'](\l,)} € Bhign(t) be a set of

N; regions corresponding to C®). We eliminate each region CV) € B(t1oy) such
that _

‘Ué'vziléz(g
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where « is the area threshold ratio, and | - | denotes the cardinality of a set. We
set tiow = 0.3, thigh = 0.9, and a = 0.5. For each remaining candidate region, we
calculate the confidence of being tumor using the minimum probability found
in that region weighted by its area. The candidate regions are further removed
based on this weighted confidence.

After clearing probability map, we binarize all probability maps by applying a
threshold (threshold = 0.6). We dilate the tumor regions as much as 75 um, since
locations within the 75um of tumor areas are also considered as true positive
for FROC validation criteria that is used in CAMELYON 16 challenge. Finally,
the coordinate of those regions along with the maximum value on probability
map are recorded for FROC. For plotting ROC curve, the maximum probability
of largest tumor area is reported as probability of WSI being tumor.

< a, (1)

4 Experimental Results

Our experiments were conducted on the CAMELYON16 dataset to evaluate the
proposed framework for cancer metastasis detection in WSIs. This dataset con-
tains 400 WSIs: 270 WSIs for training and remaining 130 WSIs for evaluation
purpose. The cancer metastasis regions were exhaustively annotated under the
supervision of expert pathologists. The WSIs were stored at different magni-
fication levels with the highest magnification level of 40x and 0.243 um/pixel
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Fig. 3. (a) ROC curve and (b) FROC curve which shows sensitivity against average
number of false positives

resolution. Our experiments were performed at both 40x and 20x magnifications
to have both cellular and contextual information. Table 2 shows the values that
have been chosen for hyper parameters after applying BO. Filter size should be 3
x 3 for most of networks as the objects in images are small and 12 regularization
in first layer can lead to better performance. Moreover we use drop out in our
settings according to BO estimation.

We experimented with different networks on our data in order to choose
optimal achitecture. To improve the performance of the networks we used hyper-
parameter optimization method (Sect.3.1) for increasing the accuracy. Table 1
shows the performance of different networks on our dataset. We achieve con-
siderable increase in accuracy after hyperparameter optimization. To this end,
we chose Resnet50 for patches of 40x and NasNet for 20x patches as they have
higher accuracy on their corresponding dataset after BO optimization. The accu-
racy increased 2% and 5% for ResNet (with 40x patches) and NasNet (with 20x
patches) respectively which is a high improvement with regarding high variability
in dataset and low inter class variability.

After first iteration of training, we process the WSIs in patch based manner
to generate the probability maps. We observed that the probability maps of
WSIs have many false positive regions that affect the final result. To this end,
by recognizing the false positive regions, corresponding patches from WSIs are
extracted and fed back into the networks for fine-tuning. Therefore, we come up
with cleaner probability map with very few false positive regions.

We followed the same evaluation criteria (ROC and FROC) as explained in
[6]. As shown in Fig. 3, ROC curve clearly depicts that our method predicts large
number of tumor slides with very few false positives. In fact, it classifies 83% of
tumor slides without throwing any false positive. The FROC curve also shows
that the algorithm is capable of localizing tumor regions with various mean
number of false positives in per whole slide image. The values for area under
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ROC curve (AUC) are shown in Table3. Our method achieves a high AUC,
which shows the privilege of ensemble of two networks at different resolutions and
highlight the effect of parameter tuning in final prediction. The score obtained
from AUC, put us on top of the Table 3 which means our algorithm is performing
very well for classification of WSIs into two categories of tumor and normal.

Table 3. Comparison of AUC measure

Rank | Methods AUC | Rank | Methods AUC
1 HMS & MITII [5] | 0.994 | 4 HMS & MGH IIT | 0.976
2 Proposed Method | 0.990 | 5 HMS & MGH 1 |0.965
3 Pathologist 0.966 | 6 CULab 0.940

5 Conclusions

In this paper, we investigated the impact of hyperparameter optimization on
network performance. Tuning hyperparameters with the Gaussian process could
increase the validation accuracy on average by 5%. Furthermore, a multi-
resolution network for detecting breast cancer metastasis from sentinel lymph
node WSIs was proposed. Therefore, with combined contextual and cell level
information and also optimizing hyperparameter, we achieve AUC and average
sensitivity of 0.990 and 0.6583 respectively. This results in competitive perfor-
mance of our framework applied on the CAMELYON16 dataset.
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