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Abstract. Relation analysis between physical properties and microstructure of
the human tissue has been widely conducted. In particular, the relationships
between acoustic parameters and the microstructure of the human brain fall
within the scope of our research. In order to analyze the relationship between
physical properties and microstructure of the human tissue, accurate image
registration is required. To observe the microstructure of the tissue, pathological
(PT) image, which is an optical image capturing a thinly sliced specimen has
been generally used. However, spatial resolutions and image features of PT
image are markedly different from those of other image modalities. This study
proposes a modality conversion method from PT image to ultrasonic (US) image
including downscale process using convolutional neural network (CNN).
Namely, constructed conversion model estimates the US from patch image of
PT image. The proposed method was applied to the PT images and we con-
firmed that the converted PT images were similar to the US images from visual
assessment. Image registration was then performed with converted PT and US
images measuring the consecutive pathological specimens. Successful regis-
tration results were obtained in every pair of the images.
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1 Introduction

In recent years, the physical properties of human tissue such as mechanical, optical and
acoustic properties have been widely measured. In addition, these properties have been
compared with microstructure such as the distribution of the cell nuclei and the running
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direction of nerve fiber [1–3]. The microstructure of tissue can be acquired as patho-
logical (PT) images which are optical images of thinly sliced specimens. Methodolo-
gies of multi-modal analysis using such PT images and other modal images have been
widely developed. We also have been analyzing a relationship between acoustic
parameters and microstructures of the human brain using PT images and microscopic
ultrasonic (US) images.

To compare the physical properties and the microstructure at the same location
using multi-modal images, accurate image registration is required. Previous studies
employed landmark-based or semi-automatic methods [4–7]. However, a correction of
local differences was too difficult because tissue characteristics in the PT image are not
taken into consideration in these methods, which makes detection of the corresponding
landmarks difficult. In this case, an intensity-based registration may be more promising.

When the PT image is used in the intensity-based registration, a spatial resolution
of the PT image can be a hurdle because it is extremely higher than that of other image
modalities such as computed tomography, magnetic resonance imaging and US image.
For example, the spatial resolution of the PT image is approximately 230 � 230 nm2

while the spatial resolution of the US image measured by an US microscopic system is
approximately 8 � 8 lm2 at most. Therefore, when a pixel is selected on the US image
during the registration process, the corresponding pixel value is calculated from
35 � 35 pixels on the PT image. In this situation, the spatial resolution of the PT image
is generally adjusted to almost the same as those of another image using an averaging
and downsampling technique before the image registration. However, such a simple
downscaling processing eliminates microscopic pattern that each organ inherently
possesses and leads to a decline in registration accuracy.

To enhance each structural component in the PT image and achieve the highly
accurate image registration, we introduced an image feature conversion method com-
bining with the downscale process. This study tuned up a conversion method assuming
the image registration between PT and US images. As a preliminary experiment, simple
affine registration was conducted.

2 Methods

The proposed method consists of two steps as shown in Fig. 1. In the model con-
struction step, the landmark-based registration with PT and US images was conducted.
US image was moved to the coordinate system of PT image in this registration process.
Because the original PT image was too large, a region of interest was set to the PT
image. Rescaled PT image was generated using the simple average method and then
binarized with discriminant analysis method. The landmarks were detected by AKAZE
feature detector [8] from the binarized PT image. Outliers of the landmarks were
removed by random sampling consensus [9]. This registration results must be visually
confirmed by the operator. The conversion model was constructed with the original PT
image and the registered US image using convolutional neural network (CNN) [10].
Figure 2a shows the flow of the conversion model construction. Some patch images
were extracted from the original PT image. The conversion model estimates an US
signal from each small patch image. Estimated US signals pi were compared with
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actual US signals li. CNN was optimized until the cost function becomes minimum.
The cost function which is also called a loss function was defined as:

Cost P;Lð Þ ¼
XN

k¼1

pk � lkj j: ð1Þ

Here, k and N describe the index of patch image and the total number of patch
image input into the CNN, respectively. These processes were repeated until iteration
number reached to a predefined limit. The framework of the CNN is shown in Fig. 2b.
There were two convolution layers and two pooling layers followed by dropout and
fully connected layers. CNN construction has to be conducted once before the actual
registration.

Fig. 1. Outline of the proposed method.

Fig. 2. (a) Flow of conversion model construction, (b) Framework of convolutional neural
network.
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In the second step, the obtained PT images for the image registration were con-
verted by the constructed model. Affine registration including shift, rotation and scaling
operations were then conducted. Normalized cross correlation (NCC) and Powell-Brent
method were utilized as a similarity measure between converted PT and US images and
an optimization method, respectively.

3 Experiments

3.1 Data

Brain tumors have been resected from four patients as a normal clinical procedure.
After the surgery, the resected tumors were further resected into some pieces. These
obtained pieces were named macro-specimens S1 to S4. This study has been approved
by the Ethical Review Board of our University and we obtained informed consent from
all the four patients participated in the study. Each resected macro-specimen was then
undergone formalin fixation and paraffin embedding. Pathological specimens with 8-l
m thickness were then obtained by using a microtome. These specimens were then
deparafinized with xylene and cleaned with ethanol. For US measurement, the images
of specimens in this status were captured. These specimens were further stained with
hematoxylin-eosin (HE) and the PT images of the specimens were then captured.

For macro-specimen S1, the sectioning by the microtome was performed repeatedly
and 19 consecutive pathological specimens were obtained. US measurement and PT
image acquisition were performed on the only first pathological specimen. A pair of PT
and US images acquired in this process was utilized to construct the conversion model.
For the other pathological specimens, US and PT images were acquired from odd and
even numbered pathological specimens, respectively. As for macro-specimens S2–4,
one pathological specimen was obtained from each macro-specimen and a pair of US
and PT images was acquired in each macro-specimen just as the pair of PT and US
image of S1.

US images were obtained as two-dimensional echo amplitude map in depth
direction at each scan point of pathological specimens. We used two ultrasonic
microscopic systems. One is a modified version of a commercial product (AMS-50SI,
Honda Electronics Co., Ltd, Japan) and was used for S1. The other is an in-house
developed system and was used for S2–4. In both systems, a ZnO wave transducer
(Fraunhofer IMBT, St. Ingbert, Germany) with 250 MHz center frequency was com-
monly used. This transducer was attached to the X-Y stage and scanned with 8-lm
pitch in each direction. Echo amplitude was calculated from acquired RF echo signal at
each scan point and used as pixel value of US image. Image size and pixel size were
300 � 300 to 800 � 800 pixels and 8.0 � 8.0 lm2/pixel. Detailed calculation way of
the echo amplitude was described in [11].

For PT image acquisition, HE-stained pathological specimens were digitalized with
a virtual slide scanner (NanoZoomer S60, Hamamatsu Photonics K.K., Japan). Image
size and pixel size were approximately 12000 � 12000 pixels and 228 � 228 nm2,
respectively.
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3.2 Results and Discussions

In this study, two kinds of experiments were conducted. In the first experiment,
applicability of the conversion model was evaluated with PT and US images obtained
from the same macro-specimen S1. A conversion model was constructed with a pair of
PT and US images and applied to other nine PT images. Image registration was then
undergone. The first US image was used as reference image and the other images were
registered into the first US image. To evaluate the versatility of the conversion model,
another experiment was conducted with the images of S2–4. A conversion model was
constructed with the images of S2 and applied to the PT images of S3 and S4. The
patch size for the conversion model was set to 32 � 32 pixels. Namely, the pixel size
after conversion were 7.30 � 7.30 lm2. The number of iteration, the number of patch
image (batch size), a learning rate and a dropout rate for CNN were set to 20,000, 100,
0.001 and 0.5, respectively.

Experiment 1: Study on the Consecutive Specimens Resected From a Patient
Figure 3 shows a result of conversion model construction. As yellow arrows in Fig. 3c
indicate, black spots were clearly enhanced after conversion. From visual assessment,
the converted PT image was similar to the US image compared with the simply
downscaled PT image. The constructed conversion model was applied to other PT
images. Conversion results are shown in Fig. 4. Because US images corresponding to
PT images were not acquired, we could not evaluate the conversion effect quantita-
tively. However, we confirmed that image features of all converted images were similar
to those of US image shown in Fig. 3d.

Registration results are shown in Fig. 5. All images including both US and PT
images were successfully registered. Because image features of converted PT and US
images were similar, NCC provided acceptable results.

Fig. 3. Result of conversion model construction. (a) Original and (b) Simply downscaled PT
image, (c) Converted PT image, (d) US image. Yellow arrows indicate enhanced regions by the
conversion. It should be noted that image size of the original PT image was larger than that of
other three images in practice. (Color figure online)
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Experiment 2: Study on the Specimens Resected From Different Patients
A conversion model was constructed with the image dataset of S2 and applied to the
image datasets of S3 and S4. Resultant images are shown in Fig. 6. NCC between the
US image and each downscaled PT image was calculated at the best match position.
The best match positions for each image were manually decided by the operator.
Calculated NCCs are shown in Table 1.

Some structures in the converted PT image of S2 were slightly enhanced as shown
in enlarged region of Fig. 6. For image dataset of S3, tendency of conversion result was
similar to S2. We confirmed the effect of the modality conversion, however it was less
than that in the previous experiment. For the image dataset of S4, pixel values of the
converted PT image were almost the same and image contrast became low. Specific
region could not be enhanced after modality conversion. The cause of this result was
that there were many necrosis regions on S4. On the other hand, learning image dataset
did not include such region. Namely, the variety of pathological structures to be learnt
was not sufficient to provide a versatile conversion model. Learning image dataset must
be generated from patch images whose pathological structure are distinctive and
diverse.

Every NCC with modality converted PT image was higher than that with simply
downscaled PT image. Even though simple downscale method led to high NCC, the
proposed method further improved it because the conversion model was optimized with
S2. NCCs of the other two datasets were also improved and achieved more than 0.9
using the conversion model. Although we could not visually confirm the effectiveness
of the proposed method, histogram or spatial distribution of pixel value was similar to
that of the US image. From these results, we can expect that the proposed method will
be able to produce the better registration than the simple downscale method.

Fig. 4. Conversion results of S1. Top: Original PT images. Bottom: Converted PT images using
the same model in Fig. 3.
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4 Conclusions

To conduct the image registration with ultrasonic image, we proposed a CNN-based
modality conversion method for pathological image. From visual assessment, converted
pathological images were similar to the ultrasonic image compared with the simply
downscaled pathological image. Therefore, we will be able to obtain the highly accurate
registration result without additional intelligent and/or complicated registration method.

Fig. 5. Example of registration results. (a) Reference US image, (c)(e) Registered US images,
(b)(d)(f) Registered PT images. The numbers describe pathological specimen number.

Fig. 6. Conversion results of S2–4. Top: Learning image dataset (S2), Middle and bottom: Test
image dataset (S3 and S4).

Table 1. Normalized cross correlation between ultrasonic and each downscaled pathological
image at best match position.

S2 S3 S4

Simply downscaled 0.956 0.796 0.803
Modality converted 0.978 0.955 0.915
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We found that the registration results were successfully obtained using classical simi-
larity measure. For future work, we would like to increase the various image datasets
because the CNN can not estimate acceptable US signal from unseen image pattern.
Quantitative assessment of the image registration and comparison with the landmark-
based registration method will be also conducted. In addition, because pathological
specimen might be locally deformed in the staining process, a non-rigid registration
method would be introduced.
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