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Abstract. Histological analyses of tissue biopsies is an essential com-
ponent in the diagnosis of several diseases including cancer. In the past,
evaluation of tissue samples was done manually, but to improve efficiency
and ensure consistent quality, there has been a push to evaluate these
algorithmically. One important task in histological analysis is the seg-
mentation and evaluation of nuclei. Nuclear morphology is important
to understand the grade and progression of disease. However, imple-
menting automated methods at scale across histological datasets is chal-
lenging due to differences in stain, slide preparation and slide storage.
This paper evaluates the impact of four stain normalization methods on
the performance of nuclei segmentation algorithms. The goal is to high-
light the critical role of stain normalization in improving the usability of
learning-based models (such as convolutional neural networks (CNNs))
for this task. Using stain normalization, the baseline segmentation accu-
racy across distinct training and test datasets was improved by more than
50% of its base value as measured by the AUC and Recall. We believe
this is the first study to perform a comparative analysis of four stain
normalization approaches (histogram equalization, Reinhart, Macenko,
spline mapping) on segmentation accuracy of CNNs.
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1 Introduction

Diagnoses made by pathologists using tissue biopsy images are central for many
tasks such as the detection of cancer and estimation of its current stage [2].
One routine yet important step within histological analyses is the segmentation
of nuclei. Nuclear morphology is an important indicator of the grade of cancer
and the stage of its progression [3]. It has also been shown to be a predictor of
cancer outcome [4]. Currently, histological analysis such as these are done man-
ually, with pathologists counting and evaluating cells by inspection. Developing
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automated methods to perform this analysis will help pathologists maintain con-
sistent quality, allow for greater use of histological analysis by reducing cost and
throughput.

However, automating nuclei detection is not a trivial task and can be chal-
lenging for a number of reasons - one important challenge is the lack of stain
standardization. Stain manufacturing and aging can lead to differences in applied
color. It could also be the result of variation in tissue preparation (dye con-
centration, evenness of the cut, presence of foreign artifacts or damage to the
tissue sample), stain reactivity or image acquisition (image compression arti-
facts, presence of digital noise, specific features of the slide scanner). Each stain
has different absorption characteristics(sometimes overlapping) which impact
the resulting slide color. Finally, storage of the slide samples can have aging
effects that alter the color content [2,5]. Radiologists have established standards
(such as DICOM) to ensure consistency between scans from different origins and
time. Ideally, histopathology would also work within a framework like DICOM
where images can be standardized against experimental conditions to ensure
consistency across datasets.

Recently, there has been considerable interest in the application of novel
machine learning tools such as deep learning to aid in routine tasks such as seg-
mentation. These models generally work on raw pixel values, but could achieve
greater accuracy through reducing the variance contributed by slide and stain
specific variables. However, the approach must not be too general or else false
positives will occur through altering the image signal [1,2].

The aim of this project is to address the impact of variability in histological
images on the accuracy of deep learning based algorithms for segmentation. A
Convolutional Neural Network (CNN) was trained to perform nuclei segmen-
tation and tested to get a baseline. Four stain normalization techniques, his-
togram equalization, Reinhard, Macenko, and spline mapping were then applied
as means to reduce color variability of the raw images. The CNN was trained
and tested again for each of these normalization conditions to get segmentation
accuracy in each case. This paper is unique in that it employs a wide variety of
normalization methods, uses deep learning based nuclei segmentation accuracy
as a metric, and tests the model on a different dataset to understand model
generalizability.

2 Stain Color Normalization

Stain normalization techniques involve transforming image pixel values. There
are a wide array of techniques in literature, but most involve statistical trans-
formations of images in various color spaces. Below we provide an overview of
the four techniques used. Since our goal was mainly to highlight the impact
of stain normalization as opposed to finding the best approach, we acknowledge
that there is scope for further expanding the following list (e.g.: Automatic Color
Equalization [12], HSV channel shifting, adding random Gaussian noise etc.). We
chose the following four because they were reasonably diverse and were easily
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implementable using University of Warwick’s stain normalization toolbox [10].
For methods requiring stain vector estimation, this was done using an image
from the training set in both cases of training and testing.

– Histogram equalization: Histogram equalization is a commonly used image
processing technique that transforms one histogram by spreading out its dis-
tribution to increase image contrast. In this analysis, histogram equalization
was performed on each RGB channel in Matlab, effectively normalizing the
color intensities frequencies between two images [9].

– Macenko color normalization: The Macenko color normalization method
transforms the images to a stain color space by estimating the stain vectors
then normalizes the stain intensities. Quantifying the stain color vectors (the
RGB contribution of each stain) provides a more robust means of manipulat-
ing color information [8].

– Reinhard color normalization: Reinhard color normalization aims to
make one image ‘feel’ like another by transforming one image distribution
to be closer to another. Reinhard transforms the target and source images
into L” color space. This was created to minimize the correlation between
channels. After the source and target images are in this colorspace, descrip-
tive statistics are used to transform the target image’s colorspace as described
in [7]. Finally, the average channel values of the source are added back to the
data points and it is transformed back to RGB colorspace.

– Spline mapping: Conceptually, the spline mapping technique is similar to
the Macenko technique in that it estimates the stain vectors, deconvolves
the image, maps the stain intensity to a target image before reconstructing
back in RGB colorspace. Khan makes contributions in automatic stain vector
calculation using a classifier with global and local pixel value information,
and a non-linear stain normalization method [5].

3 Image Segmentation Using CNNs

This section describes the methods used to generate deep learning based image
segmentation models. The goal was to train a model using one dataset and to test
using another. We aimed to perform this approach using different normalization
strategies to narrow down on an approach that best reduced variability and
improved performance.

3.1 Model Selection

We first trained and validated the model on the same dataset to make sure that
our training procedure was working correctly. For this we used breast tissue slices
from [3]. We randomly split the dataset into 70% train and 30% validation. After
experimenting with different network architectures, the final architecture that
was chosen after the validation procedure was (Conv-BNorm-ReLU)x6 - (Fully
Convolutional) - Softmax [3].
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We chose to use a fully convolutional network (FCN) instead of a regular fully
connected network so as to enhance throughput and quickly return the network
based on results [6]. This meant that, at the time of inference, our model could
simply process an entire image in one pass instead of needing it to be broken
down into pixelwise patches. However, for training the network, we used a fully
connected ultimate layer, and fed patches instead of a whole image as input. This
allowed us to have greater control over the size and composition of the training
classes, given their skewed distribution in the training set. This is also why we
chose FCN over more recent architectures that work better with whole images
such as U-Net [13] and Mask-RCNN [14]. We also realize that there are deeper
architectures that could be used with FCN for further improving pixel level
accuracy but our main focus was on showing the value of stain normalization as
opposed to finding the optimal architecture for segmentation. We used the Caffe
deep learning framework to design these models.1

3.2 Dataset

The training dataset consisted of 143 histological sections of breast tissue from
the Case Western Reserve digital pathology dataset. Each RGB image was
2000× 2000 pixels, 20× magnification and was H&E stained. Manually anno-
tated masks were provided for over 12000 nuclei. We found that, for training,
a patch size of 64× 64 (87.8% baseline validation accuracy) worked better for
training than 32× 32 (82% accuracy). A total of 400,000 unique patches were
generated for each scenario.

However, it was not sufficient to randomly sample from non-nuclear regions as
defined by the hand annotations. There was a significant probability of sampling
unannotated nuclei while developing negative patches for the training set. To
address this problem, we used the approach outlined by [3]. Nuclei are known to
absorb greater levels of the eosin (red) stain and so the red channel in the images
was enhanced. A negative mask was thus generated defining regions outside
of these enhanced red zones that were deemed safe for non-nuclei class patch
selection. We also made sure to allocated a third of the non-nuclei patches to
boundaries around the nuclei so that these would be clearly demarcated in the
output. Moreover, positive and negative samples were equal in number even
after accounting for these changes. The model prediction accuracy was found to
benefit from these approaches.

The test set was composed also of breast tissue slices from a hand anno-
tated dataset provided by the BioImaging lab at UCSB [11]. Referred to as
the BioSegmentation benchmark, these were 58 H&E stained images at a much
smaller resolution (896× 768). This dataset proved to be ideal for model testing
because the images were quite different from our training set both in terms of
image quality and resolution and also in terms of the staining used (more eosin
content). Patching was not required for the test set because we were using a fully
convolutional network.

1 Code: https://github.com/yhr91/NucleiSegmentation/tree/master/BMI-260.

https://github.com/yhr91/NucleiSegmentation/tree/master/BMI-260
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3.3 Training

Once our model architecture and dataset generation approach had been finalized,
we began to train separate model for each of the normalization scenarios as shown
in Fig. 1. We used a batch size of 1000 because that could fit comfortably in our
memory (P100 GPU 16 GB × 2).

There were four models - these corresponded to the four techniques out-
lined previously: Histogram Equalization (SH), Macenko (MM), Reinhard (RH),
Spline Mapping (SM). There was a also a model for the unnormalized (Unnorm)
case. Model performance would generally begin to plateau around 5–10 epochs.
We did not notice overfitting in any model until 25 epochs except in SM. How-
ever, we could not continue training much beyond that point due to time con-
straints.

Fig. 1. The first row shows the test image as fed into the model after stain normal-
ization (labelled using acronym). The normalization applied on the test image was the
same as that applied on the training dataset in that case. The bottom row shows the
model predicted output on the test images.

4 Results

4.1 Visual Inspection

The top row in Fig. 1 shows the original images after being transformed using the
four different stain normalization approaches. We can see that all four images
appear different in some respect. For example, HE and RH, which involve stain
normalization through working directly with the color values show a noticeable
blue tint. This is more pronounced in HE, where non-nuclear regions in the top
right of the cell get quite heavily stained with hematoxylin. On the other hand,
SM and MM, which both use stain vectors to map an input image to a target
space, don’t show a blue-ish tint and provide a much more robust transformation
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that is true to the semantic information of the parent image (e.g.: treating nuclei
and background regions distinctly).

The bottom row looks at the class probability for nuclear regions as predicted
by models trained on datasets that were each stain normalized differently. Clearly
all four normalized sets perform far better than the unnormalized dataset where
almost no nuclei were detected due to the drastic change in staining as compared
to what the model had been trained on. HE does pick up most of the nuclei but
also a lot of background noise due to its inability to differentiate clearly between
different types of staining. RH is also more sensitive to noise but does a better
and clearer detection of nuclei as is visible in the clear boundaries. SM clearly
performs the best at segmenting nuclei while also being most robust to false
positives.

Fig. 2. ROC curve for models trained using different stain normalization schemes

4.2 Quantitative Assessment

To perform a more rigorous quantitative assessment, we looked at metrics calcu-
lated over a randomly selected set of 15 test images, using an output threshold
of 0.5 for binarization (see Table 1). Simply calculating classification accuracy
would be insufficient for this sort of segmentation problem. For instance, even
if a classifier were to only classify pixels as non-nuclear regions it would still
be around 85–90% accurate because the vast majority of pixels don’t lie within
nuclei.

Given the set of all nuclear pixels in the set, recall tells us what fraction of
those were picked up by the model. Clearly SM does a great job in this area.
SH and RH also do well but when we look at their precision values they are
not as high as those for SM. Precision measures how many of the positives that
you picked up were actually relevant. This indicates the tendency of SH and
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RH to pick up more false positives than SM. This trade-off between true and
false positives is best captured by the ROC curve (Fig. 2). Here, we see that
the unnormalized case doesn’t add any value at all while all the normalization
scenarios show improved prediction accuracy. SM is the clear winner showing
an excellent range of operation at a TPR of >80/90% while only allowing an
FPR of 50%. This is very impressive considering how the model was trained on
a staining visually very different from the one in the test data. This difference
is quantitatively captured by the AUC. Finally, the F-score is another attempt
to capture segmentation accuracy without getting bogged down by all the true
negatives. It calculates the intersection of pixels that have been classified as
nuclei in both the prediction and the ground truth and it divides that over the
union of all pixels classified as nuclei by either set. Again, SM is seen to be the
best at improving accuracy of the algorithm.

Table 1. Quantitative comparison of model performance under different forms of stain
normalization

Normalization Precision Recall F-score AUC Epochs

None 0.006 0.00 0.00 0.50 25

Histogram equalization (SH) 0.025 0.52 0.05 0.61 25

Macenko (MM) 0.026 0.18 0.05 0.61 25

Reinhard (RH) 0.04 0.55 0.07 0.71 12.5

Spline mapping (SM) 0.05 0.70 0.09 0.83 6

5 Discussion

Through this study, we have explored several stain normalization approaches
that were all shown to reduce inter slide variability. The results (particu-
larly AUC, F-score) clearly indicate that using a stain normalization approach
increases the performance of the deep learning based segmentation algorithm.
We found that SM performed better than all other approaches. We believe this
is because it use a non-linear mapping function that is more accurate than the
other approaches. It is able to delineate between different regions and map them
appropriately to the target space.

We also noticed that the model seems to perform more poorly in case of
normalizations that are biased more towards the eosin channel. In future, it may
make sense to normalize the stain of the training dataset using two different
approaches. This would push the model to become robust to these subtle changes
and be less dependent on any one channel. Moreover, stain normalization could
also be looked at as a regularization approach to enhance generalizability of deep
learning based models in this space and prevent overfitting. On the other hand,
we must remain conscious of the fact that staining color is a very valuable source
of information in histological analyses and adopt a balanced approach towards
stain normalization.
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6 Conclusion

In this study, we looked at the impact of stain normalization as a means of
improving the accuracy of segmentation algorithms across datasets. To the best
of our knowledge, this is the first study that compares the chosen four stain
normalization techniques through assessing their usability in the context of deep
learning based segmentation models. There is scope for expanding upon this
work with a deeper analysis of why certain normalization approaches or model
architectures are better suited for this task.
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