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Abstract. We propose a deep learning-based pipeline that, given a low-
dose computed tomography of a patient chest, recommends if a patient
should be submitted to further lung cancer assessment. The algorithm
is composed of a nodule detection block that uses the object detection
framework YOLOv2, followed by a U-Net based segmentation. The found
structures of interest are then characterized in terms of diameter and tex-
ture to produce a final referral recommendation according to the National
Lung Screen Trial (NLST) criteria. Our method is trained using the
public LUNA16 and LIDC-IDRI datasets and tested on an independent
dataset composed of 500 scans from the Kaggle DSB 2017 challenge.
The proposed system achieves a patient-wise recall of 89% while pro-
viding an explanation to the referral decision and thus may serve as a
second opinion tool to speed-up and improve lung cancer screening.
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1 Introduction

Lung cancer is the deadliest type of cancer worldwide in both men and women [1]
but early diagnosis significantly increases patient survival rate. In fact, the
National Lung Screen Trial (NLST) showed that annual screening of lung can-
cer risk groups with low-dose chest computed tomography (LDCT) via manual
analysis of scans by experts reduces lung cancer mortality by 20% [2]. However,
LDCT screening is challenging because (i) the process is prone to errors due to
factors such as interobserver variability and (ii) the equipment and personnel
costs of these programs inhibit their application on developing countries, where
tobacco consumption is difficult to control [3]. To address the problem of lung
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cancer detection we propose a second opinion system that helps to reduce the
overall screening burden by indicating if a patient should or not be referred for
follow-up. The framework is composed of an initial nodule detection step, nod-
ule segmentation and finally a scan-wise decision based on the NLST criteria for
positive screens and thus provides an interpretable justification of its decision.

Lung nodule detection is a mandatory step for the automatic referral pipeline.
Deep learning has become the standard technique to complete this task, with the
leaderboard of LUNA161 nodule detection challenge being mainly composed of
these kind of approaches [4]. The most common pipeline is to detect candidates
by slice or 3D-wise via an object detection framework such as Faster-R CNN [5]
followed by a 3D convolutional neural network (CNN) for false-positive (FP)
reduction and these systems achieve detection sensitivities greater than 0.80
with 0.125 FP/scan or greater than 0.90 with 1 FP/scan. Then, nodule segmen-
tation is used for characterizing the detected abnormalities. The most common
approach for nodule segmentation is to use intensity (or HU) and shape fea-
tures [6], but CNNs can also be applied for 3D nodule segmentation and achieve
Sorensen-Dice coefficients close to 0.8 [7].

Despite the advances on both nodule detection and segmentation, automatic
patient referral is little explored. Recently, Kaggle2 hosted a challenge aimed at
the development of algorithms for predicting if a patient should be referred for
follow-up after screening. The training set is composed of 1398 training scans
with labels at the scan level. It is widely known that the majority of the scans
originated from the NLST trial, but the exact origin of each anonymized scan
has not been disclosed by Kaggle. In this challenge, the best methods used deep
learning approaches with an initial candidate detection followed by an expected
malignancy prediction that allow to achieve an overall log loss of 0.39–0.41.

We move beyond the nodule detection task and aim at tackling the more
complex lung cancer screening pipeline. Our contribution to the state-of-the-art
is a single step nodule detection algorithm followed by a segmentation and field-
knowledge classification step that allows a near-human scan-wise abnormality
detection performance for scan referral. The next section describes the devel-
oped algorithms and the datasets used for validation. Section 3 discusses the
performance of the proposed system. Finally, Sect. 4 summarizes our study.

2 Method

Our system was designed to follow the standard clinician pipeline of NLST [2],
where radiologists were instructed to refer a patient for follow-up if any non-
calcified nodule with diameter d > 4 mm was found. With that in mind, our
system is composed of 3 main steps (see Fig. 1) (i) nodule detection via YOLOv2
(Sect. 2.2) that focuses on nodules with d > 4 mm, (ii) nodule segmentation
for measurement and characterization via U-Net (Sect. 2.3) and (iii) scan-wise
referral indication based on the NLST guidelines (Sect. 2.4).
1 https://luna16.grand-challenge.org/home/.
2 https://www.kaggle.com/c/data-science-bowl-2017.

https://luna16.grand-challenge.org/home/
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Fig. 1. Pipeline of the proposed lung cancer referral system.

2.1 Datasets and Technical Details

The nodule detection network is trained on the LUNA16 dataset [4], which
contains 888 scans from the LIDC-IDRI dataset [8]. The LIDC-IDRI contains
1012 LDCT scans with variable slice thickness and nodule voxel-wise annotations
from up to 4 different expert radiologists. The LUNA16 contains the information
of 1186 nodules’ centroids and diameter (no voxel-wise data) with an agreement
level 3 or higher, as well as the centroid of non-nodule lesions of diagnostic
interest. For the nodule detection step, we train in subsets 1–9 (20% validation)
and test on the 89 scans of subset 0. The test set has 112 nodules, from which
80 have d > 4 mm. The nodule segmentation system is trained on LIDC-IDRI
with an agreement level 1 or higher and multiple segmentations are combined
via logical OR. We train on 1400 axial view 64 × 64 pixels (approx. 51 × 51 mm)
patches, validate on 300 and test on 570 samples. We experimentally set the
segmentation threshold at 0.5 by analysis of the results on the validation set.

We tested our screening system on 500 randomly selected scans from the 1st

stage of the Kaggle dataset. The scans are labeled according to future cancer
presence (123 cases) or low cancer risk (377 cases). All datasets are anonymized
and there is no access to relevant patient metadata. Unless stated otherwise, we
consider the HU interval [−1000, 400] for our experiments.

Experiments were performed on a Intel Core i7-5960X @3.00 GHz, 32 Gb
RAM, 2× GTX1080 desktop. The framework was developed on Python 3.5
and Keras 2.0.4. The YOLOv2 implementation is based on3. Both YOLOv2
and U-Net were trained with optimizer Adam (learning rate 1e–4) and we used
real time data augmentation by randomly applying translations, zooms, edge
sharpening, blurring and brightness and contrast alterations to the training data.

2.2 YOLOv2 for Lung Nodule Detection

Our framework uses YOLOv2 [9], an end-to-end 2D object detection network, to
perform lung nodule detection without the need for a FP reduction step (refer to
Fig. 2 for an example). Specifically, the network divides the input image in a grid

3 https://github.com/experiencor/basic-yolo-keras.

https://github.com/experiencor/basic-yolo-keras
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Fig. 2. Schematic representation of the YOLO framework applied to lung nodule detec-
tion. We consider a single anchor size for the optimization of the network.

and predicts, for each grid element, how likely there is a nodule there. Let our
input image be divided in blocks of size defined by the network architecture. Each
block can contain a nodule, which bounding box we impose to be 35 × 35 mm
(51 × 51 pixels) to fit the largest nodules in the dataset. The model works as
follows: (1) the InceptionV3 [10] network is used for extracting a M × M × N
feature map, F , where M is the spatial grid size and N is the number of feature
maps from the input image; (2) F is convolved into a M × M × 7 new tensor,
Y . Each element mi,j,k ∈ Yk has a direct correspondence with a block from
the input image and each of the 7 feature maps corresponds to a variable of
the respective bounding boxi,j to be optimized. The maps are responsible for
controlling the probability of the box belonging to the ‘nodule’ or ‘other’ (non-
nodule) classes (pi,j(nodule) = σ(mi,j,1)), how likely there is a nodule on that
block (confidencei,j = σ(mi,j,3)), the box width/height (ŵi,j = wemi,j,4 , ĥi,j =
hemi,j,5) and the box center (x̂i,j = xi,j + σ(mi,j,6), ŷi,j = yi,j + σ(mi,j,7)),
where σ is a sigmoid function. The entire network can be trained end-to-end by
minimizing the following loss function:

LYOLO = L1(x, y) + L2(w, h) + L1(confidence) + L2(class) (1)

where L1 is the squared error and L2 is the log loss function. In the end, only the
boxes with high confidence and class probability are kept, as depicted in Fig. 2.

Since Inception V3 is pre-trained with RGB images, we train our model with
images of the axial slice containing the nodule centroid together with one slice
above and one slice below (2.5D). This strategy provides extra context to the
network and has already been successful for lung nodule detection [11]. However,
preliminary experiments led us to conclude that the selection of the non-central
slices greatly hinders the nodule detection performance of YOLOv2. Namely,
since all datasets show variable inter-scan slice thickness, the usage of the two
immediate adjacent slices may provide a poor and irregular depth information.
Instead, we retrieve slices from an approximate distance of 2 mm. This improved
the system’s performance by almost 20% since it allows blood vessels, natural
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Fig. 3. Influence of slice depth for the reduction of confounders in 2.5D. Red: top slice;
Green: middle slice; Blue: bottom slice Left: original slice thickness (approx. 1mm);
Right: with approximately 2mm slice thickness both small and large blood vessels are
more visible in the red and blue channels. (Color figure online)

nodules’ confounders in the axial plane, to be better distinguished from the
structures of interest (see Fig. 3) without compromising the model’s speed.

Training Details. Having in account the goal of our system, we opt for a very
low value of FP/scan, close to 0.25, and thus higher risk of nodule detection
failure because (i) detecting one nodule per scan (assumed to be lung cancer
representative) is enough for referral and (ii) a large number of FP can lead
to non-proper scan referral and thus unnecessary medical procedures. Based
on these assumptions, we adopt a training scheme that achieves high scan-wise
referral recall and specificity rates with a low number of FP detections.

First, we train the detection module using 512 × 512 2.5D axial images that
contain d > 3 mm nodules and use it for finding nodule candidates on all 2.5D
axial images of the training scans. The resulting 2D predictions are combined to
3D nodule locations having in account the intra and inter-axial slice distance.
Specifically, candidates are merged if there is more than 80% area overlap in the 2
adjacent slices. These 3D candidates integrate a second dataset composed of (1)
all nodules from the training data with diameter ≥ 4 mm and (2) a set of nodules’
confounders composed of FP predictions with probability higher than 0.5 and
all nodules with d < 4 mm. YOLOv2 is then retrained from scratch so that the
weights can adapt to the two class problem, thus significantly reducing the final
number of FP detections. This framework avoids the need for a second classifier
for FP reduction and thus extra training-related parameter tuning. Similarly
to the training step, scan-wise predictions are made by merging depth-wise the
candidates that resulted from sliding the model over the scan.

2.3 U-Net for Nodule Segmentation

We segment the found nodules via an adaptation of U-Net [12]. Our model has 5
contracting steps, a 1×1 bottle neck and a higher number of feature maps on the
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expansive part. Also, Batch Normalization is performed at each convolutional
layer for regularization. We use the soft intersection over union (IoU) as loss

IoU =
∑

S ◦ Ŝ
∑

(S + Ŝ) − ∑
S ◦ Ŝ

(2)

where S and Ŝ are the ground truth and the segmentation prediction ∈ [0, 1].

2.4 Rule-Based Classification

Finally, we perform a referral decision based on the guidelines of NLST. Specif-
ically, a decision tree is used for indicating if a patient should be referred for
further examination or not. First, scans where no nodule candidates are detected
are considered as negatives. From the remaining, a scan is considered patholog-
ical if there is at least a nodule candidate with d > 4 mm and less than 50%
of calcified area. The nodule diameter d is the equivalent diameter of our seg-
mentation, thus the diameter of a perfect sphere with an equal volume as the
volume of our segmentation. The calcified area is computed by calculating the
total area of all volumes above a threshold of 70 HU.

3 Experimental Results and Discussion

Our pipeline is composed of a novel single-step nodule detection system, fol-
lowed by U-Net for segmentation and a final referral decision based on the NLST
guidelines. Table 1 compares the performance of our system with the the top-3
methods from LUNA16. A nodule is considered detected (TP) if the distance
to the prediction centroid is less than the nodule radius and hits on non-nodule
lesions are not considered as FP. Also, note that we only consider nodules of
d > 4 mm, instead of d > 3 mm, since these are the ones with relevance for
screening. Even though it is not possible to state that our system is as good
as other approaches because the detection-per-radius performance is not pub-
licly available, the achieved recall is satisfactory for a 2.5D single-step nodule
detection framework that requires less model-related parameter tuning and com-
putation power than other state-of-the-art methods. Furthermore, our nodule
detection achieves a scan-wise recall (i.e., finding at least one of the nodules in
a scan) of 0.90, increasing to 0.95 if only nodules of d > 4 mm are considered.

U-Net achieves an average test IoU of 0.63±0.02 and Sorensen-Dice coefficient
of 0.79±0.15, which is line with the state-of-the-art performance. Moreover, the

Table 1. Nodule detection accuracy of the top-3 from LUNA16 (Feb 2018) for 0.25
false-positive per scan and ours for nodules of diameter d > 4mm.

Name PAtech JianPeiCAD FONOVACAD ours d > 4mm

Recall 0.921 0.940 0.932 0.926
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estimated diameter error is of 1.89 ± 3.20 mm, with greater errors occurring at
the largest nodules. This means that the system is capable of providing a robust
measurement that does not compromise the NLST rule-based decision.

Figure 4 shows examples of nodules and the respective segmentation predicted
by our method on the independent NLST dataset. As depicted in Fig. 4A–B, we
are capable of detecting nodules of different sizes and challenging textures and still
provide a good segmentation. Furthermore, in Fig. 4B we show examples of calci-
fied structures being correctly detected due to the field knowledge-based threshold
on the soft tissue HU window.

A B C

Fig. 4. Examples of predicted detections and segmentations on the NLST dataset
(51×51mm). A: nodules that contributed for a correct patient referral; B: benign and
non-relevant lesions; C: false-positive and missed lesions.

In terms of referral, we evaluate our system in terms of scan sensitivity and
specificity to ease the comparison with the specialists from NLST. We do not
compare with Kaggle solutions because our method does not produce a referral
probability and thus log loss computation is not possible. Our screening pipeline
achieves a cancer detection sensitivity of 89.4%, which is in line with the find-
ings of the NLST study. This suggests that the proposed system is successfully
locating, measuring and applying the decision criteria to relevant abnormalities
as depicted in Fig. 4A–B. For comparison purposes, NLST specialists were capa-
ble of successfully detecting 93.8% of the cancer cases by manual inspection of
LDCT scans using the same radius-based criteria [2].

Despite its high sensitivity, our system is still not robust enough for unsuper-
vised cancer screening. Namely, detecting FP, as showed in Fig. 4C, combined
with the simplistic diameter decision which, although diagnostic relevant, is not
sufficient to perform cancer prediction because our specificity is only 23.8%.
This is in line with the NLST study, where 96.4% of the cancer cases referred
for follow-up were actually FP detections. Instead, our method is to be used as
an independent observer during the screening process since, unlike end-to-end
deep learning approaches such as the Kaggle solutions, it has a human under-
standable reasoning behind the referral decision, i.e., the clinician can verify the
structure that the model considered to be of interest for the decision process.
This means that our FP predictions can be easily checked by the expert during
the screening.
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4 Conclusions

We propose and validate a second opinion computer-aided lung cancer screening
system that achieves high patient referral sensitivity. Despite its high perfor-
mance, the decision based on the NLST criteria does not allow the system to be
robust in terms of cancer risk prediction. Future research should thus focus on
the development of advanced methods capable of characterizing nodules using a
single or multiple time-points and predict nodule malignancy accordingly.

Ultimately, the high performance and explainability of our approach makes
it an objective second-opinion system for clinicians to use during the screening
process and can contribute to further increase the early detection of lung cancer.
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