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Abstract. Cardiac cine MRI facilitates structural and functional anal-
ysis of the heart through the dynamic aspect of the sequences. Clinical
acquisitions consist of sparse 2D images instead of 3D volumes, taken
at landmark points of the ECG to cover the whole heartbeat. A stack
of short axis images and a small number of long axis views are gener-
ally acquired. Efforts have been made to accelerate acquisitions at the
acquisition stage as well as at post-processing. A major part of current
research in medical image processing focuses on deep learning approaches
driven by large datasets. However, most of those methods leave out the
dynamic aspect of temporal data and treat frames of cine MRI sequences
individually. We propose a super resolution network based on the U-net
and long short-term memory layers to exploit the temporal aspect of the
dynamic cardiac cine MRI data. When given a sequence of low resolution
long axis images, our method is able to render a high resolution sequence.
Results on synthetic data simulating a stack of short axis images show
quantitative and qualitative improvements over traditional interpolation
methods or the equivalent machine learning method using a single frame,
including the ability of the network to recover important image features
such as the apex.
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1 Introduction

Cardiac cine MRI allows functional and structural analysis of the heart. Due
to its exceptional soft tissue contrast, reproducibility and safety considerations
it is commonly taken as the gold standard for cardiac imaging. To capture the
whole heartbeat in a sequence of images, scans are produced at landmark times
synchronised with ECG readings. To minimise the imaging times, clinical acqui-
sitions consist of anisotropic 2D slices instead of a 3D volume. A stack of parallel
short axis (SA) slices and a small number of orthogonal long axis (LA) slices
are generally acquired for each frame of the sequence. The number of slices in
the SA stack is dependent on the size of the heart but generally ranges between
8 and 12, and the number of LA slices is also variable. Standardised protocols
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such as the UK biobank protocol include three LA views: the vertical long axis
(VLA, also called 2-chamber view), the horizontal long axis (HLA, also called
4-chamber view), and the left ventricular outflow tract (LVOT) view [1,2]. Some
of the main issues associated with cine MRI are the slice misalignment occur-
ring due to patient motion and breath hold variations between acquisitions,
intensity differences between slices due to flow artefacts and magnetic field inho-
mogeneities, and sometimes contrast agents, as well the sparsity of the data
occasionally resulting in a lack of coverage of the left ventricle by the SA stack
[3]. The dynamic aspect of cardiac MRI is used to evaluate cardiovascular func-
tion metrics such as the ejection fraction and the stroke volume, to quantify wall
motion and thickness and identify scar tissue in follow-up scans from patients
who have suffered a myocardial infarct.

The MRI pulse sequence most commonly used in cardiac cine MRI for left
ventricular structural and functional analysis is the b-SFFP sequence. This is
due to its excellent signal-to-noise ratio per unit time and T2/T1 contrast and
the fact that it does not suffer from excessive signal loss from motion [4]. There
also exists a 3D version of the b-SFFP sequence, which allows isotropic acquisi-
tions but in turn has worse contrast between blood and the myocardium and is
therefore not commonly used in clinical practice.

MRI acquisitions may be accelerated at the acquisition stage, by undersam-
pling k-space and reconstructing images with incomplete data, which is referred
to as compressed sensing. Most compressed sensing approaches work on an indi-
vidual image basis. One of the few that uses temporal context is [5] where a
dynamic 2D+t dictionary is learnt and used to recover missing k-space data.

The limitations caused by the relatively long time required for MRI acqui-
sition have also led to interest in the development of super resolution methods
at the post-processing end of the imaging pipeline. A large part of the litera-
ture uses non-machine learning approaches. Most of these methods involve least
squares error regularisation and assume overlap between numerous slices [6].
Few approaches to super resolution of medical images, more specifically cardiac
cine MRI, actually make use of the temporal aspect. In work by Odille et al., a
parallel SA stack and two additional stacks taken at orthogonal orientations are
used to produce a 3D reconstruction of the heart using regularised least squares,
after applying a motion compensating algorithm using the data from the whole
cine sequence [7].

Recently, machine learning methods have dominated the research in the
biomedical image analysis field. With the increasing availability of computing
power, large labelled datasets and open source libraries, deep learning has quickly
become the benchmark for many tasks such as image classification and segmen-
tation. The first application of deep learning to image super-resolution consisted
of a simple network with three layers, inspired by the idea behind dictionary
learning applications to super resolution. The first layer has a small filter size
similar to a LR dictionary extracting a small LR image patch, the third layer a
larger filter size similar to a HR dictionary upsampling to a bigger higher res-
olution patch, and the middle layer introduces a non linear mapping between
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the two [8]. A small number of training images underlines the simplicity of the
approach, which shows pleasing results on natural images, and has become a
benchmark in deep learning super resolution.

Some of the best results in image segmentation have been produced by the
U-net architecture introduced by Ronneberger et al. [9]. The U-net is a convolu-
tional neural network, similar to an autoencoder but including skip connections
between input and output layers. The skip connections allow high frequency as
well as low frequency information to be processed and make it suitable for super
resolution, for which it has been applied to 3D microscopy in two recent studies.
The first of them uses a U-net to generate a residual image containing the high
frequency information to be added to the LR input [10]. The second compares
a U-net to a Super-Resolution Convolutional Neural Network (SRCNN) [8] in
3D to upsample synthetically downsampled microscopy images, showing that
both architectures can be used for the task at hand with the U-net consistently
outperforming SRCNN [11].

Deep learning has also been applied to super resolution of cardiac MRI in [12],
where a single image and a multi-image network are trained to predict residuals
which are added to the LR image and give it high frequency information. The
data used in that study comes from synthetically down-sampled 3D b-SFFP
acquisitions that do not require realignment to account for breathing between
acquisitions or patient motion. The same group recently extended the network to
an anatomically constrained neural network that resembles a U-net and is able to
do super resolution and segmentation aided by the addition of shape priors [13].
In contrast, our work aims to improve standard dynamic 2D data acquired in
clinical practice, using the dynamic information in the time sequence to improve
the reconstruction. We present a network learning a one-to-one mapping between
low resolution (LR) and high resolution (HR) 2D image sequences to generate
additional HR LA views from a dynamic SA stack.

Recurrent neural networks (RNN) and especially long short term memory
(LSTM) are starting to be applied in medical image analysis. Recurrence can
be applied in a spatial sense, by considering adjacent slices in a 3D image. In
a study on prostate MRI for cancer segmentation, adjacent 2D slices were fed
into a U-net fitted with recurrent layers at every convolution [14]. RNNs have
been applied to cardiac cine MRI first by Poudel et al. [15], at the lowest resolu-
tion level of a U-net to take advantage of low frequency features in consecutive
frames of the cardiac cycle. LSTMs have been applied to enhance performance
of myocardium segmentations in cardiac cine MRI sequences [16]. In that study,
similar to [15], recurrent layers are present in the lower resolution levels of the
network architecture.

Up to our knowledge, recurrent networks have not been used for cardiac cine
MRI sequence reconstruction. In this paper we propose a method using temporal
recurrence to recover HR LA slices from LR acquisitions. Our results show that
introducing recurrence improves the quality of the reconstruction, as compared
to equivalent single-frame approaches.
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2 Materials and Methods

Our method uses an architecture inspired by the U-net, with added recurrent
layers, sharing some characteristics with those used in [14–16] for segmentation.
While [14] used recurrence on all levels of a U-net, [16] only on the two lower
resolution levels, and [15] only on the lowest resolution level, we included recur-
rence layers on the first two layers, corresponding to the highest resolutions. We
limited the number of levels to the first two for two reasons: to save memory and
because unlike with segmentation work where the lower frequency features are
more important, we are particularly interested in the high frequency information
which is needed to convert LR into HR images.

Figure 1 shows the network architecture. The network we propose is inspired
by the U-net with a contractive part and skip connections sensitive to low and
high frequency details, respectively. At the first and second levels, we introduced
LSTM convolution layers. There are a total of five levels in the network each ini-
tiated by a 2× 2 Max pooling layer. The input data has a size of 128× 128× 10,
the lowest level therefore operates on samples of size 8× 8× 10 where only the
very low frequency features are present. We chose to put the recurrent layers on
the top levels since we want to enhance the high frequency features of the images
and they are mostly present in the first and second levels. Going down to the

Fig. 1. Network architecture. A network inspired by the U-net with four LSTM mod-
ules at the top of the network aiming to enhance high frequency features by taking into
account the dynamic aspect of the cine sequence on the original image size and after
the first max pooling operation which decreases the image size by a factor of two. Filter
numbers are indicated on the diagram on top of the blue bars after every convolution.
Arrows represent the different operations. Height, width, and time sizes are shown for
every level. (Color figure online)
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third level, the data is now 32× 32× 10 which we deemed to be less relevant to
the high frequency content. We also trained a U-net with the same architecture
where all the convolution layers are conventional convolutions with filters of size
3× 3, to compare performance between a context sensitive and a static network.
Training was performed using an Adam optimiser to minimise mean squared
error over 90 epochs, with a learning rate of 4.5.10−5. The network was writ-
ten in Python using the Keras library (https://keras.io) running on Tensorflow
backend, and training was performed on a Nvidia GeForce GTX 1080 Ti 256
RAM GPU.

2.1 Data

LA views from the Kaggle Data Science Bowl Cardiac Challenge Data [17] were
used in training. The dataset consists of cine MRI sequences of over five hundred
patients. Every data set has 30 frames, however the number of SA and LA
slices differ, as a standardised imaging protocol was not used. VLA and HLA
acquisitions were present for most of the patients but a non negligible part of
the data had only one or no LA views. The patients have a large spread of age
and size which is advantageous to preserve the generalisation properties of the
method.

After discarding unusable data (e.g. the ones affected by very strong artefacts
or wrongly labeled as LA) by visual inspection, all remaining images were resam-
pled to isotropic resolution of 1.4 mm× 1.4 mm, rotated to the same upright ori-
entation where the base is towards the top of the image and the apex towards
the bottom, and down-sampled in the baso-apical direction to match the slice
thickness of standard SA slices of 10 mm. In this way, we generated images simi-
lar to those that would be reconstructed from the SA stack. Every sequence was
also normalised such that all image intensities lie in the range between 0 and
1. We did not differentiate between HLA and VLA views, both were included
together in the training, validation and testing datasets. In this way, we aimed to
demonstrate the ability of the method to recover images with different appear-
ance (e.g. in terms of the number of chambers), with the eventual goal of using
the network to produce slices in any arbitrary orthogonal orientation from SA
stacks.

After splitting the sequences of 30 frames into shorter sequences of 10 frames
each (to reduce the time needed for training), 3342 LR-HR sequence pairs of
10 frames per sequence were available. 3000 sequences were used for training,
171 set aside for validation, and 171 for testing, ensuring that none of the split
sequences were spanning over the training and the validation or testing set. For
the static network, all the frames in a sequence were used, which increased the
training, validation, and testing data by a factor of 30.

3 Results

Results on the first 5 frames of a HLA sequence are shown in Fig. 2. A represen-
tative result on 5 non-adjacent frames of a VLA sequence can be seen in Fig. 3,

https://keras.io
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with the cardiac contraction more easily visible due to the frames spanning a
longer time. Both figures display a sequence from the unseen testing dataset
using cubic interpolation in the first row, the result of using static frames only
in the second row, the result of the proposed network in the third row, and
the ground truth on the bottom row. Each frame has been magnified around
the apex, one of the features that is most prone to being missed by the SA
stack acquisition. The proposed network manages to recover the apex across the
sequence, with much better definition than previously used standard U-Nets.

In addition to qualitative improvements, the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) of the dynamic network output outper-
form the static network and interpolation. More quantitative results are shown
in Table 1, which contains the average values for PSNR and SSIM of the whole
testing data set and shows that the dynamic network output is superior to the
static network as well as interpolation.

Table 1. Quantitative evaluation (PSNR and SSIM) of interpolated, single frame U-
net, and the proposed network results on the whole testing data set which has not been
seen by the networks in training.

Interpolated U-net LSTM

PSNR 23.17 dB 25.23 dB 26.57 dB

SSIM 0.72 0.77 0.81

Fig. 2. Result on the first 5 frames of a HLA view cine sequence. The top row shows
the LR interpolated input, the second row shows the result given by the static U-net,
the third the result given by network including LSTM layers, and the bottom row
shows the HR ground truth. This proposed enhanced 4-chamber sequence has a PSNR
of 25.28 dB and a SSIM of 0.82 while the static U-net gives a PSNR of 23.83 dB and a
SSIM of 0.79 and the interpolated sequence a PSNR of 22.15 dB and a SSIM of 0.73.
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Fig. 3. Result on the 1st, 8th, 15th, 22nd, and 30th frames of a VLA view cine sequence.
The top row shows the LR interpolated input, the second row shows the result given by
the static U-net, the third the result given by network including LSTM layers, and the
bottom row shows the HR ground truth. This proposed enhanced 2-chamber sequence
has a PSNR of 27.55 dB and a SSIM of 0.83 while the static U-net gives a PSNR of
25.69 dB and a SSIM of 0.78 and the interpolated sequence a PSNR of 22.23 dB and a
SSIM of 0.71.

4 Discussion and Conclusion

We have showed that there is an advantage to using the temporal context for
super resolution of cardiac cine MRI sequences, in comparison to the more com-
mon approach of reconstructing individual frames. Our proposed architecture,
which includes LSTM layers on the upper layers of a U-net, gives qualitatively
and quantitatively superior results to an equivalent U-net architecture with no
recurrence.

In order to concentrate on the effects of recurrence on reconstructions, we
chose experiments that avoid common acquisition artifacts such as misalignment
between slices and intensity mismatches. Future work will look into the recon-
struction from clinical SA stacks suffering from these artifacts, as well as recon-
struction of arbitrarily oriented slices, eventually aiming to reconstruct complete
3D datasets.
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