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Abstract. A general problem of any deformable image registration
method for change assessment is to find a good balance between com-
puting a precise match and keeping locally differences. In this work we
present the rigid lens concept dealing with this issue. The rigid lens is
based on locally rigid approximation of locally precise deformations and
can be used for interactive viewing and visualization of changes as well
as for automatic change detection. We demonstrate the rigid lens in the
context of oncological workup of thorax-abdomen CT follow-up scans
and evaluate the concept for change assessment based on a study with
1492 manually annotated lesion in scans from more than 400 patients.
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1 Introduction

Image registration is one of the central tasks in medical imaging with a wide
range of application. The overall goal is alignment of images by spatially map-
ping corresponding locations. Registration typically stands at the beginning of
an image processing pipeline and once spatial correspondence has been estab-
lished, it allows for subsequent local or even voxel-wise comparison or other local
processing. Typical usage in medical imaging is navigation support, motion cor-
rection, propagation of information such as markers or segmentations, change
detection and change analysis. Behind these examples, there are hidden two com-
peting registration goals that generally cannot be reached simultaneously. While
the first examples ask for local alignment as perfect as possible, the assessment
of (in particular) morphological changes requires to keep local differences. Thus,
finding the right balance is a challenging and application depending task that
needs to be solved by every image registration method.

In this work we present an approach dealing with this issue in the context
of software support for reading and analyzing thorax-abdomen CT scans that
undergo an oncological workup. Here, accurate deformable image registration
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can be used to compare follow-up scans by synchronized viewing, to link courser
positions to the retrieval and to propagate findings from prior images in follow-
up scans. On the other hand, if the registration keeps local differences, it can be
used for subtraction imaging with baseline and warped follow-up scans to assist
radiologists with the detection and quantification of changes, such as new lesions
or tumor growth.

State-of-the-art deformable registration approaches try to achieve a reason-
able trade-off between alignment quality and preservation of local changes. For
example in a variational registration setting, this is typically steered by a so-
called regularization parameter that weights image similarity versus smoothness
of the computed mapping [2,5,9,12,16,21]. Also variational approaches were
introduced for deformable registration that incorporate local rigidity. This is
done either by adding an penalty term to the objective function to be mini-
mized [8,10,11,17,18] or by forcing local rigidity as hard constraints [6,7,13,14].
However, all these methods have been proposed for modeling stiff tissue such as
bone and they require prior knowledge about the regions that shall be kept rigid.
In our setting we generally cannot assume to have such prior information avail-
able. Furthermore, utilizing these type of methods would be quite costly since
we have to run a complete registration if we change the local region to be kept
rigid. To this end, we follow the ideas of Dzyubachyk et al. [3]. The authors intro-
duced an interactive method with focus on finding bone lesion in follow-up MRI
scans. Therefore, the user selects a point of interest on a skeletal structure, the
surrounding area of interest is segmented by region growing and a locally rigid
transform is derived from a pre-computed whole-body deformable registration.
The derived rigid transformation is then used for visual side-by-side comparison
of follow-up MRI scans by a lens view, color-fusion, warped iso-contours and a
quiver plot of the local deformation.

In this work we extend the ideas from [3] to CT follow-up imaging, change
detection and subtraction imaging. We consider a generalized setting for taking
full advantage of locally precise deformable registration. We also present a lens
tool called rigid lens for visualizing, detecting and analyzing changes by locally
rigid approximations of the deformation field. We give quantitative measures
for rating and detection of changes and evaluate the rigid lens and its use for
change detection and change assessment with a quantitative study based on 1492
annotated tumors in thorax-abdomen CT follow-up scans.

2 Method

Our idea follows the work presented in [3] and is inspired by common lens view-
ing tools for interactive inspection of changes and image fusion of aligned images
where one image is shown in the background and another image is shown inside
a lens region. We assume that we have given two registered images which we
call reference and template image and the corresponding deformation vector
field warping the template image onto the reference image. Then in principle
we could use a common lens tool to inspect the reference and warped template.
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If the registration produced a reasonable alignment we will not recognize sig-
nificant morphological differences between inside and outside the lens, since
local change have been removed by registration. In the extreme case of perfect
alignment the warped image will look almost identical to the reference image.
However, our idea is to compute a rigid approximation to the given non-rigid
deformation restricted to the lens region. Then we use the obtained rigid map-
ping for warping the template and show the result inside the lens region. As
a result we obtain a locally rigid registration valid for the particular position
of the lens region with complete morphology from the template preserved. The
concept of the rigid lens is illustrated in Fig. 1 and the details are given next in
Sects. 2.1 and 2.2.

Besides using the rigid lens for interactive viewing, where users hovers with
the rigid lens over the reference image, we are also interested in its use for change
detection. The most simple extensions is to perform subtraction imaging between
reference and rigid lens. However, we are also interested in deriving measures that
can be used for automatic change detection. To this end, in Sect. 2.3 we present
three measures based on the hypothesis that relevant changes alter shape, size
or appearance of structures.

x0

r

Reference image R

Lens region L with center x0 and radius r,
warped template image T (yrigid) inside with
rigid approx. yrigid to non-rigid deformation y on L

Fig. 1. Schematic overview of the rigid lens concept.

2.1 Modeling

Let R, T : R3 → R denote the reference and template image, respectively, and
let Ω ⊂ R3 be a domain modeling the field of view of R. Then the goal of image
registration is to find a deformation y : Ω → R3 that aligns the reference R
and template T such that R(x) and T (y(x)) are similar for x ∈ Ω. For example
common variational registration approaches compute y as a minimizer of an
objective function of the type

D(R, T (y)) + αS(y)

with so-called distance measure D that quantifies the similarity of reference
R and warped moving image T (y), smoother S that forces smoothness of the
deformation and a regularization parameter α > 0 that weights smoothness
versus similarity. However, in the following we just assume that y is a non-rigid
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deformation produced by some registration algorithm and that reasonably well
aligns R and T . Furthermore, for practical purpose we restrict ourselves to the
discrete case. To this end, we assume the domain Ω is discretized by a uniform
grid with resolution h > 0 and let Ωh be the set of all cell-centered points. The
idea of the rigid lens is to locally approximate y by a rigid transformation yrigid
on a lens region L defined as a neighborhood of a point x0 and radius r > h:

L ≡ Lr(x0) := {x ∈ Ωh : ‖x − x0‖2 ≤ r}.

For ease of notation, in the following we denote the lens region just by L always
with the implicit understanding that L depends on center x0 and radius r. Then
we define yrigid as rigid least squares solution, such that

∑

x∈L
‖y(x) − yrigid(x)‖2 != min . (1)

Note that yrigid depends on the lens region and center x0, radius r, respectively,
i.e., yrigid(x) ≡ yrigid(L;x) ≡ yrigid(Lr(x0);x).

2.2 Algorithm

Least-squares-estimation of rigid transformations for fitting point clouds is a
well-known problem in computer vision. Problem (1) is also known as Pro-
crustes matching and tracing back to mid 1960’s to the work of Whaba [20] and
Schönemann [15]. Since then, various algorithms and methods have been pro-
posed [4]. Dzyubachyk et al. [3] uses a unit quaternions based approach. Here
we follow the work of Arun et al. [1] and Umeyama [19], that is based on the
singular value decomposition which has been shown to be the numerically most
stable method [4]. For sake of completeness we give a sketch of the algorithm.

The rigid transformation can be parameterized by a rotation matrix Q ∈
SO(3) and translation vector b ∈ R3, such that yrigid can be written as yrigid(x) =
Qx + b and above least-squares problem is equivalent to find Q, b such that

∑

x∈L
‖y(x) − (Qx + b)‖2 != min s.t. Q�Q = I and det(Q) = 1. (2)

First we compute mean and covariance of the point sets L and y(L). We set

μx :=
1

|L|
∑

x∈L
x, μy :=

1
|L|

∑

x∈L
y(x) and Σxy :=

1
|L|

∑

x∈L
(x−μx)(y(x)−μy)�.

Next we compute the singular value decomposition Σxy = UDV �, with the
diagonal matrix D = diag(d1, d2, d3) and singular values d1 ≥ d2 ≥ d3 ≥ 0. If
rank(Σxy) ≥ 2 then (2) has a unique solution

Q∗ = USV � and b∗ = μy − Q∗μx,
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with diagonal matrix S defined as

S :=
{

I, if det(U) det(V ) = 1,
diag(1, 1,−1), if det(U) det(V ) = −1.

Thus the solution yrigid of (1) is given by

yrigid(x) = Q∗x + b∗.

Note that from practical perspective we expect Σxy having full rank as this
is the case iff L contains at least three (linear independent) points and the
deformation y is invertible. Otherwise, either the lens region is degenerated or
the registration results will most likely cause locally non-feasible deformations
such as grid foldings.

2.3 Rigid Lens Measures for Change Detection

As mentioned above, we are interested in features for automatic change detec-
tion and visualization. Next we introduce three evident measures based on the
hypothesis that relevant changes alter shape, size or appearance of structures.
The first measure that we propose is the average deformation difference targeting
changes in shape and size:

ddef =
1

|L|
∑

x∈L
‖y(x) − yrigid(x)‖.

It estimates the degree of local rigidity of y and therefore provides information
about local morphological changes w.r.t. lengths and angles. The second measure
aims at detection of changes in size. We define the average Jacobian as

djac =
1

|L|
∑

x∈L
det ∇y(x).

Both measures ddef and djac are purely based on the computed deformation
field only and do not take any image information into account, i.e., how the
deformation affects the image appearance. To this end we propose the relative
intensity difference quotient defined as

dint =
∑

x∈L |D(yrigid, x) − D(y, x)|∑
x∈L D(yrigid, x)

with difference image D(φ, x) := |R(x)−T (φ(x))|. Clearly, dint only makes sense
in a mono-modal setting as ours and aims on subtraction imaging. However,
under the assumption that the deformation y computed by non-rigid registration
leads to better alignment than its locally rigid approximation yrigid we expect
that D(yrigid, x) ≥ D(y, x). Therefore values of dint are expected in the range
[0, 1] with dint ≈ 1 if y leads to almost perfect alignment, such that R and T (y)
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are almost identical, and dint ≈ 0 if y and yrigid produce basically the same
warped images, i.e., T (y) and T (yrigid) are almost identical. Note, that ddef, djac,
dint are local averages depending on the location and size of the lens region
L ≡ Lr(x). Therefore, they can also be considered as point-wise measures at
scale r, i.e., ddef ≡ ddef(r, x), djac ≡ djac(r, x) and dint ≡ dint(r, x).

3 Results

We demonstrate the rigid lens and evaluate our measures for change detection on
CT follow-up thorax-abdomen scans of cancer patients. The CT data used for our
experiments was collected from patients referred from the oncology department
at the Radboud University Medical Center, Nijmegen, the Netherlands. In total
we used, 1263 thorax-abdomen CT scans of 487 patients from different scanners
and protocols with slice thickness varying from 1 mm to 2 mm. Furthermore, we
used 2898 annotations of tumors made by the radiologists during reporting for
quantitative evaluation of the rigid lens measures. We implemented the rigid lens
as an interactive application in MeVisLab (http://www.mevislab.de), where the
user hovers the lens over a reference image. The rigid deformation is instanta-
neously calculated from the given non-rigid deformation and the locally rigid
warped template image is displayed inside the lens region. All computations are
performed in real time on a state-of-the-art off-the-shelf PC. The application
was used for the computations and visualization of the results described below.

3.1 A Motivating Example

Our first example illustrates the rigid lens concept for interactive viewing with
a deformation that almost perfectly aligns the images and removes relevant
local changes. Figure 2 shows an example of a lens region with a kidney tumor
inside. The tumor in the non-rigid deformed template matches nearly perfect the
tumor in the reference, such that we cannot observe changes in the difference
image. In contrast, with the rigid lens we can see significant tumor growth in
the rigidly deformed template. The difference between non-rigid registered and
rigidly deformed template are quite high, which is also reflected by the rigid
lens measures: ddef = 5.32, dint = 0.67, and djac = 1.18. The deformation in
the lens region deviates 5.32 mm on average from the rigid deformation. This is
also reflected by the Jacobian, that indicates volume growth of 18% in the lens
region. Finally, our third measure dint also takes a high value that indicates high
intensity and appearance changes, respectively. Those high values are also visible
in the intensity/deformation difference and Jacobian images shown in Fig. 2.

3.2 CT Follow-Up Registration

Now we look at thorax-abdomen CT follow-up scans, to demonstrate the utility
of the proposed method. First we want to look on the visible effects and the
qualitative information gain of the rigid lens in tumor regions. Afterwards we
examine the quantitative benefit of the proposed algorithm in those regions.

http://www.mevislab.de
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Qualitative Study. The image top left of Fig. 3 shows the sagittal view of a
CT abdomen scan with the considered tumor region, where we want to analyze

Lens location ‖y − yrigid‖ det∇y

TR (y) T (yrigid)

|T (y) − T (yrigid)| |R − T (y)| |R − T (yrigid)|

Fig. 2. CT abdomen scan with a rigid lens on a kidney tumor region: the image top left
shows the coronal view of the reference image with the rigid template lens region. In the
second row from left to right the lens region of the reference, the registered and rigid
deformed template are displayed. The images of the last row show the intensity dif-
ferences between the registered and the rigidly approximated and the difference image
between the reference and the registered/rigid deformed template. The image top mid-
dle shows deformation differences between the registered and the rigidly approximated
template and the image on the right shows the Jacobian of the deformation.
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Fig. 3. Follow-up CT abdomen scan with a rigid lens on a liver tumor region: In the first
row the sagittal view of the reference CT abdomen scan with the rigid template lens
region and the lens region of the reference image are displayed. The rows from top to
bottom show the rigidly approximated template region, the registered template region
and intensity/deformation difference images between registered and rigid deformed
template at the same position in the time follow-up template images.
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the shape and volume development of the tumor. The baseline scan served as ref-
erence for registration with three follow-up scans token two, six, and nine month
later. In the lens region a large and a small tumor can be recognized. With the
rigid lens we clearly recognize how the tumors grow, whereas we do not recognize
such tumor changes in the registered template images as in the rigid deformed
region: In the first column the registration matches the tumor regions of the tem-
plate image quite well to the ones of the reference image, but in the images token
later the corresponding regions match less perfect. These tumor changes are also
visible in the intensity and deformation difference between the registered and the
rigid deformed template: In the first image we do not recognize high intensity and
deformation changes in the tumor region, so the transformation of this region
is quite rigid. In the images on the right we see more intensity and deformation
differences in the tumor region, since the difference between the rigid deformed
and registered tumor get higher. These observations fit to the calculated rigid
lens measures listed in Table 1: We measured high deformation changes, which
increase through the time follow-up images. Furthermore the intensity quotients
are always on a high level and the average Jacobians indicates an expansion of
the volume vector field. In summary we assessed a growing and expansion of the
tumor in the lens region by approximating the deformation field rigidly.

Quantitative Study. In this experiment we do a quantitative evaluation of the
rigid lens measures for change analysis of tumor regions. In total we considered
881 non-rigid follow-up registrations with the baseline image as reference and
the corresponding follow-up images as templates. We used the tumor annotations
(largest diameter and center) to define 1492 rigid lens regions and evaluated the
average deformation difference, intensity difference and Jacobian in the region
of interest. From in total 2898 annotations we only considered those with diam-
eter ≥ 2cm to avoid statistics based on very small lens regions only containing
few pixels. Furthermore, to avoid duplicate measurements in our statistics we
used the annotations from the baseline scan for all corresponding follow-up reg-
istrations. Only in cases when no annotations at baseline are available, then the
ones from follow-up scans were used. The results of our study are summarized in
Table 2. We observe a large range of deformation differences with values ranging
from 0.05mm to 16.13mm. We also observed intensity quotients on a significant
high level. In average volume change djac is near 1, but standard deviation is

Table 1. Rigid lens measures to the corresponding follow-up data of Fig. 3. Each line
shows the results of the corresponding template image.

Follow-up ddef dint djac

2 month 2.62 0.71 1.08

6 month 2.93 0.63 1.02

9 month 3.81 0.76 1.06
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quite high > 30% indicating significant tumor growth or shrinkage. For better
understanding we illustrate the meaning of djac � 1 and djac � 1 in Fig. 4.

djac = 0.52 djac = 2.57
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Fig. 4. Tumor regions with djac � 1 and djac � 1: In each column is from top to
bottom the reference image, the original and rigid deformed template, and the absolute
intensity differences between reference and original/rigid deformed template shown. We
observed djac = 0.52 in the first and djac = 2.57 in the second column.
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Table 2. Rigid lens measures of the quantitative study: Mean and standard deviation
of the measured values are listed for each tumor type.

Tumor type Number ddef dint djac

Liver 352 2.88 ± 1.91 0.52 ± 0.12 1.01 ± 0.34

Lung 157 2.65 ± 2.26 0.49 ± 0.14 1.03 ± 0.33

Other 983 3.27 ± 1.98 0.55 ± 0.14 0.99 ± 0.37

All 1492 3.11 ± 2.01 0.54 ± 0.14 1.00 ± 0.36

4 Conclusions

We proposed a simple approach for change assessment which is independent from
any particular image registration method. We showed, that the rigid lens can
be used to assess changes of volume, shape and appearance of structures. The
benefits of the rigid lens are its interactive usage and its computationally cheap
calculation in real time, yielding local rigid alignment without performing addi-
tional registration. Furthermore we introduced three measures for non-rigid local
changes. We showed that the measures are generally able to indicate changes in
shape, size and appearance. Finally we evaluated our tool for the assessment of
tumor in follow-up CT scans and demonstrated the approach with a quantita-
tive study. In future work, we aim to verify, that the rigid lens measures are
sensitive to changes by correlating the results presented in Table 2 with ground-
truth tumor growth. Furthermore, we aim to extent the approach for automatic
change detection. Another interesting direction of research is the generalization
of the rigid lens to comparison and change detection in multi-modal registration.
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