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Abstract. The characterization of the vasculature in the mediastinum,
more specifically the pulmonary artery, is of vital importance for the
evaluation of several pulmonary vascular diseases. Thus, the goal of this
study is to automatically segment the pulmonary artery (PA) from com-
puted tomography angiography images, which opens up the opportunity
for more complex analysis of the evolution of the PA geometry in health
and disease and can be used in complex fluid mechanics models or indi-
vidualized medicine. For that purpose, a new 3D convolutional neural
network architecture is proposed, which is trained on images coming
from different patient cohorts. The network makes use a strong data
augmentation paradigm based on realistic deformations generated by
applying principal component analysis to the deformation fields obtained
from the affine registration of several datasets. The network is validated
on 91 datasets by comparing the automatic segmentations with semi-
automatically delineated ground truths in terms of mean Dice and Jac-
card coefficients and mean distance between surfaces, which yields values
of 0.89, 0.80 and 1.25 mm, respectively. Finally, a comparison against a
Unet architecture is also included.
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1 Introduction

The morphological assessment of the Pulmonary Artery (PA) is essential to eval-
uate several Pulmonary Vascular Diseases (PVD). Most patients with Pulmonary
Hypertension (PH), present a remodeled main PA with a diameter considerably
larger than that of a control subject and thus, being an important biomarker for
predicting and detecting hypertension. In the Chronic Obstructive Pulmonary
Disease (COPD), a widening of the PA is associated with increased risks of exac-
erbation and decreased survival rates. Pulmonary Embolism (PE) refers to the
blockage of one of the pulmonary arteries, mostly caused by blood clots. Thus,
it is essential to monitor the arterial obstruction to evaluate the severity of PE.

Computed tomography (CT) and CT angiography (CTA) play a crucial role
in the diagnosis and management of PVD since they allow to assess macroscopic
pulmonary vascular morphology quantitatively. In this study, we aim at lever-
aging CTA images of several patient cohorts to segment the PA with a new 3D
Convolutional Neural Network (CNN) architecture. Deep learning has already
been applied to segment other vascular structures from CT images with promis-
ing results [3,7,10], which encouraged us to use it for PA segmentation.

2 Literature Review

The segmentation of PA can be challenging due to its complicated and vari-
able shape, motion artifacts, and proximity to other blood vessels such as the
pulmonary vein that may hamper the correct segmentation. Even if there are
many studies in the literature about pulmonary vascular tree segmentation, they
usually focus on vessel segmentation within the lungs or pulmonary emboli and
nodule detection, without specifically analyzing the PA.

Regarding the segmentation of the PA outside the lung, which is our goal,
only a few studies have been proposed. In [2] a Hessian matrix based preprocess-
ing followed by a region growing method is proposed, which relies on a previous
extraction of the lungs and the heart. The method in [14] also requires a pri-
ori knowledge of the artery morphology followed by a fast-marching algorithm
and a registration to a target reference volume, which did not fully address
the variability in PA sizes and shapes. In [6] a semi-automated tool which uses
level sets and geodesic active contours to segment the main PA is presented,
with the goal of measuring the PA diameters in patients with PH. From the
obtained segmentations, the authors extract the artery centerline and measure
the diameter, reporting a mean error up to 6 mm. A similar study to measure
PA cross-sectional area is proposed in [9], where the artery is segmented using
dilation and erosion operations on 14 normal patient CTA scans.

Compared to previous works in the literature, our method combines images
from PE cohorts, PH cohorts, and control patients and is tested on many vol-
umes. Additionally, it is fully automatic, it does not include any shape prior and
it yields a mean error when measuring PA diameters of 2.5 mm.
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3 Materials

A total of 51 CTA volumes of different patients are employed to train our CNN.
Among these datasets, 39 patients have PE, 8 of them are control subjects who
were thought to have PH, and the remaining 4 have hypertension. The mean
intensity in the PA is higher than 550 HU in all the CTA volumes, and motion-
related artifacts are present in most of the images. Figure 1 shows sample CTA
slices of three patients coming from different cohorts.

Fig. 1. Sample CTA slices of 3 patients from different cohorts. Left - Pulmonary
embolism dataset, where the arrow points towards a clot; Middle - Control subject;
Right - Pulmonary hypertension case, where the arrows show a dilated artery.

To test the network, an additional 91 CTA volumes are used, all of them cor-
responding to patients with PE, being it our largest cohort. The mean intensity
in the PA in these cases ranges between 350 HU and 550 HU.

3.1 Fuzzy Ground Truth Generation

For the 142 patients, ground truth labels are obtained semi-automatically using
ITK-Snap [16]. The first step consists of selecting a region of interest around the
PA, extracting a sub-volume that starts at the aortic valve and expands until
the main PA is not observed.

Then, an initial segmentation is extracted with the region competition snake
approach, using a thresholded version of the image as the feature image that
drives the evolution and forces the snake to fit the boundary of the artery.
The minimum and maximum thresholds employed to create the feature image
for the training datasets are set to 500 HU and 900 HU, respectively, whereas
for the test images, the employed thresholds are 300 HU and 900 HU. A seed
point is placed within the main PA to initialize the evolution of the snake,
which is manually stopped when an approximate segmentation is obtained. The
parameters that control the evolution of the front, i.e. the region competition
force and the smoothing or curvature force, are set to 1 and 0.5, respectively.
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Finally, the output segmentation from the region competition snake approach
is manually refined, as shown in Fig. 2. Two main corrections are applied:

– Removal of veins and other structures incorrectly labeled as arteries
– Inclusion of clots in the segmentation to ensure a natural artery shape

Fig. 2. Correction of the automatically generated ground truth labels. Left - Automat-
ically obtained segmentation; Middle - Correction of the segmentation by including the
clot (green) and removing the vein (blue); Right - Final fuzzy ground truth used for
the CNN. (Color figure online)

The resulting ground truth segmentations are considered fuzzy, since it is
difficult to have a precise delimitation of the artery contour when there is a large
clot in the artery. Additionally, small artery branches have not been consistently
labeled across the different datasets.

4 Methods

Hereby, we propose a new 3D convolutional neural network for the segmenta-
tion of the PA from CTA volumes. The proposed network, fully described in
Sect. 4.3, is inspired by the 3D V-net [8] with modifications introduced from the
2D Fully Convolutional DenseNet (FC-DenseNet) [5] and the 2D Efficient neural
network (ENet) [11]. We employ a training strategy that relies on a strong use of
data augmentation, mostly generated with realistic deformations, as explained
in Sect. 4.1. Finally, we validate our network with the test set by comparing
the semi-automatically generated ground truths with the network predictions in
terms of Dice and Jaccard scores. Since the final clinical goal is to characterize
the aortic morphology, we also measure the distance at each point between the
two surfaces, i.e., the ground truth and the output from the network.

4.1 Data Augmentation Using Realistic Deformations

Data augmentation have been largely used in deep learning in the biomedical
field due to the limited number of annotated datasets. In particular, for the case
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of 3D datasets, it is difficult and time-consuming to obtain a corpus of annotated
images that are large enough to account for the anatomical variability between
subjects. Thus, researchers usually apply data augmentation techniques, mostly
in the form of rotations and translations to generate new volumes. In [12] a new
data augmentation approach was proposed, based on applying random elastic
deformations to the original volumes. The use of these synthetically generated
volumes seemed to be the key to train a segmentation network with very few
annotated samples.

Inspired by this work, we efficiently augment our dataset using realistic elastic
deformations as well as traditional rotations and translations. Unlike in [12],
where the applied deformations were random, we propose to generate realistic
deformation vectors from the Principal Component Analysis (PCA) of a subset
of deformation fields extracted directly from the affine registration of several
volumes. The steps are the following:

1. Register 10 CTA volumes to a reference volume of a control subject using
3D Slicer [1] and extract the 3D deformation fields corresponding only to the
affine transformation

2. Extract the mean deformation and the eigenvectors and eigenvalues of the
ten deformation fields using two PCA models:

– PCA1-Model: considers the correlation between the components of the
deformation fields, i.e., x, y, and z

– PCA2 Model: considers each component of the fields independently
3. Generate new deformation fields by randomly weighing the first six eigen-

vectors (which account for most of the variability) with values from 0 to the
square root of the corresponding eigenvalue

– For PCA1-Model the three components are weighted equally
– For PCA2-Model we weight x, y and z independently

4. Generate new synthetic volumes by applying these deformation fields to each
original CTA volume in the training set, as shown in Eq. 1 for PCA1-Model
and in Eq. 2 for PCA2-Model.

Ĩj :
6∑

i=1

< wi ∗ Bi > +µ (1)

Ĩj :
6∑

i=1

< wxi
∗Bxi

> +µx+
6∑

i=1

< wyi
∗Byi

> +µy +
6∑

i=1

< wzi ∗Bzi > +µz

(2)

where Ĩj is the generated synthetic image, wi are the weights generated from
the eigenvalues, Bi are the eigenvectors, and µ is the mean image extracted from
the 10 original deformation fields.

Following this procedure, we create 50 new volumes per each original input
CTA. 30 of them are extracted with PCA1-Model, whereas another 20 are gen-
erated with PCA2-Model. This allows the network to learn invariance to defor-
mations without the need to see these transformations in the annotated image
corpus. This is particularly important in biomedical segmentation since defor-
mation is the most common variation in tissue and realistic deformations can
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be simulated efficiently with the proposed approach. Examples of the generated
volumes in 2D and 3D are shown in Figs. 3 and 4, respectively.

4.2 Related Networks Served as Inspiration

The V-Net [8] network is one of the few architectures in the literature specifi-
cally designed to work with 3D images. It is composed of convolution, deconvo-
lution and pooling layers arranged in an encoding and a decoding path. Every
couple of layers in the encoding path a down-convolution is performed, and for
every pooling the number of feature maps is doubled to allow the network to
distribute the information from the previous layer throughout the maps, instead
of losing it when reducing the spatial resolution. Before each down-convolution,
a skip-connection is introduced to pass higher resolution maps to the decod-
ing path. In the decoding path, an up-convolution is performed every couple

Fig. 3. Sample axial slices of volumes generated using the realistic deformation based
data augmentation technique. Right: original axial slice; Middle: corresponding slice
generated using PCA2-Model; Left: corresponding slice generated using PCA1-Model.

Fig. 4. Sample volumes generated using the realistic deformation based data augmen-
tation technique.
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of layers and feature fusion with the skip connections is applied, improving the
convergence time and the quality of the segmentation.

FC-DenseNet [5] is one of the most recent networks for 2D semantic seg-
mentation. As the V-Net, FC-DenseNet also uses an encoding and a decod-
ing pathway to obtain global features, incorporating feature fusion. However,
opposed to the idea in V-Net, this architecture uses many convolutional layers
but each of them with few channels, whereas in V-net there are fewer convo-
lutional layers and the information is distributed in more filters. Each layer is
directly connected to every other layer in a feed-forward fashion and batch nor-
malization is implemented before all convolutional layers, which helps to control
over-fitting.

Finally, in [11] the ENet is proposed, which aims at providing real-time
semantic segmentation by using a low amount of parameters, squeezing in as
much information as possible in every parameter. A critical contribution of ENet
is the introduction of a down-sampling block that combines max pooling and
strided convolution to avoid representational bottlenecks.

4.3 Proposed Convolutional Neural Network

Figure 5 shows the main building blocks of our proposed network, displayed
in Fig. 6. It has an encoding and a decoding path as the V-Net and the FC-
DenseNet. As in FC-DenseNet, the input is propagated through the network via
dense connections and channels are appended throughout. The structure of the
encoder is also changed to an ENet style block. We also remove some layers as
compared to FC-DenseNet, but increase the width. The number of filters in each

Fig. 5. The several blocks that compose the proposed convolutional neural network.
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Fig. 6. Scheme of the proposed convolutional neural network.

regular dense block is increased gradually. In the decoding pathway, we decrease
the number of channels steadily to reach an amount that is computationally
feasible without performing extreme information compression.

The network is implemented using Keras with tensorflow. It is trained with
3468 volumes extracted by augmenting the scans of 91 different patients. All
volumes are resized to 128 × 128× 64 and the intensities are rescaled to 0–1.

The model is built in a Xeon E7 3.6 GHz, 62 GB processor equipped with
a Nvidia GeForce GTX1080 card, under Linux Ubuntu 16.04 SMP 64 bits. We
train the network using ADAM optimization with a batch size of 1, an initial
learning rate of 1e−03 and plateau learning rate decay with a factor of 0.2 when
the validation loss is not improved after five epochs, with a minimum learning
rate of 1e−05. We use the binary accuracy metric and try to minimize the binary
cross entropy loss function. Early stopping is also applied to avoid overfitting,
thus, stopping the learning process after 20 epochs, as shown in Fig. 7.
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Fig. 7. Training and validation loss and accuracy curves and fitted polynomial trendline
as a function of epochs. Over-fitting is observed after epoch 20.

Finally, the model is tested on the 91 less contrasted CTA scans described
in Sect. 3. The predictions are 3D probability maps where the intensity of each
pixel is the probability of it being PA. We apply gaussian smoothing to the
output grayscale image, followed by Otsu’s thresholding that aims at selecting
an optimal case-specific threshold when the image contains two classes following
bi-modal histogram and voting binary hole filling to obtain the final binary
segmentation.

4.4 Validation Approach

To evaluate the performance of our network, we compare the automatically
obtained segmentation with the fuzzy ground truths in terms of Dice and Jaccard
scores for the 91 test cases, and we calculate the mean and standard deviation.

Since the final clinical goal is to characterize PA morphology, i.e. its diameter,
we generate the 3D surfaces of both segmentations using VTK [13] to calculate
the mean distance between them. First, we use the Discrete Marching Cubes
method to extract the surfaces and the normals at every point. Then, we create
a Kd-tree spatial decomposition of the set of points of each surface. Finally,
we use a point locator to find the closest point in the ground truth surface for
every point in our segmentation, and we measure the Euclidean distance between
them. The distance between surfaces is the mean distance of all the points in the
surface, which corresponds to the mean error when measuring the PA radius.

5 Results

Table 1 summarizes the results for the proposed network using realistic
deformation-based data augmentation and without using it. Our method yields
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a mean Dice coefficient of 89% and a Jaccard score of 80%. From the clinical
point of view, when measuring the PA radius our method falls into a mean error
of 1.25 mm. According to several studies [4,15], the PA diameter of a control
subject is smaller than 29 mm and in patients with PH the artery is enlarged.
Hence, the mean error made with our segmentation approach falls at least below
8.6%.

Figure 8 depicts the box plots for the validation scores for all the patients
used for testing, where some clear outliers that negatively impact the achieved
mean values are observed. The most noticeable two cases correspond to patients
with a very big liver, in which the network gets confused and segments part of
the liver as if it were the artery (see Fig. 10). Our guess is that the network may
interpret that this region corresponds to the end part of the artery branch.

Regarding the use of deformation-based data augmentation, an improvement
of 2.3% and 3.9% is obtained for Dice and Jaccard coefficients, respectively. For
the distance between surfaces, an improvement of 1.57% is achieved. As shown
in Fig. 8, the Dice and Jaccard score’s improvement is statistically significant
according to the Wilcoxon test but it is not for the distance between surfaces.

Finally, we also trained and tested the V-net in [8] to compare the results,
which are shown in Table 2. Even if the Dice and Jaccard scores are very similar
for both architectures, the distance between surfaces is much larger in the case
of the Unet and the statistical significance is notable, with a p-value of 1.73e−09
for the case of the distance according to the Wilkoxon test (Fig. 9). This suggest
that our architecture enables better quantification of mean pulmonary artery
diameters.

Table 1. Evaluation metrics for the proposed network when including realistic
deformable registration based data augmentation and without it.

Mean Dice Score Mean Jaccard Score Mean distance between
surfaces (mm)

Without
augmentation

0.87 ± 0.07 0.77 ± 0.09 1.27 ± 0.98

With data
augmentation

0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17

Table 2. Evaluation metrics for the proposed method as compared to a traditional
Unet when using the deformation-based data augmentation.

Mean Dice Score Mean Jaccard Score Mean distance between
surfaces (mm)

Unet 0.89 ± 0.04 0.80 ± 0.05 1.66 ± 1.03

Proposed
architecture

0.89 ± 0.07 0.80 ± 0.09 1.25 ± 1.17
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Fig. 8. Plots showing the Dice and Jaccard scores and the mean distance between
surfaces for all the test volumes when using the proposed data augmentation technique,
and without it. The p-values corresponding to the Wilkoxon test are also displayed.

Fig. 9. Plots showing the Dice and Jaccard scores and the mean distance between
surfaces for the proposed architecture and a Unet. The p-values corresponding to the
Wilkoxon test are also displayed.

Fig. 10. Outlier test case of a patient with a very big liver, which the network segments
as artery.

6 Conclusions

Hereby, we proposed a new CNN to PA segmentation from CTA images, which
opens up the opportunity for more complex analysis of the evolution of the PA
geometry (i.e. going beyond just measuring the diameter). The network is based
on an encoder-decoder scheme similar to the V-net [8], but by including Dense
blocks and Enet blocks, we are able to improve the segmentation results, mostly
in terms of distance between surfaces. Adding bootstrapping to the loss function
could further increase the accuracy of our model.

Additionally, a novel data augmentation approach has been described, which
relies on a PCA analysis of deformation fields extracted from the affine regis-
tration of several volumes. For the current work, 10 different base deformation
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fields have been extracted by registering 10 volumes to a reference CTA. Look-
ing at the results, it seems that more fields are necessary to account for a larger
anatomical variability between patients since the improvement as compared to
training without this data augmentation is not statistically significant regarding
the distance between surfaces. However, a tendency is observed in the Dice and
Jaccard scores, which suggests that with more deformation fields a better out-
come may be achieved. Additionally, the fields generated to create the synthetic
images after the PCA analysis are obtained by varying the weight of each eigen-
vector with the square root of the corresponding eigenvalue, which limits the
range of deviation from the mean deformation. Weighting each eigenvector with
a wider value range could also account for more variability in the input data.

Finally, regarding future work, our aim is to incorporate a data augmentation
technique that simulates non-contrast CT volumes from CTA scans. This may
allow to use the same network to segment and characterize the artery in cohorts
where the use of contrast is not usual, such as COPD patients.
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